8142968: Module System implementation
Summary: Initial integration of JEP 200, JEP 260, JEP 261, and JEP 282
Reviewed-by: acorn, ccheung, coleenp, ctornqvi, dholmes, dsimms, gtriantafill, iklam, jiangli, mgronlun, mseledtsov, cjplummer, sspitsyn, stefank, twisti, hseigel, lfoltan, alanb, mchung, dfazunen
Contributed-by: alan.bateman@oracle.com, alex.buckley@oracle.com, jonathan.gibbons@oracle.com, karen.kinnear@oracle.com, mandy.chung@oracle.com, mark.reinhold@oracle.com, harold.seigel@oracle.com, lois.foltan@oracle.com, calvin.cheung@oracle.com, christian.tornqvist@oracle.com, erik.joelsson@oracle.com, george.triantafillou@oracle.com, igor.ignatyev@oracle.com, ioi.lam@oracle.com, james.laskey@oracle.com, jean-francois.denise@oracle.com, jiangli.zhou@oracle.com, markus.gronlund@oracle.com, serguei.spitsyn@oracle.com, staffan.larsen@oracle.com, sundararajan.athijegannathan@oracle.com
/*
* Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_CLASSFILE_DICTIONARY_HPP
#define SHARE_VM_CLASSFILE_DICTIONARY_HPP
#include "classfile/systemDictionary.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/oop.hpp"
#include "utilities/hashtable.hpp"
#include "utilities/ostream.hpp"
class DictionaryEntry;
class PSPromotionManager;
class ProtectionDomainCacheTable;
class ProtectionDomainCacheEntry;
class BoolObjectClosure;
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// The data structure for the system dictionary (and the shared system
// dictionary).
class Dictionary : public TwoOopHashtable<Klass*, mtClass> {
friend class VMStructs;
private:
// current iteration index.
static int _current_class_index;
// pointer to the current hash table entry.
static DictionaryEntry* _current_class_entry;
ProtectionDomainCacheTable* _pd_cache_table;
DictionaryEntry* get_entry(int index, unsigned int hash,
Symbol* name, ClassLoaderData* loader_data);
protected:
DictionaryEntry* bucket(int i) const {
return (DictionaryEntry*)Hashtable<Klass*, mtClass>::bucket(i);
}
// The following method is not MT-safe and must be done under lock.
DictionaryEntry** bucket_addr(int i) {
return (DictionaryEntry**)Hashtable<Klass*, mtClass>::bucket_addr(i);
}
void add_entry(int index, DictionaryEntry* new_entry) {
Hashtable<Klass*, mtClass>::add_entry(index, (HashtableEntry<Klass*, mtClass>*)new_entry);
}
static size_t entry_size();
public:
Dictionary(int table_size);
Dictionary(int table_size, HashtableBucket<mtClass>* t, int number_of_entries);
DictionaryEntry* new_entry(unsigned int hash, Klass* klass, ClassLoaderData* loader_data);
DictionaryEntry* new_entry();
void free_entry(DictionaryEntry* entry);
void add_klass(Symbol* class_name, ClassLoaderData* loader_data,KlassHandle obj);
Klass* find_class(int index, unsigned int hash,
Symbol* name, ClassLoaderData* loader_data);
Klass* find_shared_class(int index, unsigned int hash, Symbol* name);
// Compiler support
Klass* try_get_next_class();
// GC support
void oops_do(OopClosure* f);
void always_strong_oops_do(OopClosure* blk);
void roots_oops_do(OopClosure* strong, OopClosure* weak);
void always_strong_classes_do(KlassClosure* closure);
void classes_do(void f(Klass*));
void classes_do(void f(Klass*, TRAPS), TRAPS);
void classes_do(void f(Klass*, ClassLoaderData*));
void methods_do(void f(Method*));
void unlink(BoolObjectClosure* is_alive);
void remove_classes_in_error_state();
// Classes loaded by the bootstrap loader are always strongly reachable.
