8227084: Add timing information for merge heap root preparation
Reviewed-by: sangheki, kbarrett
/*
* Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_GC_G1_HEAPREGIONMANAGER_HPP
#define SHARE_GC_G1_HEAPREGIONMANAGER_HPP
#include "gc/g1/g1BiasedArray.hpp"
#include "gc/g1/g1RegionToSpaceMapper.hpp"
#include "gc/g1/heapRegionSet.hpp"
#include "services/memoryUsage.hpp"
class HeapRegion;
class HeapRegionClosure;
class HeapRegionClaimer;
class FreeRegionList;
class WorkGang;
class G1HeapRegionTable : public G1BiasedMappedArray<HeapRegion*> {
protected:
virtual HeapRegion* default_value() const { return NULL; }
};
// This class keeps track of the actual heap memory, auxiliary data
// and its metadata (i.e., HeapRegion instances) and the list of free regions.
//
// This allows maximum flexibility for deciding what to commit or uncommit given
// a request from outside.
//
// HeapRegions are kept in the _regions array in address order. A region's
// index in the array corresponds to its index in the heap (i.e., 0 is the
// region at the bottom of the heap, 1 is the one after it, etc.). Two
// regions that are consecutive in the array should also be adjacent in the
// address space (i.e., region(i).end() == region(i+1).bottom().
//
// We create a HeapRegion when we commit the region's address space
// for the first time. When we uncommit the address space of a
// region we retain the HeapRegion to be able to re-use it in the
// future (in case we recommit it).
//
// We keep track of three lengths:
//
// * _num_committed (returned by length()) is the number of currently
// committed regions. These may not be contiguous.
// * _allocated_heapregions_length (not exposed outside this class) is the
// number of regions+1 for which we have HeapRegions.
// * max_length() returns the maximum number of regions the heap can have.
//
class HeapRegionManager: public CHeapObj<mtGC> {
friend class VMStructs;
friend class HeapRegionClaimer;
G1RegionToSpaceMapper* _bot_mapper;
G1RegionToSpaceMapper* _cardtable_mapper;
G1RegionToSpaceMapper* _card_counts_mapper;
// Each bit in this bitmap indicates that the corresponding region is available
// for allocation.
CHeapBitMap _available_map;
// The number of regions committed in the heap.
uint _num_committed;
// Internal only. The highest heap region +1 we allocated a HeapRegion instance for.
uint _allocated_heapregions_length;
HeapWord* heap_bottom() const { return _regions.bottom_address_mapped(); }
HeapWord* heap_end() const {return _regions.end_address_mapped(); }
// Pass down commit calls to the VirtualSpace.
void commit_regions(uint index, size_t num_regions = 1, WorkGang* pretouch_gang = NULL);
// Notify other data structures about change in the heap layout.
void update_committed_space(HeapWord* old_end, HeapWord* new_end);
// Find a contiguous set of empty or uncommitted regions of length num and return
// the index of the first region or G1_NO_HRM_INDEX if the search was unsuccessful.
// If only_empty is true, only empty regions are considered.
// Searches from bottom to top of the heap, doing a first-fit.
uint find_contiguous(size_t num, bool only_empty);
// Finds the next sequence of unavailable regions starting from start_idx. Returns the
// length of the sequence found. If this result is zero, no such sequence could be found,
// otherwise res_idx indicates the start index of these regions.
uint find_unavailable_from_idx(uint start_idx, uint* res_idx) const;
// Finds the next sequence of empty regions starting from start_idx, going backwards in
// the heap. Returns the length of the sequence found. If this value is zero, no
// sequence could be found, otherwise res_idx contains the start index of this range.
uint find_empty_from_idx_reverse(uint start_idx, uint* res_idx) const;
protected:
G1HeapRegionTable _regions;
G1RegionToSpaceMapper* _heap_mapper;
G1RegionToSpaceMapper* _prev_bitmap_mapper;
G1RegionToSpaceMapper* _next_bitmap_mapper;
FreeRegionList _free_list;
void make_regions_available(uint index, uint num_regions = 1, WorkGang* pretouch_gang = NULL);
void uncommit_regions(uint index, size_t num_regions = 1);
// Allocate a new HeapRegion for the given index.
HeapRegion* new_heap_region(uint hrm_index);
#ifdef ASSERT
public:
bool is_free(HeapRegion* hr) const;
#endif
public:
// Empty constructor, we'll initialize it with the initialize() method.
HeapRegionManager();
static HeapRegionManager* create_manager(G1CollectedHeap* heap);
virtual void initialize(G1RegionToSpaceMapper* heap_storage,
G1RegionToSpaceMapper* prev_bitmap,
G1RegionToSpaceMapper* next_bitmap,
G1RegionToSpaceMapper* bot,
G1RegionToSpaceMapper* cardtable,
G1RegionToSpaceMapper* card_counts);
// Prepare heap regions before and after full collection.
