author | zgu |
Fri, 06 Oct 2017 22:40:31 -0400 | |
changeset 47600 | 5c8607bb3d2d |
parent 47537 | 5390057a4489 |
child 48157 | 7c4d43c26352 |
permissions | -rw-r--r-- |
/* * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_MEMORY_RESOURCEAREA_HPP #define SHARE_VM_MEMORY_RESOURCEAREA_HPP #include "memory/allocation.hpp" #include "runtime/thread.hpp" // The resource area holds temporary data structures in the VM. // The actual allocation areas are thread local. Typical usage: // // ... // { // ResourceMark rm; // int foo[] = NEW_RESOURCE_ARRAY(int, 64); // ... // } // ... //------------------------------ResourceArea----------------------------------- // A ResourceArea is an Arena that supports safe usage of ResourceMark. class ResourceArea: public Arena { friend class ResourceMark; friend class DeoptResourceMark; friend class VMStructs; debug_only(int _nesting;) // current # of nested ResourceMarks debug_only(static int _warned;) // to suppress multiple warnings public: ResourceArea(MEMFLAGS flags = mtThread) : Arena(flags) { debug_only(_nesting = 0;) } ResourceArea(size_t init_size, MEMFLAGS flags = mtThread) : Arena(flags, init_size) { debug_only(_nesting = 0;); } char* allocate_bytes(size_t size, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) { #ifdef ASSERT if (_nesting < 1 && !_warned++) fatal("memory leak: allocating without ResourceMark"); if (UseMallocOnly) { // use malloc, but save pointer in res. area for later freeing char** save = (char**)internal_malloc_4(sizeof(char*)); return (*save = (char*)os::malloc(size, mtThread, CURRENT_PC)); } #endif return (char*)Amalloc(size, alloc_failmode); } // Bias this resource area to specific memory type // (by default, ResourceArea is tagged as mtThread, per-thread general purpose storage) void bias_to(MEMFLAGS flags); debug_only(int nesting() const { return _nesting; }) }; //------------------------------ResourceMark----------------------------------- // A resource mark releases all resources allocated after it was constructed // when the destructor is called. Typically used as a local variable. class ResourceMark: public StackObj { protected: ResourceArea *_area; // Resource area to stack allocate Chunk *_chunk; // saved arena chunk char *_hwm, *_max; size_t _size_in_bytes; #ifdef ASSERT Thread* _thread; ResourceMark* _previous_resource_mark; #endif //ASSERT void initialize(Thread *thread) { _area = thread->resource_area(); _chunk = _area->_chunk; _hwm = _area->_hwm; _max= _area->_max; _size_in_bytes = _area->size_in_bytes(); debug_only(_area->_nesting++;) assert( _area->_nesting > 0, "must stack allocate RMs" ); #ifdef ASSERT _thread = thread; _previous_resource_mark = thread->current_resource_mark(); thread->set_current_resource_mark(this); #endif // ASSERT } public: #ifndef ASSERT ResourceMark(Thread *thread) { assert(thread == Thread::current(), "not the current thread"); initialize(thread); } #else ResourceMark(Thread *thread); #endif // ASSERT ResourceMark() { initialize(Thread::current()); } ResourceMark( ResourceArea *r ) : _area(r), _chunk(r->_chunk), _hwm(r->_hwm), _max(r->_max) { _size_in_bytes = r->_size_in_bytes; debug_only(_area->_nesting++;) assert( _area->_nesting > 0, "must stack allocate RMs" ); #ifdef ASSERT Thread* thread = Thread::current_or_null(); if (thread != NULL) { _thread = thread; _previous_resource_mark = thread->current_resource_mark(); thread->set_current_resource_mark(this); } else { _thread = NULL; _previous_resource_mark = NULL; } #endif // ASSERT } void reset_to_mark() { if (UseMallocOnly) free_malloced_objects(); if( _chunk->next() ) { // Delete later chunks // reset arena size before delete chunks. Otherwise, the total // arena size could exceed total chunk size assert(_area->size_in_bytes() > size_in_bytes(), "Sanity check"); _area->set_size_in_bytes(size_in_bytes()); _chunk->next_chop(); } else { assert(_area->size_in_bytes() == size_in_bytes(), "Sanity check"); } _area->_chunk = _chunk; // Roll back arena to saved chunk _area->_hwm = _hwm; _area->_max = _max; // clear out this chunk (to detect allocation bugs) if (ZapResourceArea) memset(_hwm, badResourceValue, _max - _hwm); } ~ResourceMark() { assert( _area->_nesting > 0, "must stack allocate RMs" ); debug_only(_area->_nesting--;) reset_to_mark(); #ifdef ASSERT if (_thread != NULL) { _thread->set_current_resource_mark(_previous_resource_mark); } #endif // ASSERT } private: void free_malloced_objects() PRODUCT_RETURN; size_t size_in_bytes() { return _size_in_bytes; } }; //------------------------------DeoptResourceMark----------------------------------- // A deopt resource mark releases all resources allocated after it was constructed // when the destructor is called. Typically used as a local variable. It differs // from a typical resource more in that it is C-Heap allocated so that deoptimization // can use data structures that are arena based but are not amenable to vanilla // ResourceMarks because deoptimization can not use a stack allocated mark. During // deoptimization we go thru the following steps: // // 0: start in assembly stub and call either uncommon_trap/fetch_unroll_info // 1: create the vframeArray (contains pointers to Resource allocated structures) // This allocates the DeoptResourceMark. // 2: return to assembly stub and remove stub frame and deoptee frame and create // the new skeletal frames. // 3: push new stub frame and call unpack_frames // 4: retrieve information from the vframeArray to populate the skeletal frames // 5: release the DeoptResourceMark // 6: return to stub and eventually to interpreter // // With old style eager deoptimization the vframeArray was created by the vmThread there // was no way for the vframeArray to contain resource allocated objects and so // a complex set of data structures to simulate an array of vframes in CHeap memory // was used. With new style lazy deoptimization the vframeArray is created in the // the thread that will use it and we can use a much simpler scheme for the vframeArray // leveraging existing data structures if we simply create a way to manage this one // special need for a ResourceMark. If ResourceMark simply inherited from CHeapObj // then existing ResourceMarks would work fine since no one use new to allocate them // and they would be stack allocated. This leaves open the possibility of accidental // misuse so we simple duplicate the ResourceMark functionality here. class DeoptResourceMark: public CHeapObj<mtInternal> { protected: ResourceArea *_area; // Resource area to stack allocate Chunk *_chunk; // saved arena chunk char *_hwm, *_max; size_t _size_in_bytes; void initialize(Thread *thread) { _area = thread->resource_area(); _chunk = _area->_chunk; _hwm = _area->_hwm; _max= _area->_max; _size_in_bytes = _area->size_in_bytes(); debug_only(_area->_nesting++;) assert( _area->_nesting > 0, "must stack allocate RMs" ); } public: #ifndef ASSERT DeoptResourceMark(Thread *thread) { assert(thread == Thread::current(), "not the current thread"); initialize(thread); } #else DeoptResourceMark(Thread *thread); #endif // ASSERT DeoptResourceMark() { initialize(Thread::current()); } DeoptResourceMark( ResourceArea *r ) : _area(r), _chunk(r->_chunk), _hwm(r->_hwm), _max(r->_max) { _size_in_bytes = _area->size_in_bytes(); debug_only(_area->_nesting++;) assert( _area->_nesting > 0, "must stack allocate RMs" ); } void reset_to_mark() { if (UseMallocOnly) free_malloced_objects(); if( _chunk->next() ) { // Delete later chunks // reset arena size before delete chunks. Otherwise, the total // arena size could exceed total chunk size assert(_area->size_in_bytes() > size_in_bytes(), "Sanity check"); _area->set_size_in_bytes(size_in_bytes()); _chunk->next_chop(); } else { assert(_area->size_in_bytes() == size_in_bytes(), "Sanity check"); } _area->_chunk = _chunk; // Roll back arena to saved chunk _area->_hwm = _hwm; _area->_max = _max; // clear out this chunk (to detect allocation bugs) if (ZapResourceArea) memset(_hwm, badResourceValue, _max - _hwm); } ~DeoptResourceMark() { assert( _area->_nesting > 0, "must stack allocate RMs" ); debug_only(_area->_nesting--;) reset_to_mark(); } private: void free_malloced_objects() PRODUCT_RETURN; size_t size_in_bytes() { return _size_in_bytes; }; }; #endif // SHARE_VM_MEMORY_RESOURCEAREA_HPP