8131645: [ARM64] crash on Cavium when using G1
Summary: Add a fence when creating the CodeRootSetTable so the readers do not see invalid memory.
Reviewed-by: aph, tschatzl
/*
* Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_G1_PTRQUEUE_HPP
#define SHARE_VM_GC_G1_PTRQUEUE_HPP
#include "memory/allocation.hpp"
#include "utilities/sizes.hpp"
// There are various techniques that require threads to be able to log
// addresses. For example, a generational write barrier might log
// the addresses of modified old-generation objects. This type supports
// this operation.
// The definition of placement operator new(size_t, void*) in the <new>.
#include <new>
class PtrQueueSet;
class PtrQueue VALUE_OBJ_CLASS_SPEC {
friend class VMStructs;
protected:
// The ptr queue set to which this queue belongs.
PtrQueueSet* _qset;
// Whether updates should be logged.
bool _active;
// The buffer.
void** _buf;
// The index at which an object was last enqueued. Starts at "_sz"
// (indicating an empty buffer) and goes towards zero.
size_t _index;
// The size of the buffer.
size_t _sz;
// If true, the queue is permanent, and doesn't need to deallocate
// its buffer in the destructor (since that obtains a lock which may not
// be legally locked by then.
bool _perm;
// If there is a lock associated with this buffer, this is that lock.
Mutex* _lock;
PtrQueueSet* qset() { return _qset; }
bool is_permanent() const { return _perm; }
// Process queue entries and release resources, if not permanent.
void flush_impl();
public:
// Initialize this queue to contain a null buffer, and be part of the
// given PtrQueueSet.
PtrQueue(PtrQueueSet* qset, bool perm = false, bool active = false);
// Requires queue flushed or permanent.
~PtrQueue();
// Associate a lock with a ptr queue.
void set_lock(Mutex* lock) { _lock = lock; }
void reset() { if (_buf != NULL) _index = _sz; }
void enqueue(volatile void* ptr) {
enqueue((void*)(ptr));
}
// Enqueues the given "obj".
void enqueue(void* ptr) {
if (!_active) return;
else enqueue_known_active(ptr);
}
// This method is called when we're doing the zero index handling
// and gives a chance to the queues to do any pre-enqueueing
// processing they might want to do on the buffer. It should return
// true if the buffer should be enqueued, or false if enough
// entries were cleared from it so that it can be re-used. It should
// not return false if the buffer is still full (otherwise we can
// get into an infinite loop).
virtual bool should_enqueue_buffer() { return true; }
void handle_zero_index();
void locking_enqueue_completed_buffer(void** buf);
void enqueue_known_active(void* ptr);
size_t size() {
assert(_sz >= _index, "Invariant.");
return _buf == NULL ? 0 : _sz - _index;
}
bool is_empty() {
return _buf == NULL || _sz == _index;
}
// Set the "active" property of the queue to "b". An enqueue to an
// inactive thread is a no-op. Setting a queue to inactive resets its
// log to the empty state.
void set_active(bool b) {
_active = b;
if (!b && _buf != NULL) {
_index = _sz;
} else if (b && _buf != NULL) {
assert(_index == _sz, "invariant: queues are empty when activated.");
}
}
bool is_active() { return _active; }
static int byte_index_to_index(int ind) {
assert((ind % oopSize) == 0, "Invariant.");
return ind / oopSize;
}
static int index_to_byte_index(int byte_ind) {
return byte_ind * oopSize;
}
// To support compiler.
static ByteSize byte_offset_of_index() {
return byte_offset_of(PtrQueue, _index);
}
static ByteSize byte_width_of_index() { return in_ByteSize(sizeof(size_t)); }
static ByteSize byte_offset_of_buf() {
return byte_offset_of(PtrQueue, _buf);
}
static ByteSize byte_width_of_buf() { return in_ByteSize(sizeof(void*)); }
static ByteSize byte_offset_of_active() {
return byte_offset_of(PtrQueue, _active);
}
static ByteSize byte_width_of_active() { return in_ByteSize(sizeof(bool)); }
};
class BufferNode {
size_t _index;
BufferNode* _next;
public:
BufferNode() : _index(0), _next(NULL) { }
BufferNode* next() const { return _next; }
void set_next(BufferNode* n) { _next = n; }
size_t index() const { return _index; }
void set_index(size_t i) { _index = i; }
// Align the size of the structure to the size of the pointer
static size_t aligned_size() {
static const size_t alignment = round_to(sizeof(BufferNode), sizeof(void*));
return alignment;
}
// BufferNode is allocated before the buffer.
// The chunk of memory that holds both of them is a block.
