8234740: Harmonize parameter order in Atomic - cmpxchg
Reviewed-by: rehn, dholmes
/*
* Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_UTILITIES_CONCURRENTHASHTABLE_HPP
#define SHARE_UTILITIES_CONCURRENTHASHTABLE_HPP
#include "memory/allocation.hpp"
#include "utilities/globalCounter.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/tableStatistics.hpp"
// A mostly concurrent-hash-table where the read-side is wait-free, inserts are
// CAS and deletes mutual exclude each other on per bucket-basis. VALUE is the
// type kept inside each Node and CONFIG contains hash and allocation methods.
// A CALLBACK_FUNC and LOOKUP_FUNC needs to be provided for get and insert.
class Thread;
class Mutex;
template <typename CONFIG, MEMFLAGS F>
class ConcurrentHashTable : public CHeapObj<F> {
typedef typename CONFIG::Value VALUE;
private:
// This is the internal node structure.
// Only constructed with placement new from memory allocated with MEMFLAGS of
// the InternalTable or user-defined memory.
class Node {
private:
Node * volatile _next;
VALUE _value;
public:
Node(const VALUE& value, Node* next = NULL)
: _next(next), _value(value) {
assert((((uintptr_t)this) & ((uintptr_t)0x3)) == 0,
"Must 16 bit aligned.");
}
Node* next() const;
void set_next(Node* node) { _next = node; }
Node* const volatile * next_ptr() { return &_next; }
VALUE* value() { return &_value; }
// Creates a node.
static Node* create_node(const VALUE& value, Node* next = NULL) {
return new (CONFIG::allocate_node(sizeof(Node), value)) Node(value, next);
}
// Destroys a node.
static void destroy_node(Node* node) {
CONFIG::free_node((void*)node, node->_value);
}
void print_on(outputStream* st) const {};
void print_value_on(outputStream* st) const {};
};
// Only constructed with placement new from an array allocated with MEMFLAGS
// of InternalTable.
class Bucket {
private:
// Embedded state in two low bits in first pointer is a spinlock with 3
// states, unlocked, locked, redirect. You must never busy-spin on trylock()
// or call lock() without _resize_lock, that would deadlock. Redirect can
// only be installed by owner and is the final state of a bucket.
// The only two valid flows are:
// unlocked -> locked -> unlocked
// unlocked -> locked -> redirect
// Locked state only applies to an updater.
// Reader only check for redirect.
Node * volatile _first;
static const uintptr_t STATE_LOCK_BIT = 0x1;
static const uintptr_t STATE_REDIRECT_BIT = 0x2;
static const uintptr_t STATE_MASK = 0x3;
// Get the first pointer unmasked.
Node* first_raw() const;
// Methods to manipulate the embedded.
static bool is_state(Node* node, uintptr_t bits) {
return (bits & (uintptr_t)node) == bits;
}
static Node* set_state(Node* n, uintptr_t bits) {
return (Node*)(bits | (uintptr_t)n);
}
static uintptr_t get_state(Node* node) {
return (((uintptr_t)node) & STATE_MASK);
}
static Node* clear_state(Node* node) {
return (Node*)(((uintptr_t)node) & (~(STATE_MASK)));
}
static Node* clear_set_state(Node* node, Node* state) {
return (Node*)(((uintptr_t)clear_state(node)) ^ get_state(state));
}
public:
// A bucket is only one pointer with the embedded state.
Bucket() : _first(NULL) {};
// Get the first pointer unmasked.
Node* first() const;
// Get a pointer to the const first pointer. Do not deference this
// pointer, the pointer pointed to _may_ contain an embedded state. Such
// pointer should only be used as input to release_assign_node_ptr.
Node* const volatile * first_ptr() { return &_first; }
// This is the only place where a pointer to a Node pointer that potentially
// is _first should be changed. Otherwise we destroy the embedded state. We
// only give out pointer to const Node pointer to avoid accidental
// assignment, thus here we must cast const part away. Method is not static
// due to an assert.
void release_assign_node_ptr(Node* const volatile * dst, Node* node) const;
// This method assigns this buckets last Node next ptr to input Node.
void release_assign_last_node_next(Node* node);
// Setting the first pointer must be done with CAS.
bool cas_first(Node *node, Node* expect);
// Returns true if this bucket is redirecting to a new table.
// Redirect is a terminal state and will never change.
bool have_redirect() const;
// Return true if this bucket is locked for updates.
bool is_locked() const;
// Return true if this bucket was locked.
bool trylock();
// The bucket might be invalid, due to a concurrent resize. The lock()
// method do no respect that and can deadlock if caller do not hold
// _resize_lock.
void lock();
// Unlocks this bucket.
void unlock();
// Installs redirect in this bucket.
