hotspot/src/cpu/x86/vm/templateInterpreterGenerator_x86_64.cpp
author thartmann
Mon, 21 Nov 2016 08:27:10 +0100
changeset 42580 56304dee97f3
parent 41323 ddd5600d4762
permissions -rw-r--r--
8169711: CDS does not patch entry trampoline if intrinsic method is disabled Summary: Always create interpreter method entries for intrinsified methods but replace them with vanilla entries if the intrinsic is disabled at runtime. Reviewed-by: kvn, iklam

/*
 * Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "interpreter/interp_masm.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/templateInterpreterGenerator.hpp"
#include "runtime/arguments.hpp"
#include "runtime/sharedRuntime.hpp"

#define __ _masm->

#ifdef _WIN64
address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  address entry = __ pc();

  // rbx: method
  // r14: pointer to locals
  // c_rarg3: first stack arg - wordSize
  __ mov(c_rarg3, rsp);
  // adjust rsp
  __ subptr(rsp, 4 * wordSize);
  __ call_VM(noreg,
             CAST_FROM_FN_PTR(address,
                              InterpreterRuntime::slow_signature_handler),
             rbx, r14, c_rarg3);

  // rax: result handler

  // Stack layout:
  // rsp: 3 integer or float args (if static first is unused)
  //      1 float/double identifiers
  //        return address
  //        stack args
  //        garbage
  //        expression stack bottom
  //        bcp (NULL)
  //        ...

  // Do FP first so we can use c_rarg3 as temp
  __ movl(c_rarg3, Address(rsp, 3 * wordSize)); // float/double identifiers

  for ( int i= 0; i < Argument::n_int_register_parameters_c-1; i++ ) {
    XMMRegister floatreg = as_XMMRegister(i+1);
    Label isfloatordouble, isdouble, next;

    __ testl(c_rarg3, 1 << (i*2));      // Float or Double?
    __ jcc(Assembler::notZero, isfloatordouble);

    // Do Int register here
    switch ( i ) {
      case 0:
        __ movl(rscratch1, Address(rbx, Method::access_flags_offset()));
        __ testl(rscratch1, JVM_ACC_STATIC);
        __ cmovptr(Assembler::zero, c_rarg1, Address(rsp, 0));
        break;
      case 1:
        __ movptr(c_rarg2, Address(rsp, wordSize));
        break;
      case 2:
        __ movptr(c_rarg3, Address(rsp, 2 * wordSize));
        break;
      default:
        break;
    }

    __ jmp (next);

    __ bind(isfloatordouble);
    __ testl(c_rarg3, 1 << ((i*2)+1));     // Double?
    __ jcc(Assembler::notZero, isdouble);

// Do Float Here
    __ movflt(floatreg, Address(rsp, i * wordSize));
    __ jmp(next);

// Do Double here
    __ bind(isdouble);
    __ movdbl(floatreg, Address(rsp, i * wordSize));

    __ bind(next);
  }


  // restore rsp
  __ addptr(rsp, 4 * wordSize);

  __ ret(0);

  return entry;
}
#else
address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  address entry = __ pc();

  // rbx: method
  // r14: pointer to locals
  // c_rarg3: first stack arg - wordSize
  __ mov(c_rarg3, rsp);
  // adjust rsp
  __ subptr(rsp, 14 * wordSize);
  __ call_VM(noreg,
             CAST_FROM_FN_PTR(address,
                              InterpreterRuntime::slow_signature_handler),
             rbx, r14, c_rarg3);

  // rax: result handler

  // Stack layout:
  // rsp: 5 integer args (if static first is unused)
  //      1 float/double identifiers
  //      8 double args
  //        return address
  //        stack args
  //        garbage
  //        expression stack bottom
  //        bcp (NULL)
  //        ...