// If we're not doing class unloading, all classes are strongly reachable.
static bool is_strongly_reachable(ClassLoaderData* loader_data, Klass* klass) {
assert (klass != NULL, "should have non-null klass");
return (loader_data->is_the_null_class_loader_data() || !ClassUnloading);
}
// Unload (that is, break root links to) all unmarked classes and loaders.
void do_unloading();
// Protection domains
Klass* find(int index, unsigned int hash, Symbol* name,
ClassLoaderData* loader_data, Handle protection_domain, TRAPS);
bool is_valid_protection_domain(int index, unsigned int hash,
Symbol* name, ClassLoaderData* loader_data,
Handle protection_domain);
void add_protection_domain(int index, unsigned int hash,
instanceKlassHandle klass, ClassLoaderData* loader_data,
Handle protection_domain, TRAPS);
// Sharing support
void reorder_dictionary();
ProtectionDomainCacheEntry* cache_get(oop protection_domain);
void print(bool details = true);
void verify();
};
// The following classes can be in dictionary.cpp, but we need these
// to be in header file so that SA's vmStructs can access them.
class ProtectionDomainCacheEntry : public HashtableEntry<oop, mtClass> {
friend class VMStructs;
private:
// Flag indicating whether this protection domain entry is strongly reachable.
// Used during iterating over the system dictionary to remember oops that need
// to be updated.
bool _strongly_reachable;
public:
oop protection_domain() { return literal(); }
void init() {
_strongly_reachable = false;
}
ProtectionDomainCacheEntry* next() {
return (ProtectionDomainCacheEntry*)HashtableEntry<oop, mtClass>::next();
}
ProtectionDomainCacheEntry** next_addr() {
return (ProtectionDomainCacheEntry**)HashtableEntry<oop, mtClass>::next_addr();
}
void oops_do(OopClosure* f) {
f->do_oop(literal_addr());
}
void set_strongly_reachable() { _strongly_reachable = true; }
bool is_strongly_reachable() { return _strongly_reachable; }
void reset_strongly_reachable() { _strongly_reachable = false; }
void print() PRODUCT_RETURN;
void verify();
};
// The ProtectionDomainCacheTable contains all protection domain oops. The system
// dictionary entries reference its entries instead of having references to oops
// directly.
// This is used to speed up system dictionary iteration: the oops in the
// protection domain are the only ones referring the Java heap. So when there is
// need to update these, instead of going over every entry of the system dictionary,
// we only need to iterate over this set.
// The amount of different protection domains used is typically magnitudes smaller
// than the number of system dictionary entries (loaded classes).
class ProtectionDomainCacheTable : public Hashtable<oop, mtClass> {
friend class VMStructs;
private:
ProtectionDomainCacheEntry* bucket(int i) {
return (ProtectionDomainCacheEntry*) Hashtable<oop, mtClass>::bucket(i);
}
// The following method is not MT-safe and must be done under lock.
ProtectionDomainCacheEntry** bucket_addr(int i) {
return (ProtectionDomainCacheEntry**) Hashtable<oop, mtClass>::bucket_addr(i);
}
ProtectionDomainCacheEntry* new_entry(unsigned int hash, oop protection_domain) {
ProtectionDomainCacheEntry* entry = (ProtectionDomainCacheEntry*) Hashtable<oop, mtClass>::new_entry(hash, protection_domain);
entry->init();
return entry;
}
static unsigned int compute_hash(oop protection_domain);
int index_for(oop protection_domain);
ProtectionDomainCacheEntry* add_entry(int index, unsigned int hash, oop protection_domain);
ProtectionDomainCacheEntry* find_entry(int index, oop protection_domain);
public:
ProtectionDomainCacheTable(int table_size);
ProtectionDomainCacheEntry* get(oop protection_domain);
void free(ProtectionDomainCacheEntry* entry);
void unlink(BoolObjectClosure* cl);
// GC support
void oops_do(OopClosure* f);
void always_strong_oops_do(OopClosure* f);
void roots_oops_do(OopClosure* strong, OopClosure* weak);
static uint bucket_size();
void print() PRODUCT_RETURN;
void verify();
};
class ProtectionDomainEntry :public CHeapObj<mtClass> {
friend class VMStructs;
public:
ProtectionDomainEntry* _next;
ProtectionDomainCacheEntry* _pd_cache;
ProtectionDomainEntry(ProtectionDomainCacheEntry* pd_cache, ProtectionDomainEntry* next) {
_pd_cache = pd_cache;
_next = next;
}
ProtectionDomainEntry* next() { return _next; }
oop protection_domain() { return _pd_cache->protection_domain(); }
};
// An entry in the system dictionary, this describes a class as
// { Klass*, loader, protection_domain }.
