/*
* Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "c1/c1_CodeStubs.hpp"
#include "c1/c1_FrameMap.hpp"
#include "c1/c1_LIRAssembler.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "c1/c1_Runtime1.hpp"
#include "nativeInst_x86.hpp"
#include "runtime/sharedRuntime.hpp"
#include "utilities/align.hpp"
#include "utilities/macros.hpp"
#include "vmreg_x86.inline.hpp"
#if INCLUDE_ALL_GCS
#include "gc/g1/g1SATBCardTableModRefBS.hpp"
#endif // INCLUDE_ALL_GCS
#define __ ce->masm()->
float ConversionStub::float_zero = 0.0;
double ConversionStub::double_zero = 0.0;
void ConversionStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
assert(bytecode() == Bytecodes::_f2i || bytecode() == Bytecodes::_d2i, "other conversions do not require stub");
if (input()->is_single_xmm()) {
__ comiss(input()->as_xmm_float_reg(),
ExternalAddress((address)&float_zero));
} else if (input()->is_double_xmm()) {
__ comisd(input()->as_xmm_double_reg(),
ExternalAddress((address)&double_zero));
} else {
LP64_ONLY(ShouldNotReachHere());
__ push(rax);
__ ftst();
__ fnstsw_ax();
__ sahf();
__ pop(rax);
}
Label NaN, do_return;
__ jccb(Assembler::parity, NaN);
__ jccb(Assembler::below, do_return);
// input is > 0 -> return maxInt
// result register already contains 0x80000000, so subtracting 1 gives 0x7fffffff
__ decrement(result()->as_register());
__ jmpb(do_return);
// input is NaN -> return 0
__ bind(NaN);
__ xorptr(result()->as_register(), result()->as_register());
__ bind(do_return);
__ jmp(_continuation);
}
void CounterOverflowStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
Metadata *m = _method->as_constant_ptr()->as_metadata();
ce->store_parameter(m, 1);
ce->store_parameter(_bci, 0);
__ call(RuntimeAddress(Runtime1::entry_for(Runtime1::counter_overflow_id)));
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
__ jmp(_continuation);
}
RangeCheckStub::RangeCheckStub(CodeEmitInfo* info, LIR_Opr index,
bool throw_index_out_of_bounds_exception)
: _throw_index_out_of_bounds_exception(throw_index_out_of_bounds_exception)
, _index(index)
{
assert(info != NULL, "must have info");
_info = new CodeEmitInfo(info);
}
void RangeCheckStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
if (_info->deoptimize_on_exception()) {
address a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
__ call(RuntimeAddress(a));
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
debug_only(__ should_not_reach_here());
return;
}
// pass the array index on stack because all registers must be preserved
if (_index->is_cpu_register()) {
ce->store_parameter(_index->as_register(), 0);
} else {
ce->store_parameter(_index->as_jint(), 0);
}
Runtime1::StubID stub_id;
if (_throw_index_out_of_bounds_exception) {
stub_id = Runtime1::throw_index_exception_id;
} else {
stub_id = Runtime1::throw_range_check_failed_id;
}
__ call(RuntimeAddress(Runtime1::entry_for(stub_id)));
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
debug_only(__ should_not_reach_here());
}
PredicateFailedStub::PredicateFailedStub(CodeEmitInfo* info) {
_info = new CodeEmitInfo(info);
}
void PredicateFailedStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
address a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
__ call(RuntimeAddress(a));
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
debug_only(__ should_not_reach_here());
}
void DivByZeroStub::emit_code(LIR_Assembler* ce) {
if (_offset != -1) {
ce->compilation()->implicit_exception_table()->append(_offset, __ offset());
}
__ bind(_entry);
__ call(RuntimeAddress(Runtime1::entry_for(Runtime1::throw_div0_exception_id)));
ce->add_call_info_here(_info);
debug_only(__ should_not_reach_here());
}
// Implementation of NewInstanceStub
NewInstanceStub::NewInstanceStub(LIR_Opr klass_reg, LIR_Opr result, ciInstanceKlass* klass, CodeEmitInfo* info, Runtime1::StubID stub_id) {
_result = result;
_klass = klass;
_klass_reg = klass_reg;
_info = new CodeEmitInfo(info);
assert(stub_id == Runtime1::new_instance_id ||
stub_id == Runtime1::fast_new_instance_id ||
