8202021: Improve variable naming in ReferenceProcesso
Reviewed-by: sangheki, sjohanss
/*
* Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_G1_SPARSEPRT_HPP
#define SHARE_VM_GC_G1_SPARSEPRT_HPP
#include "gc/g1/g1CollectedHeap.hpp"
#include "gc/g1/heapRegion.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "memory/allocation.hpp"
#include "runtime/mutex.hpp"
#include "utilities/align.hpp"
#include "utilities/globalDefinitions.hpp"
// Sparse remembered set for a heap region (the "owning" region). Maps
// indices of other regions to short sequences of cards in the other region
// that might contain pointers into the owner region.
// These tables only expand while they are accessed in parallel --
// deletions may be done in single-threaded code. This allows us to allow
// unsynchronized reads/iterations, as long as expansions caused by
// insertions only enqueue old versions for deletions, but do not delete
// old versions synchronously.
class SparsePRTEntry: public CHeapObj<mtGC> {
private:
// The type of a card entry.
typedef uint16_t card_elem_t;
// We need to make sizeof(SparsePRTEntry) an even multiple of maximum member size,
// in order to force correct alignment that could otherwise cause SIGBUS errors
// when reading the member variables. This calculates the minimum number of card
// array elements required to get that alignment.
static const size_t card_array_alignment = sizeof(int) / sizeof(card_elem_t);
RegionIdx_t _region_ind;
int _next_index;
int _next_null;
// The actual cards stored in this array.
// WARNING: Don't put any data members beyond this line. Card array has, in fact, variable length.
// It should always be the last data member.
card_elem_t _cards[card_array_alignment];
// Copy the current entry's cards into "cards".
inline void copy_cards(card_elem_t* cards) const;
public:
// Returns the size of the entry, used for entry allocation.
static size_t size() { return sizeof(SparsePRTEntry) + sizeof(card_elem_t) * (cards_num() - card_array_alignment); }
// Returns the size of the card array.
static int cards_num() {
return align_up((int)G1RSetSparseRegionEntries, (int)card_array_alignment);
}
// Set the region_ind to the given value, and delete all cards.
inline void init(RegionIdx_t region_ind);
RegionIdx_t r_ind() const { return _region_ind; }
bool valid_entry() const { return r_ind() >= 0; }
void set_r_ind(RegionIdx_t rind) { _region_ind = rind; }
int next_index() const { return _next_index; }
int* next_index_addr() { return &_next_index; }
void set_next_index(int ni) { _next_index = ni; }
// Returns "true" iff the entry contains the given card index.
inline bool contains_card(CardIdx_t card_index) const;
// Returns the number of non-NULL card entries.
inline int num_valid_cards() const { return _next_null; }
// Requires that the entry not contain the given card index. If there is
// space available, add the given card index to the entry and return
// "true"; otherwise, return "false" to indicate that the entry is full.
enum AddCardResult {
overflow,
found,
added
};
inline AddCardResult add_card(CardIdx_t card_index);
// Copy the current entry's cards into the "_card" array of "e."
inline void copy_cards(SparsePRTEntry* e) const;
inline CardIdx_t card(int i) const {
assert(i >= 0, "must be nonnegative");
assert(i < cards_num(), "range checking");
return (CardIdx_t)_cards[i];
}
};
class RSHashTable : public CHeapObj<mtGC> {
friend class RSHashTableIter;
// Inverse maximum hash table occupancy used.
static float TableOccupancyFactor;
size_t _num_entries;
size_t _capacity;
size_t _capacity_mask;
size_t _occupied_entries;
size_t _occupied_cards;
SparsePRTEntry* _entries;
int* _buckets;
int _free_region;
int _free_list;
// Requires that the caller hold a lock preventing parallel modifying
// operations, and that the the table be less than completely full. If
// an entry for "region_ind" is already in the table, finds it and
// returns its address; otherwise allocates, initializes, inserts and
// returns a new entry for "region_ind".
SparsePRTEntry* entry_for_region_ind_create(RegionIdx_t region_ind);
// Returns the index of the next free entry in "_entries".
int alloc_entry();
// Declares the entry "fi" to be free. (It must have already been
// deleted from any bucket lists.
void free_entry(int fi);
public:
RSHashTable(size_t capacity);
~RSHashTable();
static const int NullEntry = -1;
bool should_expand() const { return _occupied_entries == _num_entries; }
// Attempts to ensure that the given card_index in the given region is in
// the sparse table. If successful (because the card was already
// present, or because it was successfully added) returns "true".
// Otherwise, returns "false" to indicate that the addition would
// overflow the entry for the region. The caller must transfer these
// entries to a larger-capacity representation.
bool add_card(RegionIdx_t region_id, CardIdx_t card_index);
bool get_cards(RegionIdx_t region_id, CardIdx_t* cards);
bool delete_entry(RegionIdx_t region_id);
bool contains_card(RegionIdx_t region_id, CardIdx_t card_index) const;
void add_entry(SparsePRTEntry* e);
SparsePRTEntry* get_entry(RegionIdx_t region_id) const;
void clear();
size_t capacity() const { return _capacity; }
size_t capacity_mask() const { return _capacity_mask; }
size_t occupied_entries() const { return _occupied_entries; }
size_t occupied_cards() const { return _occupied_cards; }
size_t mem_size() const;
// The number of SparsePRTEntry instances available.
size_t num_entries() const { return _num_entries; }
SparsePRTEntry* entry(int i) const {
assert(i >= 0 && (size_t)i < _num_entries, "precondition");
return (SparsePRTEntry*)((char*)_entries + SparsePRTEntry::size() * i);
}
void print();
};
// This is embedded in HRRS iterator.
class RSHashTableIter {
// Return value indicating "invalid/no card".
static const int NoCardFound = -1;
int _tbl_ind; // [-1, 0.._rsht->_capacity)
int _bl_ind; // [-1, 0.._rsht->_capacity)
short _card_ind; // [0..SparsePRTEntry::cards_num())
RSHashTable* _rsht;
// If the bucket list pointed to by _bl_ind contains a card, sets
// _bl_ind to the index of that entry,
// Returns the card found if there is, otherwise returns InvalidCard.