class DictionaryEntry : public HashtableEntry<Klass*, mtClass> {
friend class VMStructs;
private:
// Contains the set of approved protection domains that can access
// this system dictionary entry.
//
// This protection domain set is a set of tuples:
//
// (InstanceKlass C, initiating class loader ICL, Protection Domain PD)
//
// [Note that C.protection_domain(), which is stored in the java.lang.Class
// mirror of C, is NOT the same as PD]
//
// If such an entry (C, ICL, PD) exists in the table, it means that
// it is okay for a class Foo to reference C, where
//
// Foo.protection_domain() == PD, and
// Foo's defining class loader == ICL
//
// The usage of the PD set can be seen in SystemDictionary::validate_protection_domain()
// It is essentially a cache to avoid repeated Java up-calls to
// ClassLoader.checkPackageAccess().
//
ProtectionDomainEntry* _pd_set;
ClassLoaderData* _loader_data;
public:
// Tells whether a protection is in the approved set.
bool contains_protection_domain(oop protection_domain) const;
// Adds a protection domain to the approved set.
void add_protection_domain(Dictionary* dict, oop protection_domain);
Klass* klass() const { return (Klass*)literal(); }
Klass** klass_addr() { return (Klass**)literal_addr(); }
DictionaryEntry* next() const {
return (DictionaryEntry*)HashtableEntry<Klass*, mtClass>::next();
}
DictionaryEntry** next_addr() {
return (DictionaryEntry**)HashtableEntry<Klass*, mtClass>::next_addr();
}
ClassLoaderData* loader_data() const { return _loader_data; }
void set_loader_data(ClassLoaderData* loader_data) { _loader_data = loader_data; }
ProtectionDomainEntry* pd_set() const { return _pd_set; }
void set_pd_set(ProtectionDomainEntry* pd_set) { _pd_set = pd_set; }
bool has_protection_domain() { return _pd_set != NULL; }
// Tells whether the initiating class' protection can access the this _klass
bool is_valid_protection_domain(Handle protection_domain) {
if (!ProtectionDomainVerification) return true;
if (!SystemDictionary::has_checkPackageAccess()) return true;
return protection_domain() == NULL
? true
: contains_protection_domain(protection_domain());
}
void set_strongly_reachable() {
for (ProtectionDomainEntry* current = _pd_set;
current != NULL;
current = current->_next) {
current->_pd_cache->set_strongly_reachable();
}
}
void verify_protection_domain_set() {
for (ProtectionDomainEntry* current = _pd_set;
current != NULL;
current = current->_next) {
current->_pd_cache->protection_domain()->verify();
}
}
bool equals(const Symbol* class_name, ClassLoaderData* loader_data) const {
Klass* klass = (Klass*)literal();
return (klass->name() == class_name && _loader_data == loader_data);
}
void print_count(outputStream *st) {
int count = 0;
for (ProtectionDomainEntry* current = _pd_set;
current != NULL;
current = current->_next) {
count++;
}
st->print_cr("pd set count = #%d", count);
}
};
// Entry in a SymbolPropertyTable, mapping a single Symbol*
// to a managed and an unmanaged pointer.
