6681652: Two new regression test failures in pkcs11 code
Summary: Fixed the test to not assume SunJCE provider being the provider for DES
Reviewed-by: wetmore
/*
* Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_klassKlass.cpp.incl"
int klassKlass::oop_size(oop obj) const {
assert (obj->is_klass(), "must be a klassOop");
return klassOop(obj)->klass_part()->klass_oop_size();
}
klassOop klassKlass::create_klass(TRAPS) {
KlassHandle h_this_klass;
klassKlass o;
// for bootstrapping, handles may not be available yet.
klassOop k = base_create_klass_oop(h_this_klass, header_size(), o.vtbl_value(), CHECK_NULL);
k->set_klass(k); // point to thyself
// Do not try to allocate mirror, java.lang.Class not loaded at this point.
// See Universe::fixup_mirrors()
return k;
}
void klassKlass::oop_follow_contents(oop obj) {
Klass* k = Klass::cast(klassOop(obj));
// If we are alive it is valid to keep our superclass and subtype caches alive
MarkSweep::mark_and_push(k->adr_super());
for (juint i = 0; i < Klass::primary_super_limit(); i++)
MarkSweep::mark_and_push(k->adr_primary_supers()+i);
MarkSweep::mark_and_push(k->adr_secondary_super_cache());
MarkSweep::mark_and_push(k->adr_secondary_supers());
MarkSweep::mark_and_push(k->adr_java_mirror());
MarkSweep::mark_and_push(k->adr_name());
// We follow the subklass and sibling links at the end of the
// marking phase, since otherwise following them will prevent
// class unloading (all classes are transitively linked from
// java.lang.Object).
MarkSweep::revisit_weak_klass_link(k);
obj->follow_header();
}
#ifndef SERIALGC
void klassKlass::oop_follow_contents(ParCompactionManager* cm,
oop obj) {
Klass* k = Klass::cast(klassOop(obj));
// If we are alive it is valid to keep our superclass and subtype caches alive
PSParallelCompact::mark_and_push(cm, k->adr_super());
for (juint i = 0; i < Klass::primary_super_limit(); i++)
PSParallelCompact::mark_and_push(cm, k->adr_primary_supers()+i);
PSParallelCompact::mark_and_push(cm, k->adr_secondary_super_cache());
PSParallelCompact::mark_and_push(cm, k->adr_secondary_supers());
PSParallelCompact::mark_and_push(cm, k->adr_java_mirror());
PSParallelCompact::mark_and_push(cm, k->adr_name());
// We follow the subklass and sibling links at the end of the
// marking phase, since otherwise following them will prevent
// class unloading (all classes are transitively linked from
// java.lang.Object).
PSParallelCompact::revisit_weak_klass_link(cm, k);
obj->follow_header(cm);
}
#endif // SERIALGC
int klassKlass::oop_oop_iterate(oop obj, OopClosure* blk) {
// Get size before changing pointers
int size = oop_size(obj);
Klass* k = Klass::cast(klassOop(obj));
blk->do_oop(k->adr_super());
for (juint i = 0; i < Klass::primary_super_limit(); i++)
blk->do_oop(k->adr_primary_supers()+i);
blk->do_oop(k->adr_secondary_super_cache());
blk->do_oop(k->adr_secondary_supers());
blk->do_oop(k->adr_java_mirror());
blk->do_oop(k->adr_name());
// The following are in the perm gen and are treated
// specially in a later phase of a perm gen collection; ...
assert(oop(k)->is_perm(), "should be in perm");
assert(oop(k->subklass())->is_perm_or_null(), "should be in perm");
assert(oop(k->next_sibling())->is_perm_or_null(), "should be in perm");
// ... don't scan them normally, but remember this klassKlass
// for later (see, for instance, oop_follow_contents above
// for what MarkSweep does with it.
if (blk->should_remember_klasses()) {
blk->remember_klass(k);
}
obj->oop_iterate_header(blk);
return size;
}
int klassKlass::oop_oop_iterate_m(oop obj, OopClosure* blk, MemRegion mr) {
// Get size before changing pointers
int size = oop_size(obj);
Klass* k = Klass::cast(klassOop(obj));
oop* adr;
adr = k->adr_super();
if (mr.contains(adr)) blk->do_oop(adr);
for (juint i = 0; i < Klass::primary_super_limit(); i++) {
adr = k->adr_primary_supers()+i;
if (mr.contains(adr)) blk->do_oop(adr);
}
adr = k->adr_secondary_super_cache();
if (mr.contains(adr)) blk->do_oop(adr);
adr = k->adr_secondary_supers();
if (mr.contains(adr)) blk->do_oop(adr);
adr = k->adr_java_mirror();
if (mr.contains(adr)) blk->do_oop(adr);
adr = k->adr_name();
if (mr.contains(adr)) blk->do_oop(adr);
// The following are "weak links" in the perm gen and are
// treated specially in a later phase of a perm gen collection.
