6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg
/*
* Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterGenerator.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/templateTable.hpp"
#ifndef CC_INTERP
# define __ _masm->
void TemplateInterpreter::initialize() {
if (_code != NULL) return;
// assertions
assert((int)Bytecodes::number_of_codes <= (int)DispatchTable::length,
"dispatch table too small");
AbstractInterpreter::initialize();
TemplateTable::initialize();
// generate interpreter
{ ResourceMark rm;
TraceTime timer("Interpreter generation", TraceStartupTime);
int code_size = InterpreterCodeSize;
NOT_PRODUCT(code_size *= 4;) // debug uses extra interpreter code space
_code = new StubQueue(new InterpreterCodeletInterface, code_size, NULL,
"Interpreter");
InterpreterGenerator g(_code);
if (PrintInterpreter) print();
}
// initialize dispatch table
_active_table = _normal_table;
}
//------------------------------------------------------------------------------------------------------------------------
// Implementation of EntryPoint
EntryPoint::EntryPoint() {
assert(number_of_states == 9, "check the code below");
_entry[btos] = NULL;
_entry[ctos] = NULL;
_entry[stos] = NULL;
_entry[atos] = NULL;
_entry[itos] = NULL;
_entry[ltos] = NULL;
_entry[ftos] = NULL;
_entry[dtos] = NULL;
_entry[vtos] = NULL;
}
EntryPoint::EntryPoint(address bentry, address centry, address sentry, address aentry, address ientry, address lentry, address fentry, address dentry, address ventry) {
assert(number_of_states == 9, "check the code below");
_entry[btos] = bentry;
_entry[ctos] = centry;
_entry[stos] = sentry;
_entry[atos] = aentry;
_entry[itos] = ientry;
_entry[ltos] = lentry;
_entry[ftos] = fentry;
_entry[dtos] = dentry;
_entry[vtos] = ventry;
}
void EntryPoint::set_entry(TosState state, address entry) {
assert(0 <= state && state < number_of_states, "state out of bounds");
_entry[state] = entry;
}
address EntryPoint::entry(TosState state) const {
assert(0 <= state && state < number_of_states, "state out of bounds");
return _entry[state];
}
void EntryPoint::print() {
tty->print("[");
for (int i = 0; i < number_of_states; i++) {
if (i > 0) tty->print(", ");
tty->print(INTPTR_FORMAT, _entry[i]);
}
tty->print("]");
}
bool EntryPoint::operator == (const EntryPoint& y) {
int i = number_of_states;
while (i-- > 0) {
if (_entry[i] != y._entry[i]) return false;
}
return true;
}
//------------------------------------------------------------------------------------------------------------------------
// Implementation of DispatchTable
EntryPoint DispatchTable::entry(int i) const {
assert(0 <= i && i < length, "index out of bounds");
return
EntryPoint(
_table[btos][i],
_table[ctos][i],
_table[stos][i],
_table[atos][i],
_table[itos][i],
_table[ltos][i],
_table[ftos][i],
_table[dtos][i],
_table[vtos][i]
);
}
void DispatchTable::set_entry(int i, EntryPoint& entry) {
assert(0 <= i && i < length, "index out of bounds");
assert(number_of_states == 9, "check the code below");
_table[btos][i] = entry.entry(btos);
_table[ctos][i] = entry.entry(ctos);
_table[stos][i] = entry.entry(stos);
_table[atos][i] = entry.entry(atos);
_table[itos][i] = entry.entry(itos);
_table[ltos][i] = entry.entry(ltos);
_table[ftos][i] = entry.entry(ftos);
_table[dtos][i] = entry.entry(dtos);
_table[vtos][i] = entry.entry(vtos);
}
bool DispatchTable::operator == (DispatchTable& y) {
int i = length;
while (i-- > 0) {
EntryPoint t = y.entry(i); // for compiler compatibility (BugId 4150096)
if (!(entry(i) == t)) return false;
}
return true;
}
address TemplateInterpreter::_remove_activation_entry = NULL;
address TemplateInterpreter::_remove_activation_preserving_args_entry = NULL;
address TemplateInterpreter::_throw_ArrayIndexOutOfBoundsException_entry = NULL;
address TemplateInterpreter::_throw_ArrayStoreException_entry = NULL;
