8034764: Use process_strong_roots to adjust the StringTable
Reviewed-by: tschatzl, brutisso
/*
* Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_MEMORY_COLLECTORPOLICY_HPP
#define SHARE_VM_MEMORY_COLLECTORPOLICY_HPP
#include "memory/allocation.hpp"
#include "memory/barrierSet.hpp"
#include "memory/generationSpec.hpp"
#include "memory/genRemSet.hpp"
#include "utilities/macros.hpp"
// This class (or more correctly, subtypes of this class)
// are used to define global garbage collector attributes.
// This includes initialization of generations and any other
// shared resources they may need.
//
// In general, all flag adjustment and validation should be
// done in initialize_flags(), which is called prior to
// initialize_size_info().
//
// This class is not fully developed yet. As more collector(s)
// are added, it is expected that we will come across further
// behavior that requires global attention. The correct place
// to deal with those issues is this class.
// Forward declarations.
class GenCollectorPolicy;
class TwoGenerationCollectorPolicy;
class AdaptiveSizePolicy;
#if INCLUDE_ALL_GCS
class ConcurrentMarkSweepPolicy;
class G1CollectorPolicy;
#endif // INCLUDE_ALL_GCS
class GCPolicyCounters;
class MarkSweepPolicy;
class CollectorPolicy : public CHeapObj<mtGC> {
protected:
GCPolicyCounters* _gc_policy_counters;
virtual void initialize_alignments() = 0;
virtual void initialize_flags();
virtual void initialize_size_info();
DEBUG_ONLY(virtual void assert_flags();)
DEBUG_ONLY(virtual void assert_size_info();)
size_t _initial_heap_byte_size;
size_t _max_heap_byte_size;
size_t _min_heap_byte_size;
size_t _space_alignment;
size_t _heap_alignment;
// Needed to keep information if MaxHeapSize was set on the command line
// when the flag value is aligned etc by ergonomics.
bool _max_heap_size_cmdline;
// The sizing of the heap is controlled by a sizing policy.
AdaptiveSizePolicy* _size_policy;
// Set to true when policy wants soft refs cleared.
// Reset to false by gc after it clears all soft refs.
bool _should_clear_all_soft_refs;
// Set to true by the GC if the just-completed gc cleared all
// softrefs. This is set to true whenever a gc clears all softrefs, and
// set to false each time gc returns to the mutator. For example, in the
// ParallelScavengeHeap case the latter would be done toward the end of
// mem_allocate() where it returns op.result()
bool _all_soft_refs_clear;
CollectorPolicy();
public:
virtual void initialize_all() {
initialize_alignments();
initialize_flags();
initialize_size_info();
}
// Return maximum heap alignment that may be imposed by the policy.
static size_t compute_heap_alignment();
size_t space_alignment() { return _space_alignment; }
size_t heap_alignment() { return _heap_alignment; }
size_t initial_heap_byte_size() { return _initial_heap_byte_size; }
size_t max_heap_byte_size() { return _max_heap_byte_size; }
size_t min_heap_byte_size() { return _min_heap_byte_size; }
enum Name {
CollectorPolicyKind,
TwoGenerationCollectorPolicyKind,
ConcurrentMarkSweepPolicyKind,
ASConcurrentMarkSweepPolicyKind,
G1CollectorPolicyKind
};
AdaptiveSizePolicy* size_policy() { return _size_policy; }
bool should_clear_all_soft_refs() { return _should_clear_all_soft_refs; }
void set_should_clear_all_soft_refs(bool v) { _should_clear_all_soft_refs = v; }
// Returns the current value of _should_clear_all_soft_refs.