stub_id == Runtime1::fast_new_instance_init_check_id,
"need new_instance id");
_stub_id = stub_id;
}
void NewInstanceStub::emit_code(LIR_Assembler* ce) {
assert(__ rsp_offset() == 0, "frame size should be fixed");
__ bind(_entry);
__ movptr(rdx, _klass_reg->as_register());
__ call(RuntimeAddress(Runtime1::entry_for(_stub_id)));
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
assert(_result->as_register() == rax, "result must in rax,");
__ jmp(_continuation);
}
// Implementation of NewTypeArrayStub
NewTypeArrayStub::NewTypeArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) {
_klass_reg = klass_reg;
_length = length;
_result = result;
_info = new CodeEmitInfo(info);
}
void NewTypeArrayStub::emit_code(LIR_Assembler* ce) {
assert(__ rsp_offset() == 0, "frame size should be fixed");
__ bind(_entry);
assert(_length->as_register() == rbx, "length must in rbx,");
assert(_klass_reg->as_register() == rdx, "klass_reg must in rdx");
__ call(RuntimeAddress(Runtime1::entry_for(Runtime1::new_type_array_id)));
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
assert(_result->as_register() == rax, "result must in rax,");
__ jmp(_continuation);
}
// Implementation of NewObjectArrayStub
NewObjectArrayStub::NewObjectArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) {
_klass_reg = klass_reg;
_result = result;
_length = length;
_info = new CodeEmitInfo(info);
}
void NewObjectArrayStub::emit_code(LIR_Assembler* ce) {
assert(__ rsp_offset() == 0, "frame size should be fixed");
__ bind(_entry);
assert(_length->as_register() == rbx, "length must in rbx,");
assert(_klass_reg->as_register() == rdx, "klass_reg must in rdx");
__ call(RuntimeAddress(Runtime1::entry_for(Runtime1::new_object_array_id)));
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
assert(_result->as_register() == rax, "result must in rax,");
__ jmp(_continuation);
}
// Implementation of MonitorAccessStubs
MonitorEnterStub::MonitorEnterStub(LIR_Opr obj_reg, LIR_Opr lock_reg, CodeEmitInfo* info)
: MonitorAccessStub(obj_reg, lock_reg)
{
_info = new CodeEmitInfo(info);
}
void MonitorEnterStub::emit_code(LIR_Assembler* ce) {
assert(__ rsp_offset() == 0, "frame size should be fixed");
__ bind(_entry);
ce->store_parameter(_obj_reg->as_register(), 1);
ce->store_parameter(_lock_reg->as_register(), 0);
Runtime1::StubID enter_id;
if (ce->compilation()->has_fpu_code()) {
enter_id = Runtime1::monitorenter_id;
} else {
enter_id = Runtime1::monitorenter_nofpu_id;
}
__ call(RuntimeAddress(Runtime1::entry_for(enter_id)));
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
__ jmp(_continuation);
}
void MonitorExitStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
if (_compute_lock) {
// lock_reg was destroyed by fast unlocking attempt => recompute it
ce->monitor_address(_monitor_ix, _lock_reg);
}
ce->store_parameter(_lock_reg->as_register(), 0);
// note: non-blocking leaf routine => no call info needed
Runtime1::StubID exit_id;
if (ce->compilation()->has_fpu_code()) {
exit_id = Runtime1::monitorexit_id;
} else {
exit_id = Runtime1::monitorexit_nofpu_id;
}
__ call(RuntimeAddress(Runtime1::entry_for(exit_id)));
__ jmp(_continuation);
}
// Implementation of patching:
// - Copy the code at given offset to an inlined buffer (first the bytes, then the number of bytes)
// - Replace original code with a call to the stub
// At Runtime:
// - call to stub, jump to runtime
// - in runtime: preserve all registers (rspecially objects, i.e., source and destination object)
// - in runtime: after initializing class, restore original code, reexecute instruction
int PatchingStub::_patch_info_offset = -NativeGeneralJump::instruction_size;
void PatchingStub::align_patch_site(MacroAssembler* masm) {
// We're patching a 5-7 byte instruction on intel and we need to
// make sure that we don't see a piece of the instruction. It
// appears mostly impossible on Intel to simply invalidate other
// processors caches and since they may do aggressive prefetch it's
// very hard to make a guess about what code might be in the icache.