  // Do FP first so we can use c_rarg3 as temp
  __ movl(c_rarg3, Address(rsp, 5 * wordSize)); // float/double identifiers

  for (int i = 0; i < Argument::n_float_register_parameters_c; i++) {
    const XMMRegister r = as_XMMRegister(i);

    Label d, done;

    __ testl(c_rarg3, 1 << i);
    __ jcc(Assembler::notZero, d);
    __ movflt(r, Address(rsp, (6 + i) * wordSize));
    __ jmp(done);
    __ bind(d);
    __ movdbl(r, Address(rsp, (6 + i) * wordSize));
    __ bind(done);
  }

  // Now handle integrals.  Only do c_rarg1 if not static.
  __ movl(c_rarg3, Address(rbx, Method::access_flags_offset()));
  __ testl(c_rarg3, JVM_ACC_STATIC);
  __ cmovptr(Assembler::zero, c_rarg1, Address(rsp, 0));

  __ movptr(c_rarg2, Address(rsp, wordSize));
  __ movptr(c_rarg3, Address(rsp, 2 * wordSize));
  __ movptr(c_rarg4, Address(rsp, 3 * wordSize));
  __ movptr(c_rarg5, Address(rsp, 4 * wordSize));

  // restore rsp
  __ addptr(rsp, 14 * wordSize);

  __ ret(0);

  return entry;
}
#endif  // __WIN64

/**
 * Method entry for static native methods:
 *   int java.util.zip.CRC32.update(int crc, int b)
 */
address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
  if (UseCRC32Intrinsics) {
    address entry = __ pc();

    // rbx,: Method*
    // r13: senderSP must preserved for slow path, set SP to it on fast path
    // c_rarg0: scratch (rdi on non-Win64, rcx on Win64)
    // c_rarg1: scratch (rsi on non-Win64, rdx on Win64)

    Label slow_path;
    // If we need a safepoint check, generate full interpreter entry.
    ExternalAddress state(SafepointSynchronize::address_of_state());
    __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
             SafepointSynchronize::_not_synchronized);
    __ jcc(Assembler::notEqual, slow_path);

    // We don't generate local frame and don't align stack because
    // we call stub code and there is no safepoint on this path.

    // Load parameters
    const Register crc = rax;  // crc
    const Register val = c_rarg0;  // source java byte value
    const Register tbl = c_rarg1;  // scratch

    // Arguments are reversed on java expression stack
    __ movl(val, Address(rsp,   wordSize)); // byte value
    __ movl(crc, Address(rsp, 2*wordSize)); // Initial CRC

    __ lea(tbl, ExternalAddress(StubRoutines::crc_table_addr()));
    __ notl(crc); // ~crc
    __ update_byte_crc32(crc, val, tbl);
    __ notl(crc); // ~crc
    // result in rax

    // _areturn
    __ pop(rdi);                // get return address
    __ mov(rsp, r13);           // set sp to sender sp
    __ jmp(rdi);

    // generate a vanilla native entry as the slow path
    __ bind(slow_path);
    __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
    return entry;
  }
  return NULL;
}

/**
 * Method entry for static native methods:
 *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
 *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
 */
address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
  if (UseCRC32Intrinsics) {
    address entry = __ pc();

    // rbx,: Method*
    // r13: senderSP must preserved for slow path, set SP to it on fast path

    Label slow_path;
    // If we need a safepoint check, generate full interpreter entry.
    ExternalAddress state(SafepointSynchronize::address_of_state());
    __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
             SafepointSynchronize::_not_synchronized);
    __ jcc(Assembler::notEqual, slow_path);

    // We don't generate local frame and don't align stack because
    // we call stub code and there is no safepoint on this path.