address TemplateInterpreter::_throw_ArithmeticException_entry = NULL;
address TemplateInterpreter::_throw_ClassCastException_entry = NULL;
address TemplateInterpreter::_throw_WrongMethodType_entry = NULL;
address TemplateInterpreter::_throw_NullPointerException_entry = NULL;
address TemplateInterpreter::_throw_StackOverflowError_entry = NULL;
address TemplateInterpreter::_throw_exception_entry = NULL;
#ifndef PRODUCT
EntryPoint TemplateInterpreter::_trace_code;
#endif // !PRODUCT
EntryPoint TemplateInterpreter::_return_entry[TemplateInterpreter::number_of_return_entries];
EntryPoint TemplateInterpreter::_earlyret_entry;
EntryPoint TemplateInterpreter::_deopt_entry [TemplateInterpreter::number_of_deopt_entries ];
EntryPoint TemplateInterpreter::_continuation_entry;
EntryPoint TemplateInterpreter::_safept_entry;
address TemplateInterpreter::_return_3_addrs_by_index[TemplateInterpreter::number_of_return_addrs];
address TemplateInterpreter::_return_5_addrs_by_index[TemplateInterpreter::number_of_return_addrs];
DispatchTable TemplateInterpreter::_active_table;
DispatchTable TemplateInterpreter::_normal_table;
DispatchTable TemplateInterpreter::_safept_table;
address TemplateInterpreter::_wentry_point[DispatchTable::length];
TemplateInterpreterGenerator::TemplateInterpreterGenerator(StubQueue* _code): AbstractInterpreterGenerator(_code) {
_unimplemented_bytecode = NULL;
_illegal_bytecode_sequence = NULL;
}
static const BasicType types[Interpreter::number_of_result_handlers] = {
T_BOOLEAN,
T_CHAR ,
T_BYTE ,
T_SHORT ,
T_INT ,
T_LONG ,
T_VOID ,
T_FLOAT ,
T_DOUBLE ,
T_OBJECT
};
void TemplateInterpreterGenerator::generate_all() {
AbstractInterpreterGenerator::generate_all();
{ CodeletMark cm(_masm, "error exits");
_unimplemented_bytecode = generate_error_exit("unimplemented bytecode");
_illegal_bytecode_sequence = generate_error_exit("illegal bytecode sequence - method not verified");
}
#ifndef PRODUCT
if (TraceBytecodes) {
CodeletMark cm(_masm, "bytecode tracing support");
Interpreter::_trace_code =
EntryPoint(
generate_trace_code(btos),
generate_trace_code(ctos),
generate_trace_code(stos),
generate_trace_code(atos),
generate_trace_code(itos),
generate_trace_code(ltos),
generate_trace_code(ftos),
generate_trace_code(dtos),
generate_trace_code(vtos)
);
}
#endif // !PRODUCT
{ CodeletMark cm(_masm, "return entry points");
for (int i = 0; i < Interpreter::number_of_return_entries; i++) {
Interpreter::_return_entry[i] =
EntryPoint(
generate_return_entry_for(itos, i),
generate_return_entry_for(itos, i),
generate_return_entry_for(itos, i),
generate_return_entry_for(atos, i),
generate_return_entry_for(itos, i),
generate_return_entry_for(ltos, i),
generate_return_entry_for(ftos, i),
generate_return_entry_for(dtos, i),
generate_return_entry_for(vtos, i)
);
}
}
{ CodeletMark cm(_masm, "earlyret entry points");
Interpreter::_earlyret_entry =
EntryPoint(
generate_earlyret_entry_for(btos),
generate_earlyret_entry_for(ctos),
generate_earlyret_entry_for(stos),
generate_earlyret_entry_for(atos),
generate_earlyret_entry_for(itos),
generate_earlyret_entry_for(ltos),
generate_earlyret_entry_for(ftos),
generate_earlyret_entry_for(dtos),
generate_earlyret_entry_for(vtos)
);
}
{ CodeletMark cm(_masm, "deoptimization entry points");
for (int i = 0; i < Interpreter::number_of_deopt_entries; i++) {
Interpreter::_deopt_entry[i] =
EntryPoint(
generate_deopt_entry_for(itos, i),
generate_deopt_entry_for(itos, i),
generate_deopt_entry_for(itos, i),
generate_deopt_entry_for(atos, i),
generate_deopt_entry_for(itos, i),
generate_deopt_entry_for(ltos, i),
generate_deopt_entry_for(ftos, i),
generate_deopt_entry_for(dtos, i),
generate_deopt_entry_for(vtos, i)
);
}
}
{ CodeletMark cm(_masm, "result handlers for native calls");
// The various result converter stublets.