// Produce a new BufferNode given a buffer.
static BufferNode* new_from_buffer(void** buf) {
return new (make_block_from_buffer(buf)) BufferNode;
}
// The following are the required conversion routines:
static BufferNode* make_node_from_buffer(void** buf) {
return (BufferNode*)make_block_from_buffer(buf);
}
static void** make_buffer_from_node(BufferNode *node) {
return make_buffer_from_block(node);
}
static void* make_block_from_node(BufferNode *node) {
return (void*)node;
}
static void** make_buffer_from_block(void* p) {
return (void**)((char*)p + aligned_size());
}
static void* make_block_from_buffer(void** p) {
return (void*)((char*)p - aligned_size());
}
};
// A PtrQueueSet represents resources common to a set of pointer queues.
// In particular, the individual queues allocate buffers from this shared
// set, and return completed buffers to the set.
// All these variables are are protected by the TLOQ_CBL_mon. XXX ???
class PtrQueueSet VALUE_OBJ_CLASS_SPEC {
protected:
Monitor* _cbl_mon; // Protects the fields below.
BufferNode* _completed_buffers_head;
BufferNode* _completed_buffers_tail;
int _n_completed_buffers;
int _process_completed_threshold;
volatile bool _process_completed;
// This (and the interpretation of the first element as a "next"
// pointer) are protected by the TLOQ_FL_lock.
Mutex* _fl_lock;
BufferNode* _buf_free_list;
size_t _buf_free_list_sz;
// Queue set can share a freelist. The _fl_owner variable
// specifies the owner. It is set to "this" by default.
PtrQueueSet* _fl_owner;
// The size of all buffers in the set.
size_t _sz;
bool _all_active;
// If true, notify_all on _cbl_mon when the threshold is reached.
bool _notify_when_complete;
// Maximum number of elements allowed on completed queue: after that,
// enqueuer does the work itself. Zero indicates no maximum.
int _max_completed_queue;
int _completed_queue_padding;
int completed_buffers_list_length();
void assert_completed_buffer_list_len_correct_locked();
void assert_completed_buffer_list_len_correct();
protected:
// A mutator thread does the the work of processing a buffer.
// Returns "true" iff the work is complete (and the buffer may be
// deallocated).
virtual bool mut_process_buffer(void** buf) {
ShouldNotReachHere();
return false;
}
public:
// Create an empty ptr queue set.
PtrQueueSet(bool notify_when_complete = false);
// Because of init-order concerns, we can't pass these as constructor
// arguments.
void initialize(Monitor* cbl_mon, Mutex* fl_lock,
int process_completed_threshold,
int max_completed_queue,
PtrQueueSet *fl_owner = NULL) {
_max_completed_queue = max_completed_queue;
_process_completed_threshold = process_completed_threshold;
_completed_queue_padding = 0;
assert(cbl_mon != NULL && fl_lock != NULL, "Init order issue?");
_cbl_mon = cbl_mon;
_fl_lock = fl_lock;
_fl_owner = (fl_owner != NULL) ? fl_owner : this;
}
// Return an empty oop array of size _sz (required to be non-zero).
void** allocate_buffer();
// Return an empty buffer to the free list. The "buf" argument is
// required to be a pointer to the head of an array of length "_sz".
void deallocate_buffer(void** buf);
// Declares that "buf" is a complete buffer.
void enqueue_complete_buffer(void** buf, size_t index = 0);
// To be invoked by the mutator.
bool process_or_enqueue_complete_buffer(void** buf);
bool completed_buffers_exist_dirty() {
return _n_completed_buffers > 0;
}
bool process_completed_buffers() { return _process_completed; }
void set_process_completed(bool x) { _process_completed = x; }
bool is_active() { return _all_active; }
// Set the buffer size. Should be called before any "enqueue" operation
// can be called. And should only be called once.
void set_buffer_size(size_t sz);
// Get the buffer size.
size_t buffer_size() { return _sz; }
// Get/Set the number of completed buffers that triggers log processing.
void set_process_completed_threshold(int sz) { _process_completed_threshold = sz; }
int process_completed_threshold() const { return _process_completed_threshold; }
// Must only be called at a safe point. Indicates that the buffer free
// list size may be reduced, if that is deemed desirable.
void reduce_free_list();
int completed_buffers_num() { return _n_completed_buffers; }
void merge_bufferlists(PtrQueueSet* src);
void set_max_completed_queue(int m) { _max_completed_queue = m; }
int max_completed_queue() { return _max_completed_queue; }
void set_completed_queue_padding(int padding) { _completed_queue_padding = padding; }
int completed_queue_padding() { return _completed_queue_padding; }
// Notify the consumer if the number of buffers crossed the threshold
void notify_if_necessary();
};
#endif // SHARE_VM_GC_G1_PTRQUEUE_HPP