// Force the instruction to be double word aligned so that it
// doesn't span a cache line.
masm->align(align_up((int)NativeGeneralJump::instruction_size, wordSize));
}
void PatchingStub::emit_code(LIR_Assembler* ce) {
assert(NativeCall::instruction_size <= _bytes_to_copy && _bytes_to_copy <= 0xFF, "not enough room for call");
Label call_patch;
// static field accesses have special semantics while the class
// initializer is being run so we emit a test which can be used to
// check that this code is being executed by the initializing
// thread.
address being_initialized_entry = __ pc();
if (CommentedAssembly) {
__ block_comment(" patch template");
}
if (_id == load_klass_id) {
// produce a copy of the load klass instruction for use by the being initialized case
#ifdef ASSERT
address start = __ pc();
#endif
Metadata* o = NULL;
__ mov_metadata(_obj, o);
#ifdef ASSERT
for (int i = 0; i < _bytes_to_copy; i++) {
address ptr = (address)(_pc_start + i);
int a_byte = (*ptr) & 0xFF;
assert(a_byte == *start++, "should be the same code");
}
#endif
} else if (_id == load_mirror_id) {
// produce a copy of the load mirror instruction for use by the being
// initialized case
#ifdef ASSERT
address start = __ pc();
#endif
jobject o = NULL;
__ movoop(_obj, o);
#ifdef ASSERT
for (int i = 0; i < _bytes_to_copy; i++) {
address ptr = (address)(_pc_start + i);
int a_byte = (*ptr) & 0xFF;
assert(a_byte == *start++, "should be the same code");
}
#endif
} else {
// make a copy the code which is going to be patched.
for (int i = 0; i < _bytes_to_copy; i++) {
address ptr = (address)(_pc_start + i);
int a_byte = (*ptr) & 0xFF;
__ emit_int8(a_byte);
*ptr = 0x90; // make the site look like a nop
}
}
address end_of_patch = __ pc();
int bytes_to_skip = 0;
if (_id == load_mirror_id) {
int offset = __ offset();
if (CommentedAssembly) {
__ block_comment(" being_initialized check");
}
assert(_obj != noreg, "must be a valid register");
Register tmp = rax;
Register tmp2 = rbx;
__ push(tmp);
__ push(tmp2);
// Load without verification to keep code size small. We need it because
// begin_initialized_entry_offset has to fit in a byte. Also, we know it's not null.
__ movptr(tmp2, Address(_obj, java_lang_Class::klass_offset_in_bytes()));
__ get_thread(tmp);
__ cmpptr(tmp, Address(tmp2, InstanceKlass::init_thread_offset()));
__ pop(tmp2);
__ pop(tmp);
__ jcc(Assembler::notEqual, call_patch);
// access_field patches may execute the patched code before it's
// copied back into place so we need to jump back into the main
// code of the nmethod to continue execution.
__ jmp(_patch_site_continuation);
// make sure this extra code gets skipped
bytes_to_skip += __ offset() - offset;
}
if (CommentedAssembly) {
__ block_comment("patch data encoded as movl");
}
// Now emit the patch record telling the runtime how to find the
// pieces of the patch. We only need 3 bytes but for readability of
// the disassembly we make the data look like a movl reg, imm32,
// which requires 5 bytes
int sizeof_patch_record = 5;
bytes_to_skip += sizeof_patch_record;
// emit the offsets needed to find the code to patch
int being_initialized_entry_offset = __ pc() - being_initialized_entry + sizeof_patch_record;
__ emit_int8((unsigned char)0xB8);
__ emit_int8(0);
__ emit_int8(being_initialized_entry_offset);
__ emit_int8(bytes_to_skip);
__ emit_int8(_bytes_to_copy);
address patch_info_pc = __ pc();
assert(patch_info_pc - end_of_patch == bytes_to_skip, "incorrect patch info");
address entry = __ pc();
NativeGeneralJump::insert_unconditional((address)_pc_start, entry);
address target = NULL;
relocInfo::relocType reloc_type = relocInfo::none;
switch (_id) {
case access_field_id: target = Runtime1::entry_for(Runtime1::access_field_patching_id); break;
case load_klass_id: target = Runtime1::entry_for(Runtime1::load_klass_patching_id); reloc_type = relocInfo::metadata_type; break;
case load_mirror_id: target = Runtime1::entry_for(Runtime1::load_mirror_patching_id); reloc_type = relocInfo::oop_type; break;
case load_appendix_id: target = Runtime1::entry_for(Runtime1::load_appendix_patching_id); reloc_type = relocInfo::oop_type; break;
default: ShouldNotReachHere();
}
__ bind(call_patch);
if (CommentedAssembly) {
__ block_comment("patch entry point");
}
__ call(RuntimeAddress(target));
assert(_patch_info_offset == (patch_info_pc - __ pc()), "must not change");
ce->add_call_info_here(_info);
int jmp_off = __ offset();
__ jmp(_patch_site_entry);
// Add enough nops so deoptimization can overwrite the jmp above with a call
// and not destroy the world. We cannot use fat nops here, since the concurrent
// code rewrite may transiently create the illegal instruction sequence.