// Prior to doing so you must have successfully locked this bucket.
void redirect();
};
// The backing storage table holding the buckets and it's size and mask-bits.
// Table is always a power of two for two reasons:
// - Re-size can only change the size into half or double
// (any pow 2 would also be possible).
// - Use masking of hash for bucket index.
class InternalTable : public CHeapObj<F> {
private:
Bucket* _buckets; // Bucket array.
public:
const size_t _log2_size; // Size in log2.
const size_t _size; // Size in log10.
// The mask used on hash for selecting bucket.
// The masked value is guaranteed be to inside the buckets array.
const size_t _hash_mask;
// Create a backing table
InternalTable(size_t log2_size);
~InternalTable();
Bucket* get_buckets() { return _buckets; }
Bucket* get_bucket(size_t idx) { return &_buckets[idx]; }
};
// Used as default functor when no functor supplied for some methods.
struct NoOp {
void operator()(VALUE*) {}
const VALUE& operator()() {}
void operator()(bool, VALUE*) {}
} noOp;
// For materializing a supplied value.
class LazyValueRetrieve {
private:
const VALUE& _val;
public:
LazyValueRetrieve(const VALUE& val) : _val(val) {}
const VALUE& operator()() { return _val; }
};
InternalTable* _table; // Active table.
InternalTable* _new_table; // Table we are resizing to.
// Default sizes
static const size_t DEFAULT_MAX_SIZE_LOG2 = 21;
static const size_t DEFAULT_START_SIZE_LOG2 = 13;
static const size_t DEFAULT_GROW_HINT = 4; // Chain length
const size_t _log2_size_limit; // The biggest size.
const size_t _log2_start_size; // Start size.
const size_t _grow_hint; // Number of linked items
volatile bool _size_limit_reached;
// We serialize resizers and other bulk operations which do not support
// concurrent resize with this lock.
Mutex* _resize_lock;
// Since we need to drop mutex for safepoints, but stop other threads from
// taking the mutex after a safepoint this bool is the actual state. After
// acquiring the mutex you must check if this is already locked. If so you
// must drop the mutex until the real lock holder grabs the mutex.
volatile Thread* _resize_lock_owner;
// Return true if lock mutex/state succeeded.
bool try_resize_lock(Thread* locker);
// Returns when both mutex and state are proper locked.
void lock_resize_lock(Thread* locker);
// Unlocks mutex and state.
void unlock_resize_lock(Thread* locker);
// This method sets the _invisible_epoch and do a write_synchronize.
// Subsequent calls check the state of _invisible_epoch and determine if the
// write_synchronize can be avoided. If not, it sets the _invisible_epoch
// again and do a write_synchronize.
void write_synchonize_on_visible_epoch(Thread* thread);
// To be-able to avoid write_synchronize in resize and other bulk operation,
// this field keep tracks if a version of the hash-table was ever been seen.
// We the working thread pointer as tag for debugging. The _invisible_epoch
// can only be used by the owner of _resize_lock.
volatile Thread* _invisible_epoch;
// Scoped critical section, which also handles the invisible epochs.
// An invisible epoch/version do not need a write_synchronize().
class ScopedCS: public StackObj {
protected:
Thread* _thread;
ConcurrentHashTable<CONFIG, F>* _cht;
GlobalCounter::CSContext _cs_context;
public:
ScopedCS(Thread* thread, ConcurrentHashTable<CONFIG, F>* cht);
~ScopedCS();
};
// Max number of deletes in one bucket chain during bulk delete.
static const size_t BULK_DELETE_LIMIT = 256;
// Simple getters and setters for the internal table.
InternalTable* get_table() const;
InternalTable* get_new_table() const;
InternalTable* set_table_from_new();
// Destroys all nodes.
void free_nodes();
// Mask away high bits of hash.
static size_t bucket_idx_hash(InternalTable* table, const uintx hash) {
return ((size_t)hash) & table->_hash_mask;
}
// Returns bucket for hash for that internal table.
Bucket* get_bucket_in(InternalTable* table, const uintx hash) const {
size_t bucket_index = bucket_idx_hash(table, hash);
return table->get_bucket(bucket_index);
}
// Return correct bucket for reading and handles resizing.
Bucket* get_bucket(const uintx hash) const;
// Return correct bucket for updates and handles resizing.