CardIdx_t find_first_card_in_list();
// Computes the proper card index for the card whose offset in the
// current region (as indicated by _bl_ind) is "ci".
// This is subject to errors when there is iteration concurrent with
// modification, but these errors should be benign.
size_t compute_card_ind(CardIdx_t ci);
public:
RSHashTableIter(RSHashTable* rsht) :
_tbl_ind(RSHashTable::NullEntry), // So that first increment gets to 0.
_bl_ind(RSHashTable::NullEntry),
_card_ind((SparsePRTEntry::cards_num() - 1)),
_rsht(rsht) {}
bool has_next(size_t& card_index);
};
// Concurrent access to a SparsePRT must be serialized by some external mutex.
class SparsePRTIter;
class SparsePRTCleanupTask;
class SparsePRT {
friend class SparsePRTCleanupTask;
// Iterations are done on the _cur hash table, since they only need to
// see entries visible at the start of a collection pause.
// All other operations are done using the _next hash table.
RSHashTable* _cur;
RSHashTable* _next;
HeapRegion* _hr;
enum SomeAdditionalPrivateConstants {
InitialCapacity = 16
};
void expand();
bool _expanded;
bool expanded() { return _expanded; }
void set_expanded(bool b) { _expanded = b; }
SparsePRT* _next_expanded;
SparsePRT* next_expanded() { return _next_expanded; }
void set_next_expanded(SparsePRT* nxt) { _next_expanded = nxt; }
bool should_be_on_expanded_list();
static SparsePRT* volatile _head_expanded_list;
public:
SparsePRT(HeapRegion* hr);
~SparsePRT();
size_t occupied() const { return _next->occupied_cards(); }
size_t mem_size() const;
// Attempts to ensure that the given card_index in the given region is in
// the sparse table. If successful (because the card was already
// present, or because it was successfully added) returns "true".
// Otherwise, returns "false" to indicate that the addition would
// overflow the entry for the region. The caller must transfer these
// entries to a larger-capacity representation.
bool add_card(RegionIdx_t region_id, CardIdx_t card_index);
// Return the pointer to the entry associated with the given region.
SparsePRTEntry* get_entry(RegionIdx_t region_ind);
// If there is an entry for "region_ind", removes it and return "true";
// otherwise returns "false."
bool delete_entry(RegionIdx_t region_ind);
// Clear the table, and reinitialize to initial capacity.
void clear();
// Ensure that "_cur" and "_next" point to the same table.
void cleanup();
// Clean up all tables on the expanded list. Called single threaded.
static void cleanup_all();
RSHashTable* cur() const { return _cur; }
static void add_to_expanded_list(SparsePRT* sprt);
static SparsePRT* get_from_expanded_list();
// The purpose of these three methods is to help the GC workers
// during the cleanup pause to recreate the expanded list, purging
// any tables from it that belong to regions that are freed during
// cleanup (if we don't purge those tables, there is a race that
// causes various crashes; see CR 7014261).
//
// We chose to recreate the expanded list, instead of purging
// entries from it by iterating over it, to avoid this serial phase
// at the end of the cleanup pause.
//
// The three methods below work as follows:
// * reset_for_cleanup_tasks() : Nulls the expanded list head at the
// start of the cleanup pause.
// * do_cleanup_work() : Called by the cleanup workers for every
// region that is not free / is being freed by the cleanup
// pause. It creates a list of expanded tables whose head / tail
// are on the thread-local SparsePRTCleanupTask object.
// * finish_cleanup_task() : Called by the cleanup workers after
// they complete their cleanup task. It adds the local list into
// the global expanded list. It assumes that the
// ParGCRareEvent_lock is being held to ensure MT-safety.
static void reset_for_cleanup_tasks();
void do_cleanup_work(SparsePRTCleanupTask* sprt_cleanup_task);
static void finish_cleanup_task(SparsePRTCleanupTask* sprt_cleanup_task);
bool contains_card(RegionIdx_t region_id, CardIdx_t card_index) const {
return _next->contains_card(region_id, card_index);
}
};
class SparsePRTIter: public RSHashTableIter {
public:
SparsePRTIter(const SparsePRT* sprt) :
RSHashTableIter(sprt->cur()) {}
bool has_next(size_t& card_index) {
return RSHashTableIter::has_next(card_index);
}
};
// This allows each worker during a cleanup pause to create a
// thread-local list of sparse tables that have been expanded and need
// to be processed at the beginning of the next GC pause. This lists
// are concatenated into the single expanded list at the end of the
// cleanup pause.
class SparsePRTCleanupTask {
private:
SparsePRT* _head;
SparsePRT* _tail;
public:
SparsePRTCleanupTask() : _head(NULL), _tail(NULL) { }
void add(SparsePRT* sprt);
SparsePRT* head() { return _head; }
SparsePRT* tail() { return _tail; }
};
#endif // SHARE_VM_GC_G1_SPARSEPRT_HPP