class SymbolPropertyEntry : public HashtableEntry<Symbol*, mtSymbol> {
friend class VMStructs;
private:
intptr_t _symbol_mode; // secondary key
Method* _method;
oop _method_type;
public:
Symbol* symbol() const { return literal(); }
intptr_t symbol_mode() const { return _symbol_mode; }
void set_symbol_mode(intptr_t m) { _symbol_mode = m; }
Method* method() const { return _method; }
void set_method(Method* p) { _method = p; }
oop method_type() const { return _method_type; }
oop* method_type_addr() { return &_method_type; }
void set_method_type(oop p) { _method_type = p; }
SymbolPropertyEntry* next() const {
return (SymbolPropertyEntry*)HashtableEntry<Symbol*, mtSymbol>::next();
}
SymbolPropertyEntry** next_addr() {
return (SymbolPropertyEntry**)HashtableEntry<Symbol*, mtSymbol>::next_addr();
}
void print_on(outputStream* st) const {
symbol()->print_value_on(st);
st->print("/mode=" INTX_FORMAT, symbol_mode());
st->print(" -> ");
bool printed = false;
if (method() != NULL) {
method()->print_value_on(st);
printed = true;
}
if (method_type() != NULL) {
if (printed) st->print(" and ");
st->print(INTPTR_FORMAT, p2i((void *)method_type()));
printed = true;
}
st->print_cr(printed ? "" : "(empty)");
}
};
// A system-internal mapping of symbols to pointers, both managed
// and unmanaged. Used to record the auto-generation of each method
// MethodHandle.invoke(S)T, for all signatures (S)T.
class SymbolPropertyTable : public Hashtable<Symbol*, mtSymbol> {
friend class VMStructs;
private:
SymbolPropertyEntry* bucket(int i) {
return (SymbolPropertyEntry*) Hashtable<Symbol*, mtSymbol>::bucket(i);
}
// The following method is not MT-safe and must be done under lock.
SymbolPropertyEntry** bucket_addr(int i) {
return (SymbolPropertyEntry**) Hashtable<Symbol*, mtSymbol>::bucket_addr(i);
}
void add_entry(int index, SymbolPropertyEntry* new_entry) {
ShouldNotReachHere();
}
void set_entry(int index, SymbolPropertyEntry* new_entry) {
ShouldNotReachHere();
}
SymbolPropertyEntry* new_entry(unsigned int hash, Symbol* symbol, intptr_t symbol_mode) {
SymbolPropertyEntry* entry = (SymbolPropertyEntry*) Hashtable<Symbol*, mtSymbol>::new_entry(hash, symbol);
// Hashtable with Symbol* literal must increment and decrement refcount.
symbol->increment_refcount();
entry->set_symbol_mode(symbol_mode);
entry->set_method(NULL);
entry->set_method_type(NULL);
return entry;
}
public:
SymbolPropertyTable(int table_size);
SymbolPropertyTable(int table_size, HashtableBucket<mtSymbol>* t, int number_of_entries);
void free_entry(SymbolPropertyEntry* entry) {
// decrement Symbol refcount here because hashtable doesn't.
entry->literal()->decrement_refcount();
Hashtable<Symbol*, mtSymbol>::free_entry(entry);
}
unsigned int compute_hash(Symbol* sym, intptr_t symbol_mode) {
// Use the regular identity_hash.
return Hashtable<Symbol*, mtSymbol>::compute_hash(sym) ^ symbol_mode;
}
int index_for(Symbol* name, intptr_t symbol_mode) {
return hash_to_index(compute_hash(name, symbol_mode));
}
// need not be locked; no state change
SymbolPropertyEntry* find_entry(int index, unsigned int hash, Symbol* name, intptr_t name_mode);
// must be done under SystemDictionary_lock
SymbolPropertyEntry* add_entry(int index, unsigned int hash, Symbol* name, intptr_t name_mode);
// GC support
void oops_do(OopClosure* f);
void methods_do(void f(Method*));
// Sharing support
void reorder_dictionary();
#ifndef PRODUCT
void print();
#endif
void verify();
};
#endif // SHARE_VM_CLASSFILE_DICTIONARY_HPP