// Nothing to be done in this class.
virtual void prepare_for_full_collection_start() {}
virtual void prepare_for_full_collection_end() {}
// Return the "dummy" region used for G1AllocRegion. This is currently a hardwired
// new HeapRegion that owns HeapRegion at index 0. Since at the moment we commit
// the heap from the lowest address, this region (and its associated data
// structures) are available and we do not need to check further.
virtual HeapRegion* get_dummy_region() { return new_heap_region(0); }
// Return the HeapRegion at the given index. Assume that the index
// is valid.
inline HeapRegion* at(uint index) const;
// Return the HeapRegion at the given index, NULL if the index
// is for an unavailable region.
inline HeapRegion* at_or_null(uint index) const;
// Returns whether the given region is available for allocation.
bool is_available(uint region) const;
// Return the next region (by index) that is part of the same
// humongous object that hr is part of.
inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const;
// If addr is within the committed space return its corresponding
// HeapRegion, otherwise return NULL.
inline HeapRegion* addr_to_region(HeapWord* addr) const;
// Insert the given region into the free region list.
inline void insert_into_free_list(HeapRegion* hr);
// Insert the given region list into the global free region list.
void insert_list_into_free_list(FreeRegionList* list) {
_free_list.add_ordered(list);
}
virtual HeapRegion* allocate_free_region(HeapRegionType type) {
HeapRegion* hr = _free_list.remove_region(!type.is_young());
if (hr != NULL) {
assert(hr->next() == NULL, "Single region should not have next");
assert(is_available(hr->hrm_index()), "Must be committed");
}
return hr;
}
inline void allocate_free_regions_starting_at(uint first, uint num_regions);
// Remove all regions from the free list.
void remove_all_free_regions() {
_free_list.remove_all();
}
// Return the number of committed free regions in the heap.
uint num_free_regions() const {
return _free_list.length();
}
size_t total_free_bytes() const {
return num_free_regions() * HeapRegion::GrainBytes;
}
// Return the number of available (uncommitted) regions.
uint available() const { return max_length() - length(); }
// Return the number of regions that have been committed in the heap.
uint length() const { return _num_committed; }
// Return the maximum number of regions in the heap.
uint max_length() const { return (uint)_regions.length(); }
// Return maximum number of regions that heap can expand to.
virtual uint max_expandable_length() const { return (uint)_regions.length(); }
MemoryUsage get_auxiliary_data_memory_usage() const;
MemRegion reserved() const { return MemRegion(heap_bottom(), heap_end()); }
// Expand the sequence to reflect that the heap has grown. Either create new
// HeapRegions, or re-use existing ones. Returns the number of regions the
// sequence was expanded by. If a HeapRegion allocation fails, the resulting
// number of regions might be smaller than what's desired.
virtual uint expand_by(uint num_regions, WorkGang* pretouch_workers);
// Makes sure that the regions from start to start+num_regions-1 are available
// for allocation. Returns the number of regions that were committed to achieve
// this.
virtual uint expand_at(uint start, uint num_regions, WorkGang* pretouch_workers);
// Find a contiguous set of empty regions of length num. Returns the start index of
// that set, or G1_NO_HRM_INDEX.
virtual uint find_contiguous_only_empty(size_t num) { return find_contiguous(num, true); }
// Find a contiguous set of empty or unavailable regions of length num. Returns the
// start index of that set, or G1_NO_HRM_INDEX.
virtual uint find_contiguous_empty_or_unavailable(size_t num) { return find_contiguous(num, false); }
HeapRegion* next_region_in_heap(const HeapRegion* r) const;
// Find the highest free or uncommitted region in the reserved heap,
// and if uncommitted, commit it. If none are available, return G1_NO_HRM_INDEX.
// Set the 'expanded' boolean true if a new region was committed.
virtual uint find_highest_free(bool* expanded);
// Allocate the regions that contain the address range specified, committing the
// regions if necessary. Return false if any of the regions is already committed
// and not free, and return the number of regions newly committed in commit_count.
bool allocate_containing_regions(MemRegion range, size_t* commit_count, WorkGang* pretouch_workers);
// Apply blk->do_heap_region() on all committed regions in address order,
// terminating the iteration early if do_heap_region() returns true.
void iterate(HeapRegionClosure* blk) const;
void par_iterate(HeapRegionClosure* blk, HeapRegionClaimer* hrclaimer, const uint start_index) const;
// Uncommit up to num_regions_to_remove regions that are completely free.
// Return the actual number of uncommitted regions.
virtual uint shrink_by(uint num_regions_to_remove);
// Uncommit a number of regions starting at the specified index, which must be available,
// empty, and free.
void shrink_at(uint index, size_t num_regions);
virtual void verify();
// Do some sanity checking.
void verify_optional() PRODUCT_RETURN;
};
// The HeapRegionClaimer is used during parallel iteration over heap regions,
// allowing workers to claim heap regions, gaining exclusive rights to these regions.
class HeapRegionClaimer : public StackObj {
uint _n_workers;
uint _n_regions;
volatile uint* _claims;
static const uint Unclaimed = 0;
static const uint Claimed = 1;
public:
HeapRegionClaimer(uint n_workers);
~HeapRegionClaimer();
inline uint n_regions() const {
return _n_regions;
}
// Return a start offset given a worker id.
uint offset_for_worker(uint worker_id) const;
// Check if region has been claimed with this HRClaimer.
bool is_region_claimed(uint region_index) const;
// Claim the given region, returns true if successfully claimed.
bool claim_region(uint region_index);
};
#endif // SHARE_GC_G1_HEAPREGIONMANAGER_HPP