// _should_clear_all_soft_refs is set to false as a side effect.
bool use_should_clear_all_soft_refs(bool v);
bool all_soft_refs_clear() { return _all_soft_refs_clear; }
void set_all_soft_refs_clear(bool v) { _all_soft_refs_clear = v; }
// Called by the GC after Soft Refs have been cleared to indicate
// that the request in _should_clear_all_soft_refs has been fulfilled.
void cleared_all_soft_refs();
// Identification methods.
virtual GenCollectorPolicy* as_generation_policy() { return NULL; }
virtual TwoGenerationCollectorPolicy* as_two_generation_policy() { return NULL; }
virtual MarkSweepPolicy* as_mark_sweep_policy() { return NULL; }
#if INCLUDE_ALL_GCS
virtual ConcurrentMarkSweepPolicy* as_concurrent_mark_sweep_policy() { return NULL; }
virtual G1CollectorPolicy* as_g1_policy() { return NULL; }
#endif // INCLUDE_ALL_GCS
// Note that these are not virtual.
bool is_generation_policy() { return as_generation_policy() != NULL; }
bool is_two_generation_policy() { return as_two_generation_policy() != NULL; }
bool is_mark_sweep_policy() { return as_mark_sweep_policy() != NULL; }
#if INCLUDE_ALL_GCS
bool is_concurrent_mark_sweep_policy() { return as_concurrent_mark_sweep_policy() != NULL; }
bool is_g1_policy() { return as_g1_policy() != NULL; }
#else // INCLUDE_ALL_GCS
bool is_concurrent_mark_sweep_policy() { return false; }
bool is_g1_policy() { return false; }
#endif // INCLUDE_ALL_GCS
virtual BarrierSet::Name barrier_set_name() = 0;
// Create the remembered set (to cover the given reserved region,
// allowing breaking up into at most "max_covered_regions").
virtual GenRemSet* create_rem_set(MemRegion reserved,
int max_covered_regions);
// This method controls how a collector satisfies a request
// for a block of memory. "gc_time_limit_was_exceeded" will
// be set to true if the adaptive size policy determine that
// an excessive amount of time is being spent doing collections
// and caused a NULL to be returned. If a NULL is not returned,
// "gc_time_limit_was_exceeded" has an undefined meaning.
virtual HeapWord* mem_allocate_work(size_t size,
bool is_tlab,
bool* gc_overhead_limit_was_exceeded) = 0;
// This method controls how a collector handles one or more
// of its generations being fully allocated.
virtual HeapWord *satisfy_failed_allocation(size_t size, bool is_tlab) = 0;
// This method controls how a collector handles a metadata allocation
// failure.
virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
size_t size,
Metaspace::MetadataType mdtype);
// Performance Counter support
GCPolicyCounters* counters() { return _gc_policy_counters; }
// Create the jstat counters for the GC policy. By default, policy's
// don't have associated counters, and we complain if this is invoked.
virtual void initialize_gc_policy_counters() {
ShouldNotReachHere();
}
virtual CollectorPolicy::Name kind() {
return CollectorPolicy::CollectorPolicyKind;
}
// Returns true if a collector has eden space with soft end.
virtual bool has_soft_ended_eden() {
return false;
}
// Do any updates required to global flags that are due to heap initialization
// changes
virtual void post_heap_initialize() = 0;
};
class ClearedAllSoftRefs : public StackObj {
bool _clear_all_soft_refs;
CollectorPolicy* _collector_policy;
public:
ClearedAllSoftRefs(bool clear_all_soft_refs,
CollectorPolicy* collector_policy) :
_clear_all_soft_refs(clear_all_soft_refs),
_collector_policy(collector_policy) {}
~ClearedAllSoftRefs() {
if (_clear_all_soft_refs) {
_collector_policy->cleared_all_soft_refs();
}
}
};
class GenCollectorPolicy : public CollectorPolicy {
friend class TestGenCollectorPolicy;
protected:
size_t _min_gen0_size;
size_t _initial_gen0_size;
size_t _max_gen0_size;
// _gen_alignment and _space_alignment will have the same value most of the
// time. When using large pages they can differ.