int is_generated[Interpreter::number_of_result_handlers];
memset(is_generated, 0, sizeof(is_generated));
for (int i = 0; i < Interpreter::number_of_result_handlers; i++) {
BasicType type = types[i];
if (!is_generated[Interpreter::BasicType_as_index(type)]++) {
Interpreter::_native_abi_to_tosca[Interpreter::BasicType_as_index(type)] = generate_result_handler_for(type);
}
}
}
for (int j = 0; j < number_of_states; j++) {
const TosState states[] = {btos, ctos, stos, itos, ltos, ftos, dtos, atos, vtos};
int index = Interpreter::TosState_as_index(states[j]);
Interpreter::_return_3_addrs_by_index[index] = Interpreter::return_entry(states[j], 3);
Interpreter::_return_5_addrs_by_index[index] = Interpreter::return_entry(states[j], 5);
}
{ CodeletMark cm(_masm, "continuation entry points");
Interpreter::_continuation_entry =
EntryPoint(
generate_continuation_for(btos),
generate_continuation_for(ctos),
generate_continuation_for(stos),
generate_continuation_for(atos),
generate_continuation_for(itos),
generate_continuation_for(ltos),
generate_continuation_for(ftos),
generate_continuation_for(dtos),
generate_continuation_for(vtos)
);
}
{ CodeletMark cm(_masm, "safepoint entry points");
Interpreter::_safept_entry =
EntryPoint(
generate_safept_entry_for(btos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
generate_safept_entry_for(ctos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
generate_safept_entry_for(stos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
generate_safept_entry_for(atos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
generate_safept_entry_for(itos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
generate_safept_entry_for(ltos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
generate_safept_entry_for(ftos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
generate_safept_entry_for(dtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
generate_safept_entry_for(vtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint))
);
}
{ CodeletMark cm(_masm, "exception handling");
// (Note: this is not safepoint safe because thread may return to compiled code)
generate_throw_exception();
}
{ CodeletMark cm(_masm, "throw exception entrypoints");
Interpreter::_throw_ArrayIndexOutOfBoundsException_entry = generate_ArrayIndexOutOfBounds_handler("java/lang/ArrayIndexOutOfBoundsException");
Interpreter::_throw_ArrayStoreException_entry = generate_klass_exception_handler("java/lang/ArrayStoreException" );
Interpreter::_throw_ArithmeticException_entry = generate_exception_handler("java/lang/ArithmeticException" , "/ by zero");
Interpreter::_throw_ClassCastException_entry = generate_ClassCastException_handler();
Interpreter::_throw_WrongMethodType_entry = generate_WrongMethodType_handler();
Interpreter::_throw_NullPointerException_entry = generate_exception_handler("java/lang/NullPointerException" , NULL );
Interpreter::_throw_StackOverflowError_entry = generate_StackOverflowError_handler();
}
#define method_entry(kind) \
{ CodeletMark cm(_masm, "method entry point (kind = " #kind ")"); \
Interpreter::_entry_table[Interpreter::kind] = generate_method_entry(Interpreter::kind); \
}
// all non-native method kinds
method_entry(zerolocals)
method_entry(zerolocals_synchronized)
method_entry(empty)
method_entry(accessor)
method_entry(abstract)
method_entry(method_handle)
method_entry(java_lang_math_sin )
method_entry(java_lang_math_cos )
method_entry(java_lang_math_tan )
method_entry(java_lang_math_abs )
method_entry(java_lang_math_sqrt )
method_entry(java_lang_math_log )
method_entry(java_lang_math_log10)
// all native method kinds (must be one contiguous block)
Interpreter::_native_entry_begin = Interpreter::code()->code_end();
method_entry(native)
method_entry(native_synchronized)
Interpreter::_native_entry_end = Interpreter::code()->code_end();
#undef method_entry
// Bytecodes
set_entry_points_for_all_bytes();
set_safepoints_for_all_bytes();
}
//------------------------------------------------------------------------------------------------------------------------
address TemplateInterpreterGenerator::generate_error_exit(const char* msg) {
address entry = __ pc();
__ stop(msg);
return entry;
}
//------------------------------------------------------------------------------------------------------------------------