    // Load parameters
    const Register crc = c_rarg0;  // crc
    const Register buf = c_rarg1;  // source java byte array address
    const Register len = c_rarg2;  // length
    const Register off = len;      // offset (never overlaps with 'len')

    // Arguments are reversed on java expression stack
    // Calculate address of start element
    if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
      __ movptr(buf, Address(rsp, 3*wordSize)); // long buf
      __ movl2ptr(off, Address(rsp, 2*wordSize)); // offset
      __ addq(buf, off); // + offset
      __ movl(crc,   Address(rsp, 5*wordSize)); // Initial CRC
    } else {
      __ movptr(buf, Address(rsp, 3*wordSize)); // byte[] array
      __ addptr(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
      __ movl2ptr(off, Address(rsp, 2*wordSize)); // offset
      __ addq(buf, off); // + offset
      __ movl(crc,   Address(rsp, 4*wordSize)); // Initial CRC
    }
    // Can now load 'len' since we're finished with 'off'
    __ movl(len, Address(rsp, wordSize)); // Length

    __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()), crc, buf, len);
    // result in rax

    // _areturn
    __ pop(rdi);                // get return address
    __ mov(rsp, r13);           // set sp to sender sp
    __ jmp(rdi);

    // generate a vanilla native entry as the slow path
    __ bind(slow_path);
    __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
    return entry;
  }
  return NULL;
}

/**
* Method entry for static (non-native) methods:
*   int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end)
*   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long address, int off, int end)
*/
address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
  if (UseCRC32CIntrinsics) {
    address entry = __ pc();
    // Load parameters
    const Register crc = c_rarg0;  // crc
    const Register buf = c_rarg1;  // source java byte array address
    const Register len = c_rarg2;
    const Register off = c_rarg3;  // offset
    const Register end = len;

    // Arguments are reversed on java expression stack
    // Calculate address of start element
    if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) {
      __ movptr(buf, Address(rsp, 3 * wordSize)); // long address
      __ movl2ptr(off, Address(rsp, 2 * wordSize)); // offset
      __ addq(buf, off); // + offset
      __ movl(crc, Address(rsp, 5 * wordSize)); // Initial CRC
      // Note on 5 * wordSize vs. 4 * wordSize:
      // *   int java.util.zip.CRC32C.updateByteBuffer(int crc, long address, int off, int end)
      //                                                   4         2,3          1        0
      // end starts at SP + 8
      // The Java(R) Virtual Machine Specification Java SE 7 Edition
      // 4.10.2.3. Values of Types long and double
      //    "When calculating operand stack length, values of type long and double have length two."
    } else {
      __ movptr(buf, Address(rsp, 3 * wordSize)); // byte[] array
      __ addptr(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
      __ movl2ptr(off, Address(rsp, 2 * wordSize)); // offset
      __ addq(buf, off); // + offset
      __ movl(crc, Address(rsp, 4 * wordSize)); // Initial CRC
    }
    __ movl(end, Address(rsp, wordSize)); // end
    __ subl(end, off); // end - off
    __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32C()), crc, buf, len);
    // result in rax
    // _areturn
    __ pop(rdi);                // get return address
    __ mov(rsp, r13);           // set sp to sender sp
    __ jmp(rdi);

    return entry;
  }

  return NULL;
}

//
// Various method entries
//

address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {

  // rbx,: Method*
  // rcx: scratrch
  // r13: sender sp

  if (!InlineIntrinsics) return NULL; // Generate a vanilla entry

  address entry_point = __ pc();

  // These don't need a safepoint check because they aren't virtually
  // callable. We won't enter these intrinsics from compiled code.
  // If in the future we added an intrinsic which was virtually callable
  // we'd have to worry about how to safepoint so that this code is used.

