8034764: Use process_strong_roots to adjust the StringTable
Reviewed-by: tschatzl, brutisso
/*
* Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "utilities/macros.hpp"
#include "gc_implementation/shared/allocationStats.hpp"
#include "memory/binaryTreeDictionary.hpp"
#include "memory/freeList.hpp"
#include "memory/freeBlockDictionary.hpp"
#include "memory/metachunk.hpp"
#include "runtime/globals.hpp"
#include "utilities/ostream.hpp"
#include "utilities/macros.hpp"
#include "gc_implementation/shared/spaceDecorator.hpp"
#if INCLUDE_ALL_GCS
#include "gc_implementation/concurrentMarkSweep/adaptiveFreeList.hpp"
#include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
#include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
#endif // INCLUDE_ALL_GCS
////////////////////////////////////////////////////////////////////////////////
// A binary tree based search structure for free blocks.
// This is currently used in the Concurrent Mark&Sweep implementation.
////////////////////////////////////////////////////////////////////////////////
template <class Chunk_t, template <class> class FreeList_t>
size_t TreeChunk<Chunk_t, FreeList_t>::_min_tree_chunk_size = sizeof(TreeChunk<Chunk_t, FreeList_t>)/HeapWordSize;
template <class Chunk_t, template <class> class FreeList_t>
TreeChunk<Chunk_t, FreeList_t>* TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(Chunk_t* fc) {
// Do some assertion checking here.
return (TreeChunk<Chunk_t, FreeList_t>*) fc;
}
template <class Chunk_t, template <class> class FreeList_t>
void TreeChunk<Chunk_t, FreeList_t>::verify_tree_chunk_list() const {
TreeChunk<Chunk_t, FreeList_t>* nextTC = (TreeChunk<Chunk_t, FreeList_t>*)next();
if (prev() != NULL) { // interior list node shouldn't have tree fields
guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
embedded_list()->right() == NULL, "should be clear");
}
if (nextTC != NULL) {
guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
guarantee(nextTC->size() == size(), "wrong size");
nextTC->verify_tree_chunk_list();
}
}
template <class Chunk_t, template <class> class FreeList_t>
TreeList<Chunk_t, FreeList_t>::TreeList() : _parent(NULL),
_left(NULL), _right(NULL) {}
template <class Chunk_t, template <class> class FreeList_t>
TreeList<Chunk_t, FreeList_t>*
TreeList<Chunk_t, FreeList_t>::as_TreeList(TreeChunk<Chunk_t,FreeList_t>* tc) {
// This first free chunk in the list will be the tree list.
assert((tc->size() >= (TreeChunk<Chunk_t, FreeList_t>::min_size())),
"Chunk is too small for a TreeChunk");
TreeList<Chunk_t, FreeList_t>* tl = tc->embedded_list();
tl->initialize();
tc->set_list(tl);
tl->set_size(tc->size());
tl->link_head(tc);
tl->link_tail(tc);
tl->set_count(1);
assert(tl->parent() == NULL, "Should be clear");
return tl;
}
template <class Chunk_t, template <class> class FreeList_t>
TreeList<Chunk_t, FreeList_t>*
get_chunk(size_t size, enum FreeBlockDictionary<Chunk_t>::Dither dither) {
FreeBlockDictionary<Chunk_t>::verify_par_locked();
Chunk_t* res = get_chunk_from_tree(size, dither);
assert(res == NULL || res->is_free(),
"Should be returning a free chunk");
assert(dither != FreeBlockDictionary<Chunk_t>::exactly ||
res->size() == size, "Not correct size");
return res;
}
template <class Chunk_t, template <class> class FreeList_t>
TreeList<Chunk_t, FreeList_t>*
TreeList<Chunk_t, FreeList_t>::as_TreeList(HeapWord* addr, size_t size) {
TreeChunk<Chunk_t, FreeList_t>* tc = (TreeChunk<Chunk_t, FreeList_t>*) addr;
assert((size >= TreeChunk<Chunk_t, FreeList_t>::min_size()),
"Chunk is too small for a TreeChunk");
// The space will have been mangled initially but
// is not remangled when a Chunk_t is returned to the free list
// (since it is used to maintain the chunk on the free list).
tc->assert_is_mangled();
tc->set_size(size);
tc->link_prev(NULL);
tc->link_next(NULL);
TreeList<Chunk_t, FreeList_t>* tl = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
return tl;
}
#if INCLUDE_ALL_GCS
// Specialize for AdaptiveFreeList which tries to avoid
// splitting a chunk of a size that is under populated in favor of
// an over populated size. The general get_better_list() just returns
// the current list.
template <>
TreeList<FreeChunk, AdaptiveFreeList>*
TreeList<FreeChunk, AdaptiveFreeList>::get_better_list(
BinaryTreeDictionary<FreeChunk, ::AdaptiveFreeList>* dictionary) {
// A candidate chunk has been found. If it is already under
// populated, get a chunk associated with the hint for this
// chunk.
TreeList<FreeChunk, ::AdaptiveFreeList>* curTL = this;
if (surplus() <= 0) {
/* Use the hint to find a size with a surplus, and reset the hint. */
TreeList<FreeChunk, ::AdaptiveFreeList>* hintTL = this;
while (hintTL->hint() != 0) {
assert(hintTL->hint() > hintTL->size(),
"hint points in the wrong direction");
hintTL = dictionary->find_list(hintTL->hint());
assert(curTL != hintTL, "Infinite loop");
if (hintTL == NULL ||
hintTL == curTL /* Should not happen but protect against it */ ) {
// No useful hint. Set the hint to NULL and go on.
curTL->set_hint(0);
break;
}
assert(hintTL->size() > curTL->size(), "hint is inconsistent");
if (hintTL->surplus() > 0) {
// The hint led to a list that has a surplus. Use it.