void TemplateInterpreterGenerator::set_entry_points_for_all_bytes() {
for (int i = 0; i < DispatchTable::length; i++) {
Bytecodes::Code code = (Bytecodes::Code)i;
if (Bytecodes::is_defined(code)) {
set_entry_points(code);
} else {
set_unimplemented(i);
}
}
}
void TemplateInterpreterGenerator::set_safepoints_for_all_bytes() {
for (int i = 0; i < DispatchTable::length; i++) {
Bytecodes::Code code = (Bytecodes::Code)i;
if (Bytecodes::is_defined(code)) Interpreter::_safept_table.set_entry(code, Interpreter::_safept_entry);
}
}
void TemplateInterpreterGenerator::set_unimplemented(int i) {
address e = _unimplemented_bytecode;
EntryPoint entry(e, e, e, e, e, e, e, e, e);
Interpreter::_normal_table.set_entry(i, entry);
Interpreter::_wentry_point[i] = _unimplemented_bytecode;
}
void TemplateInterpreterGenerator::set_entry_points(Bytecodes::Code code) {
CodeletMark cm(_masm, Bytecodes::name(code), code);
// initialize entry points
assert(_unimplemented_bytecode != NULL, "should have been generated before");
assert(_illegal_bytecode_sequence != NULL, "should have been generated before");
address bep = _illegal_bytecode_sequence;
address cep = _illegal_bytecode_sequence;
address sep = _illegal_bytecode_sequence;
address aep = _illegal_bytecode_sequence;
address iep = _illegal_bytecode_sequence;
address lep = _illegal_bytecode_sequence;
address fep = _illegal_bytecode_sequence;
address dep = _illegal_bytecode_sequence;
address vep = _unimplemented_bytecode;
address wep = _unimplemented_bytecode;
// code for short & wide version of bytecode
if (Bytecodes::is_defined(code)) {
Template* t = TemplateTable::template_for(code);
assert(t->is_valid(), "just checking");
set_short_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);
}
if (Bytecodes::wide_is_defined(code)) {
Template* t = TemplateTable::template_for_wide(code);
assert(t->is_valid(), "just checking");
set_wide_entry_point(t, wep);
}
// set entry points
EntryPoint entry(bep, cep, sep, aep, iep, lep, fep, dep, vep);
Interpreter::_normal_table.set_entry(code, entry);
Interpreter::_wentry_point[code] = wep;
}
void TemplateInterpreterGenerator::set_wide_entry_point(Template* t, address& wep) {
assert(t->is_valid(), "template must exist");
assert(t->tos_in() == vtos, "only vtos tos_in supported for wide instructions");
wep = __ pc(); generate_and_dispatch(t);
}
void TemplateInterpreterGenerator::set_short_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
assert(t->is_valid(), "template must exist");
switch (t->tos_in()) {
case btos:
case ctos:
case stos:
ShouldNotReachHere(); // btos/ctos/stos should use itos.
break;
case atos: vep = __ pc(); __ pop(atos); aep = __ pc(); generate_and_dispatch(t); break;
case itos: vep = __ pc(); __ pop(itos); iep = __ pc(); generate_and_dispatch(t); break;
case ltos: vep = __ pc(); __ pop(ltos); lep = __ pc(); generate_and_dispatch(t); break;
case ftos: vep = __ pc(); __ pop(ftos); fep = __ pc(); generate_and_dispatch(t); break;
case dtos: vep = __ pc(); __ pop(dtos); dep = __ pc(); generate_and_dispatch(t); break;
case vtos: set_vtos_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep); break;
default : ShouldNotReachHere(); break;
}
}
//------------------------------------------------------------------------------------------------------------------------
void TemplateInterpreterGenerator::generate_and_dispatch(Template* t, TosState tos_out) {
if (PrintBytecodeHistogram) histogram_bytecode(t);
#ifndef PRODUCT
// debugging code
if (CountBytecodes || TraceBytecodes || StopInterpreterAt > 0) count_bytecode();
if (PrintBytecodePairHistogram) histogram_bytecode_pair(t);
if (TraceBytecodes) trace_bytecode(t);
if (StopInterpreterAt > 0) stop_interpreter_at();
__ verify_FPU(1, t->tos_in());
#endif // !PRODUCT
int step;
if (!t->does_dispatch()) {
step = t->is_wide() ? Bytecodes::wide_length_for(t->bytecode()) : Bytecodes::length_for(t->bytecode());
if (tos_out == ilgl) tos_out = t->tos_out();
// compute bytecode size
assert(step > 0, "just checkin'");
// setup stuff for dispatching next bytecode
if (ProfileInterpreter && VerifyDataPointer
&& methodDataOopDesc::bytecode_has_profile(t->bytecode())) {
__ verify_method_data_pointer();
}
__ dispatch_prolog(tos_out, step);
}