assert(oop(k)->is_perm(), "should be in perm");
assert(oop(k->adr_subklass())->is_perm(), "should be in perm");
assert(oop(k->adr_next_sibling())->is_perm(), "should be in perm");
if (blk->should_remember_klasses()
&& (mr.contains(k->adr_subklass())
|| mr.contains(k->adr_next_sibling()))) {
blk->remember_klass(k);
}
obj->oop_iterate_header(blk, mr);
return size;
}
int klassKlass::oop_adjust_pointers(oop obj) {
// Get size before changing pointers
int size = oop_size(obj);
obj->adjust_header();
Klass* k = Klass::cast(klassOop(obj));
MarkSweep::adjust_pointer(k->adr_super());
for (juint i = 0; i < Klass::primary_super_limit(); i++)
MarkSweep::adjust_pointer(k->adr_primary_supers()+i);
MarkSweep::adjust_pointer(k->adr_secondary_super_cache());
MarkSweep::adjust_pointer(k->adr_secondary_supers());
MarkSweep::adjust_pointer(k->adr_java_mirror());
MarkSweep::adjust_pointer(k->adr_name());
MarkSweep::adjust_pointer(k->adr_subklass());
MarkSweep::adjust_pointer(k->adr_next_sibling());
return size;
}
#ifndef SERIALGC
void klassKlass::oop_copy_contents(PSPromotionManager* pm, oop obj) {
}
void klassKlass::oop_push_contents(PSPromotionManager* pm, oop obj) {
}
int klassKlass::oop_update_pointers(ParCompactionManager* cm, oop obj) {
Klass* k = Klass::cast(klassOop(obj));
oop* const beg_oop = k->oop_block_beg();
oop* const end_oop = k->oop_block_end();
for (oop* cur_oop = beg_oop; cur_oop < end_oop; ++cur_oop) {
PSParallelCompact::adjust_pointer(cur_oop);
}
return oop_size(obj);
}
int klassKlass::oop_update_pointers(ParCompactionManager* cm, oop obj,
HeapWord* beg_addr, HeapWord* end_addr) {
Klass* k = Klass::cast(klassOop(obj));
oop* const beg_oop = MAX2((oop*)beg_addr, k->oop_block_beg());
oop* const end_oop = MIN2((oop*)end_addr, k->oop_block_end());
for (oop* cur_oop = beg_oop; cur_oop < end_oop; ++cur_oop) {
PSParallelCompact::adjust_pointer(cur_oop);
}
return oop_size(obj);
}
#endif // SERIALGC
#ifndef PRODUCT
// Printing
void klassKlass::oop_print_on(oop obj, outputStream* st) {
Klass::oop_print_on(obj, st);
}
void klassKlass::oop_print_value_on(oop obj, outputStream* st) {
Klass::oop_print_value_on(obj, st);
}
#endif
const char* klassKlass::internal_name() const {
return "{other class}";
}
// Verification
void klassKlass::oop_verify_on(oop obj, outputStream* st) {
Klass::oop_verify_on(obj, st);
guarantee(obj->is_perm(), "should be in permspace");
guarantee(obj->is_klass(), "should be klass");
Klass* k = Klass::cast(klassOop(obj));
if (k->super() != NULL) {
guarantee(k->super()->is_perm(), "should be in permspace");
guarantee(k->super()->is_klass(), "should be klass");
}
klassOop ko = k->secondary_super_cache();
if( ko != NULL ) {
guarantee(ko->is_perm(), "should be in permspace");
guarantee(ko->is_klass(), "should be klass");
}
for( uint i = 0; i < primary_super_limit(); i++ ) {
oop ko = k->adr_primary_supers()[i]; // Cannot use normal accessor because it asserts
if( ko != NULL ) {
guarantee(ko->is_perm(), "should be in permspace");
guarantee(ko->is_klass(), "should be klass");
}
}
if (k->java_mirror() != NULL || (k->oop_is_instance() && instanceKlass::cast(klassOop(obj))->is_loaded())) {
guarantee(k->java_mirror() != NULL, "should be allocated");
guarantee(k->java_mirror()->is_perm(), "should be in permspace");
guarantee(k->java_mirror()->is_instance(), "should be instance");
}
if (k->name() != NULL) {
guarantee(Universe::heap()->is_in_permanent(k->name()),
"should be in permspace");
guarantee(k->name()->is_symbol(), "should be symbol");
}
}