for (int j = __ offset() ; j < jmp_off + 5 ; j++ ) {
__ nop();
}
if (_id == load_klass_id || _id == load_mirror_id || _id == load_appendix_id) {
CodeSection* cs = __ code_section();
RelocIterator iter(cs, (address)_pc_start, (address)(_pc_start + 1));
relocInfo::change_reloc_info_for_address(&iter, (address) _pc_start, reloc_type, relocInfo::none);
}
}
void DeoptimizeStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
ce->store_parameter(_trap_request, 0);
__ call(RuntimeAddress(Runtime1::entry_for(Runtime1::deoptimize_id)));
ce->add_call_info_here(_info);
DEBUG_ONLY(__ should_not_reach_here());
}
void ImplicitNullCheckStub::emit_code(LIR_Assembler* ce) {
address a;
if (_info->deoptimize_on_exception()) {
// Deoptimize, do not throw the exception, because it is probably wrong to do it here.
a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
} else {
a = Runtime1::entry_for(Runtime1::throw_null_pointer_exception_id);
}
ce->compilation()->implicit_exception_table()->append(_offset, __ offset());
__ bind(_entry);
__ call(RuntimeAddress(a));
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
debug_only(__ should_not_reach_here());
}
void SimpleExceptionStub::emit_code(LIR_Assembler* ce) {
assert(__ rsp_offset() == 0, "frame size should be fixed");
__ bind(_entry);
// pass the object on stack because all registers must be preserved
if (_obj->is_cpu_register()) {
ce->store_parameter(_obj->as_register(), 0);
}
__ call(RuntimeAddress(Runtime1::entry_for(_stub)));
ce->add_call_info_here(_info);
debug_only(__ should_not_reach_here());
}
void ArrayCopyStub::emit_code(LIR_Assembler* ce) {
//---------------slow case: call to native-----------------
__ bind(_entry);
// Figure out where the args should go
// This should really convert the IntrinsicID to the Method* and signature
// but I don't know how to do that.
//
VMRegPair args[5];
BasicType signature[5] = { T_OBJECT, T_INT, T_OBJECT, T_INT, T_INT};
SharedRuntime::java_calling_convention(signature, args, 5, true);
// push parameters
// (src, src_pos, dest, destPos, length)
Register r[5];
r[0] = src()->as_register();
r[1] = src_pos()->as_register();
r[2] = dst()->as_register();
r[3] = dst_pos()->as_register();
r[4] = length()->as_register();
// next registers will get stored on the stack
for (int i = 0; i < 5 ; i++ ) {
VMReg r_1 = args[i].first();
if (r_1->is_stack()) {
int st_off = r_1->reg2stack() * wordSize;
__ movptr (Address(rsp, st_off), r[i]);
} else {
assert(r[i] == args[i].first()->as_Register(), "Wrong register for arg ");
}
}
ce->align_call(lir_static_call);
ce->emit_static_call_stub();
if (ce->compilation()->bailed_out()) {
return; // CodeCache is full
}
AddressLiteral resolve(SharedRuntime::get_resolve_static_call_stub(),
relocInfo::static_call_type);
__ call(resolve);
ce->add_call_info_here(info());
#ifndef PRODUCT
__ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_slowcase_cnt));
#endif
__ jmp(_continuation);
}
/////////////////////////////////////////////////////////////////////////////
#if INCLUDE_ALL_GCS
void G1PreBarrierStub::emit_code(LIR_Assembler* ce) {
// At this point we know that marking is in progress.
// If do_load() is true then we have to emit the
// load of the previous value; otherwise it has already
// been loaded into _pre_val.
__ bind(_entry);
assert(pre_val()->is_register(), "Precondition.");
Register pre_val_reg = pre_val()->as_register();
if (do_load()) {
ce->mem2reg(addr(), pre_val(), T_OBJECT, patch_code(), info(), false /*wide*/, false /*unaligned*/);
}
__ cmpptr(pre_val_reg, (int32_t) NULL_WORD);
__ jcc(Assembler::equal, _continuation);
ce->store_parameter(pre_val()->as_register(), 0);
__ call(RuntimeAddress(Runtime1::entry_for(Runtime1::g1_pre_barrier_slow_id)));
__ jmp(_continuation);
}
void G1PostBarrierStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
assert(addr()->is_register(), "Precondition.");
assert(new_val()->is_register(), "Precondition.");
Register new_val_reg = new_val()->as_register();
__ cmpptr(new_val_reg, (int32_t) NULL_WORD);
__ jcc(Assembler::equal, _continuation);
ce->store_parameter(addr()->as_pointer_register(), 0);
__ call(RuntimeAddress(Runtime1::entry_for(Runtime1::g1_post_barrier_slow_id)));
__ jmp(_continuation);
}
#endif // INCLUDE_ALL_GCS
/////////////////////////////////////////////////////////////////////////////
#undef __