// generate template
t->generate(_masm);
// advance
if (t->does_dispatch()) {
#ifdef ASSERT
// make sure execution doesn't go beyond this point if code is broken
__ should_not_reach_here();
#endif // ASSERT
} else {
// dispatch to next bytecode
__ dispatch_epilog(tos_out, step);
}
}
//------------------------------------------------------------------------------------------------------------------------
// Entry points
address TemplateInterpreter::return_entry(TosState state, int length) {
guarantee(0 <= length && length < Interpreter::number_of_return_entries, "illegal length");
return _return_entry[length].entry(state);
}
address TemplateInterpreter::deopt_entry(TosState state, int length) {
guarantee(0 <= length && length < Interpreter::number_of_deopt_entries, "illegal length");
return _deopt_entry[length].entry(state);
}
//------------------------------------------------------------------------------------------------------------------------
// Suport for invokes
int TemplateInterpreter::TosState_as_index(TosState state) {
assert( state < number_of_states , "Invalid state in TosState_as_index");
assert(0 <= (int)state && (int)state < TemplateInterpreter::number_of_return_addrs, "index out of bounds");
return (int)state;
}
//------------------------------------------------------------------------------------------------------------------------
// Safepoint suppport
static inline void copy_table(address* from, address* to, int size) {
// Copy non-overlapping tables. The copy has to occur word wise for MT safety.
while (size-- > 0) *to++ = *from++;
}
void TemplateInterpreter::notice_safepoints() {
if (!_notice_safepoints) {
// switch to safepoint dispatch table
_notice_safepoints = true;
copy_table((address*)&_safept_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
}
}
// switch from the dispatch table which notices safepoints back to the
// normal dispatch table. So that we can notice single stepping points,
// keep the safepoint dispatch table if we are single stepping in JVMTI.
// Note that the should_post_single_step test is exactly as fast as the
// JvmtiExport::_enabled test and covers both cases.
void TemplateInterpreter::ignore_safepoints() {
if (_notice_safepoints) {
if (!JvmtiExport::should_post_single_step()) {
// switch to normal dispatch table
_notice_safepoints = false;
copy_table((address*)&_normal_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
}
}
}
//------------------------------------------------------------------------------------------------------------------------
// Deoptimization support
// If deoptimization happens, this function returns the point of next bytecode to continue execution
address TemplateInterpreter::deopt_continue_after_entry(methodOop method, address bcp, int callee_parameters, bool is_top_frame) {
return AbstractInterpreter::deopt_continue_after_entry(method, bcp, callee_parameters, is_top_frame);
}
// If deoptimization happens, this function returns the point where the interpreter reexecutes
// the bytecode.
// Note: Bytecodes::_athrow (C1 only) and Bytecodes::_return are the special cases
// that do not return "Interpreter::deopt_entry(vtos, 0)"
address TemplateInterpreter::deopt_reexecute_entry(methodOop method, address bcp) {
assert(method->contains(bcp), "just checkin'");
Bytecodes::Code code = Bytecodes::java_code_at(bcp);
if (code == Bytecodes::_return) {
// This is used for deopt during registration of finalizers
// during Object.<init>. We simply need to resume execution at
// the standard return vtos bytecode to pop the frame normally.
// reexecuting the real bytecode would cause double registration
// of the finalizable object.
return _normal_table.entry(Bytecodes::_return).entry(vtos);
} else {
return AbstractInterpreter::deopt_reexecute_entry(method, bcp);
}
}
// If deoptimization happens, the interpreter should reexecute this bytecode.
// This function mainly helps the compilers to set up the reexecute bit.
bool TemplateInterpreter::bytecode_should_reexecute(Bytecodes::Code code) {
if (code == Bytecodes::_return) {
//Yes, we consider Bytecodes::_return as a special case of reexecution
return true;
} else {
return AbstractInterpreter::bytecode_should_reexecute(code);
}
}
#endif // !CC_INTERP