Bucket* get_bucket_locked(Thread* thread, const uintx hash);
// Finds a node.
template <typename LOOKUP_FUNC>
Node* get_node(const Bucket* const bucket, LOOKUP_FUNC& lookup_f,
bool* have_dead, size_t* loops = NULL) const;
// Method for shrinking.
bool internal_shrink_prolog(Thread* thread, size_t log2_size);
void internal_shrink_epilog(Thread* thread);
void internal_shrink_range(Thread* thread, size_t start, size_t stop);
bool internal_shrink(Thread* thread, size_t size_limit_log2);
// Methods for growing.
bool unzip_bucket(Thread* thread, InternalTable* old_table,
InternalTable* new_table, size_t even_index,
size_t odd_index);
bool internal_grow_prolog(Thread* thread, size_t log2_size);
void internal_grow_epilog(Thread* thread);
void internal_grow_range(Thread* thread, size_t start, size_t stop);
bool internal_grow(Thread* thread, size_t log2_size);
// Get a value.
template <typename LOOKUP_FUNC>
VALUE* internal_get(Thread* thread, LOOKUP_FUNC& lookup_f,
bool* grow_hint = NULL);
// Plain insert.
template <typename LOOKUP_FUNC>
bool internal_insert(Thread* thread, LOOKUP_FUNC& lookup_f, const VALUE& value,
bool* grow_hint, bool* clean_hint);
// Returns true if an item matching LOOKUP_FUNC is removed.
// Calls DELETE_FUNC before destroying the node.
template <typename LOOKUP_FUNC, typename DELETE_FUNC>
bool internal_remove(Thread* thread, LOOKUP_FUNC& lookup_f,
DELETE_FUNC& delete_f);
// Visits nodes with FUNC.
template <typename FUNC>
static bool visit_nodes(Bucket* bucket, FUNC& visitor_f);
// During shrink/grow we cannot guarantee that we only visit nodes once, with
// current algorithm. To keep it simple caller will have locked
// _resize_lock.
template <typename FUNC>
void do_scan_locked(Thread* thread, FUNC& scan_f);
// Check for dead items in a bucket.
template <typename EVALUATE_FUNC>
size_t delete_check_nodes(Bucket* bucket, EVALUATE_FUNC& eval_f,
size_t num_del, Node** ndel);
// Check for dead items in this table. During shrink/grow we cannot guarantee
// that we only visit nodes once. To keep it simple caller will have locked
// _resize_lock.
template <typename EVALUATE_FUNC, typename DELETE_FUNC>
void do_bulk_delete_locked(Thread* thread, EVALUATE_FUNC& eval_f
, DELETE_FUNC& del_f) {
do_bulk_delete_locked_for(thread, 0, _table->_size, eval_f, del_f);
}
// To have prefetching for a VALUE that is pointer during
// do_bulk_delete_locked, we have this helper classes. One for non-pointer
// case without prefect and one for pointer with prefect.
template <bool b, typename EVALUATE_FUNC>
struct HaveDeletables {
static bool have_deletable(Bucket* bucket, EVALUATE_FUNC& eval_f,
Bucket* prefetch_bucket);
};
template<typename EVALUATE_FUNC>
struct HaveDeletables<true, EVALUATE_FUNC> {
static bool have_deletable(Bucket* bucket, EVALUATE_FUNC& eval_f,
Bucket* prefetch_bucket);
};
// Check for dead items in this table with range. During shrink/grow we cannot
// guarantee that we only visit nodes once. To keep it simple caller will
// have locked _resize_lock.
template <typename EVALUATE_FUNC, typename DELETE_FUNC>
void do_bulk_delete_locked_for(Thread* thread, size_t start_idx,
size_t stop_idx, EVALUATE_FUNC& eval_f,
DELETE_FUNC& del_f, bool is_mt = false);
// Method to delete one items.
template <typename LOOKUP_FUNC>
void delete_in_bucket(Thread* thread, Bucket* bucket, LOOKUP_FUNC& lookup_f);
public:
ConcurrentHashTable(size_t log2size = DEFAULT_START_SIZE_LOG2,
size_t log2size_limit = DEFAULT_MAX_SIZE_LOG2,
size_t grow_hint = DEFAULT_GROW_HINT);
~ConcurrentHashTable();
TableRateStatistics _stats_rate;
size_t get_size_log2(Thread* thread);
size_t get_node_size() const { return sizeof(Node); }
bool is_max_size_reached() { return _size_limit_reached; }
// This means no paused bucket resize operation is going to resume
// on this table.
bool is_safepoint_safe() { return _resize_lock_owner == NULL; }
// Re-size operations.
bool shrink(Thread* thread, size_t size_limit_log2 = 0);
bool grow(Thread* thread, size_t size_limit_log2 = 0);
// All callbacks for get are under critical sections. Other callbacks may be
// under critical section or may have locked parts of table. Calling any
// methods on the table during a callback is not supported.Only MultiGetHandle
// supports multiple gets.