size_t _gen_alignment;
GenerationSpec **_generations;
// Return true if an allocation should be attempted in the older generation
// if it fails in the younger generation. Return false, otherwise.
virtual bool should_try_older_generation_allocation(size_t word_size) const;
void initialize_flags();
void initialize_size_info();
DEBUG_ONLY(void assert_flags();)
DEBUG_ONLY(void assert_size_info();)
// Try to allocate space by expanding the heap.
virtual HeapWord* expand_heap_and_allocate(size_t size, bool is_tlab);
// Compute max heap alignment.
size_t compute_max_alignment();
// Scale the base_size by NewRatio according to
// result = base_size / (NewRatio + 1)
// and align by min_alignment()
size_t scale_by_NewRatio_aligned(size_t base_size);
// Bound the value by the given maximum minus the min_alignment.
size_t bound_minus_alignment(size_t desired_size, size_t maximum_size);
public:
GenCollectorPolicy();
// Accessors
size_t min_gen0_size() { return _min_gen0_size; }
size_t initial_gen0_size() { return _initial_gen0_size; }
size_t max_gen0_size() { return _max_gen0_size; }
size_t gen_alignment() { return _gen_alignment; }
virtual int number_of_generations() = 0;
virtual GenerationSpec **generations() {
assert(_generations != NULL, "Sanity check");
return _generations;
}
virtual GenCollectorPolicy* as_generation_policy() { return this; }
virtual void initialize_generations() { };
virtual void initialize_all() {
CollectorPolicy::initialize_all();
initialize_generations();
}
size_t young_gen_size_lower_bound();
HeapWord* mem_allocate_work(size_t size,
bool is_tlab,
bool* gc_overhead_limit_was_exceeded);
HeapWord *satisfy_failed_allocation(size_t size, bool is_tlab);
// Adaptive size policy
virtual void initialize_size_policy(size_t init_eden_size,
size_t init_promo_size,
size_t init_survivor_size);
virtual void post_heap_initialize() {
assert(_max_gen0_size == MaxNewSize, "Should be taken care of by initialize_size_info");
}
};
// All of hotspot's current collectors are subtypes of this
// class. Currently, these collectors all use the same gen[0],
// but have different gen[1] types. If we add another subtype
// of CollectorPolicy, this class should be broken out into
// its own file.
class TwoGenerationCollectorPolicy : public GenCollectorPolicy {
protected:
size_t _min_gen1_size;
size_t _initial_gen1_size;
size_t _max_gen1_size;
void initialize_flags();
void initialize_size_info();
DEBUG_ONLY(void assert_flags();)
DEBUG_ONLY(void assert_size_info();)
public:
TwoGenerationCollectorPolicy() : GenCollectorPolicy(), _min_gen1_size(0),
_initial_gen1_size(0), _max_gen1_size(0) {}
// Accessors
size_t min_gen1_size() { return _min_gen1_size; }
size_t initial_gen1_size() { return _initial_gen1_size; }
size_t max_gen1_size() { return _max_gen1_size; }
// Inherited methods
TwoGenerationCollectorPolicy* as_two_generation_policy() { return this; }
int number_of_generations() { return 2; }
BarrierSet::Name barrier_set_name() { return BarrierSet::CardTableModRef; }
virtual CollectorPolicy::Name kind() {
return CollectorPolicy::TwoGenerationCollectorPolicyKind;
}
// Returns true if gen0 sizes were adjusted
bool adjust_gen0_sizes(size_t* gen0_size_ptr, size_t* gen1_size_ptr,
const size_t heap_size);
};
class MarkSweepPolicy : public TwoGenerationCollectorPolicy {
protected:
void initialize_alignments();
void initialize_generations();
public:
MarkSweepPolicy() {}
MarkSweepPolicy* as_mark_sweep_policy() { return this; }
void initialize_gc_policy_counters();
};
#endif // SHARE_VM_MEMORY_COLLECTORPOLICY_HPP