  // mathematical functions inlined by compiler
  // (interpreter must provide identical implementation
  // in order to avoid monotonicity bugs when switching
  // from interpreter to compiler in the middle of some
  // computation)
  //
  // stack: [ ret adr ] <-- rsp
  //        [ lo(arg) ]
  //        [ hi(arg) ]
  //

  if (kind == Interpreter::java_lang_math_fmaD) {
    if (!UseFMA) {
      return NULL; // Generate a vanilla entry
    }
    __ movdbl(xmm0, Address(rsp, wordSize));
    __ movdbl(xmm1, Address(rsp, 3 * wordSize));
    __ movdbl(xmm2, Address(rsp, 5 * wordSize));
    __ fmad(xmm0, xmm1, xmm2, xmm0);
  } else if (kind == Interpreter::java_lang_math_fmaF) {
    if (!UseFMA) {
      return NULL; // Generate a vanilla entry
    }
    __ movflt(xmm0, Address(rsp, wordSize));
    __ movflt(xmm1, Address(rsp, 2 * wordSize));
    __ movflt(xmm2, Address(rsp, 3 * wordSize));
    __ fmaf(xmm0, xmm1, xmm2, xmm0);
  } else if (kind == Interpreter::java_lang_math_sqrt) {
    __ sqrtsd(xmm0, Address(rsp, wordSize));
  } else if (kind == Interpreter::java_lang_math_exp) {
    __ movdbl(xmm0, Address(rsp, wordSize));
    if (StubRoutines::dexp() != NULL) {
      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dexp())));
    } else {
      __ call_VM_leaf0(CAST_FROM_FN_PTR(address, SharedRuntime::dexp));
    }
  } else if (kind == Interpreter::java_lang_math_log) {
    __ movdbl(xmm0, Address(rsp, wordSize));
    if (StubRoutines::dlog() != NULL) {
      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dlog())));
    } else {
      __ call_VM_leaf0(CAST_FROM_FN_PTR(address, SharedRuntime::dlog));
    }
  } else if (kind == Interpreter::java_lang_math_log10) {
    __ movdbl(xmm0, Address(rsp, wordSize));
    if (StubRoutines::dlog10() != NULL) {
      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dlog10())));
    } else {
      __ call_VM_leaf0(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10));
    }
  } else if (kind == Interpreter::java_lang_math_sin) {
    __ movdbl(xmm0, Address(rsp, wordSize));
    if (StubRoutines::dsin() != NULL) {
      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dsin())));
    } else {
      __ call_VM_leaf0(CAST_FROM_FN_PTR(address, SharedRuntime::dsin));
    }
  } else if (kind == Interpreter::java_lang_math_cos) {
    __ movdbl(xmm0, Address(rsp, wordSize));
    if (StubRoutines::dcos() != NULL) {
      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dcos())));
    } else {
      __ call_VM_leaf0(CAST_FROM_FN_PTR(address, SharedRuntime::dcos));
    }
  } else if (kind == Interpreter::java_lang_math_pow) {
    __ movdbl(xmm1, Address(rsp, wordSize));
    __ movdbl(xmm0, Address(rsp, 3 * wordSize));
    if (StubRoutines::dpow() != NULL) {
      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dpow())));
    } else {
      __ call_VM_leaf0(CAST_FROM_FN_PTR(address, SharedRuntime::dpow));
    }
  } else if (kind == Interpreter::java_lang_math_tan) {
    __ movdbl(xmm0, Address(rsp, wordSize));
    if (StubRoutines::dtan() != NULL) {
      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dtan())));
    } else {
      __ call_VM_leaf0(CAST_FROM_FN_PTR(address, SharedRuntime::dtan));
    }
  } else {
    __ fld_d(Address(rsp, wordSize));
    switch (kind) {
    case Interpreter::java_lang_math_abs:
      __ fabs();
      break;
    default:
      ShouldNotReachHere();
    }

    // return double result in xmm0 for interpreter and compilers.
    __ subptr(rsp, 2*wordSize);
    // Round to 64bit precision
    __ fstp_d(Address(rsp, 0));
    __ movdbl(xmm0, Address(rsp, 0));
    __ addptr(rsp, 2*wordSize);
  }


  __ pop(rax);
  __ mov(rsp, r13);
  __ jmp(rax);

  return entry_point;
}