// Get methods return true on found item with LOOKUP_FUNC and FOUND_FUNC is
// called.
template <typename LOOKUP_FUNC, typename FOUND_FUNC>
bool get(Thread* thread, LOOKUP_FUNC& lookup_f, FOUND_FUNC& foundf,
bool* grow_hint = NULL);
// Returns true true if the item was inserted, duplicates are found with
// LOOKUP_FUNC.
template <typename LOOKUP_FUNC>
bool insert(Thread* thread, LOOKUP_FUNC& lookup_f, const VALUE& value,
bool* grow_hint = NULL, bool* clean_hint = NULL) {
return internal_insert(thread, lookup_f, value, grow_hint, clean_hint);
}
// This does a fast unsafe insert and can thus only be used when there is no
// risk for a duplicates and no other threads uses this table.
bool unsafe_insert(const VALUE& value);
// Returns true if items was deleted matching LOOKUP_FUNC and
// prior to destruction DELETE_FUNC is called.
template <typename LOOKUP_FUNC, typename DELETE_FUNC>
bool remove(Thread* thread, LOOKUP_FUNC& lookup_f, DELETE_FUNC& del_f) {
return internal_remove(thread, lookup_f, del_f);
}
// Same without DELETE_FUNC.
template <typename LOOKUP_FUNC>
bool remove(Thread* thread, LOOKUP_FUNC& lookup_f) {
return internal_remove(thread, lookup_f, noOp);
}
// Visit all items with SCAN_FUNC if no concurrent resize. Takes the resize
// lock to avoid concurrent resizes. Else returns false.
template <typename SCAN_FUNC>
bool try_scan(Thread* thread, SCAN_FUNC& scan_f);
// Visit all items with SCAN_FUNC when the resize lock is obtained.
template <typename SCAN_FUNC>
void do_scan(Thread* thread, SCAN_FUNC& scan_f);
// Visit all items with SCAN_FUNC without any protection.
// It will assume there is no other thread accessing this
// table during the safepoint. Must be called with VM thread.
template <typename SCAN_FUNC>
void do_safepoint_scan(SCAN_FUNC& scan_f);
// Destroying items matching EVALUATE_FUNC, before destroying items
// DELETE_FUNC is called, if resize lock is obtained. Else returns false.
template <typename EVALUATE_FUNC, typename DELETE_FUNC>
bool try_bulk_delete(Thread* thread, EVALUATE_FUNC& eval_f,
DELETE_FUNC& del_f);
// Destroying items matching EVALUATE_FUNC, before destroying items
// DELETE_FUNC is called, when the resize lock is successfully obtained.
template <typename EVALUATE_FUNC, typename DELETE_FUNC>
void bulk_delete(Thread* thread, EVALUATE_FUNC& eval_f, DELETE_FUNC& del_f);
// Calcuate statistics. Item sizes are calculated with VALUE_SIZE_FUNC.
template <typename VALUE_SIZE_FUNC>
TableStatistics statistics_calculate(Thread* thread, VALUE_SIZE_FUNC& vs_f);
// Gets statistics if available, if not return old one. Item sizes are calculated with
// VALUE_SIZE_FUNC.
template <typename VALUE_SIZE_FUNC>
TableStatistics statistics_get(Thread* thread, VALUE_SIZE_FUNC& vs_f, TableStatistics old);
// Writes statistics to the outputStream. Item sizes are calculated with
// VALUE_SIZE_FUNC.
template <typename VALUE_SIZE_FUNC>
void statistics_to(Thread* thread, VALUE_SIZE_FUNC& vs_f, outputStream* st,
const char* table_name);
// Moves all nodes from this table to to_cht
bool try_move_nodes_to(Thread* thread, ConcurrentHashTable<CONFIG, F>* to_cht);
// Scoped multi getter.
class MultiGetHandle : private ScopedCS {
public:
MultiGetHandle(Thread* thread, ConcurrentHashTable<CONFIG, F>* cht)
: ScopedCS(thread, cht) {}
// In the MultiGetHandle scope you can lookup items matching LOOKUP_FUNC.
// The VALUEs are safe as long as you never save the VALUEs outside the
// scope, e.g. after ~MultiGetHandle().
template <typename LOOKUP_FUNC>
VALUE* get(LOOKUP_FUNC& lookup_f, bool* grow_hint = NULL);
};
private:
class BucketsOperation;
public:
class BulkDeleteTask;
class GrowTask;
};
#endif // SHARE_UTILITIES_CONCURRENTHASHTABLE_HPP