// Set the hint for the candidate to an overpopulated
// size.
curTL->set_hint(hintTL->size());
// Change the candidate.
curTL = hintTL;
break;
}
}
}
return curTL;
}
#endif // INCLUDE_ALL_GCS
template <class Chunk_t, template <class> class FreeList_t>
TreeList<Chunk_t, FreeList_t>*
TreeList<Chunk_t, FreeList_t>::get_better_list(
BinaryTreeDictionary<Chunk_t, FreeList_t>* dictionary) {
return this;
}
template <class Chunk_t, template <class> class FreeList_t>
TreeList<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::remove_chunk_replace_if_needed(TreeChunk<Chunk_t, FreeList_t>* tc) {
TreeList<Chunk_t, FreeList_t>* retTL = this;
Chunk_t* list = head();
assert(!list || list != list->next(), "Chunk on list twice");
assert(tc != NULL, "Chunk being removed is NULL");
assert(parent() == NULL || this == parent()->left() ||
this == parent()->right(), "list is inconsistent");
assert(tc->is_free(), "Header is not marked correctly");
assert(head() == NULL || head()->prev() == NULL, "list invariant");
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
Chunk_t* prevFC = tc->prev();
TreeChunk<Chunk_t, FreeList_t>* nextTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(tc->next());
assert(list != NULL, "should have at least the target chunk");
// Is this the first item on the list?
if (tc == list) {
// The "getChunk..." functions for a TreeList<Chunk_t, FreeList_t> will not return the
// first chunk in the list unless it is the last chunk in the list
// because the first chunk is also acting as the tree node.
// When coalescing happens, however, the first chunk in the a tree
// list can be the start of a free range. Free ranges are removed
// from the free lists so that they are not available to be
// allocated when the sweeper yields (giving up the free list lock)
// to allow mutator activity. If this chunk is the first in the
// list and is not the last in the list, do the work to copy the
// TreeList<Chunk_t, FreeList_t> from the first chunk to the next chunk and update all
// the TreeList<Chunk_t, FreeList_t> pointers in the chunks in the list.
if (nextTC == NULL) {
assert(prevFC == NULL, "Not last chunk in the list");
set_tail(NULL);
set_head(NULL);
} else {
// copy embedded list.
nextTC->set_embedded_list(tc->embedded_list());
retTL = nextTC->embedded_list();
// Fix the pointer to the list in each chunk in the list.
// This can be slow for a long list. Consider having
// an option that does not allow the first chunk on the
// list to be coalesced.
for (TreeChunk<Chunk_t, FreeList_t>* curTC = nextTC; curTC != NULL;
curTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(curTC->next())) {
curTC->set_list(retTL);
}
// Fix the parent to point to the new TreeList<Chunk_t, FreeList_t>.
if (retTL->parent() != NULL) {
if (this == retTL->parent()->left()) {
retTL->parent()->set_left(retTL);
} else {
assert(this == retTL->parent()->right(), "Parent is incorrect");
retTL->parent()->set_right(retTL);
}
}
// Fix the children's parent pointers to point to the
// new list.
assert(right() == retTL->right(), "Should have been copied");
if (retTL->right() != NULL) {
retTL->right()->set_parent(retTL);
}
assert(left() == retTL->left(), "Should have been copied");
if (retTL->left() != NULL) {
retTL->left()->set_parent(retTL);
}
retTL->link_head(nextTC);
assert(nextTC->is_free(), "Should be a free chunk");
}
} else {
if (nextTC == NULL) {
// Removing chunk at tail of list
this->link_tail(prevFC);
}
// Chunk is interior to the list
prevFC->link_after(nextTC);
}
// Below this point the embedded TreeList<Chunk_t, FreeList_t> being used for the
// tree node may have changed. Don't use "this"
// TreeList<Chunk_t, FreeList_t>*.
// chunk should still be a free chunk (bit set in _prev)
assert(!retTL->head() || retTL->size() == retTL->head()->size(),
"Wrong sized chunk in list");
debug_only(
tc->link_prev(NULL);
tc->link_next(NULL);
tc->set_list(NULL);
bool prev_found = false;
bool next_found = false;
for (Chunk_t* curFC = retTL->head();
curFC != NULL; curFC = curFC->next()) {
assert(curFC != tc, "Chunk is still in list");
if (curFC == prevFC) {
prev_found = true;
}
if (curFC == nextTC) {
next_found = true;
}
}
assert(prevFC == NULL || prev_found, "Chunk was lost from list");
assert(nextTC == NULL || next_found, "Chunk was lost from list");
assert(retTL->parent() == NULL ||
retTL == retTL->parent()->left() ||
retTL == retTL->parent()->right(),
"list is inconsistent");
)
retTL->decrement_count();
assert(tc->is_free(), "Should still be a free chunk");
assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
"list invariant");
assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
"list invariant");
return retTL;
}
template <class Chunk_t, template <class> class FreeList_t>
void TreeList<Chunk_t, FreeList_t>::return_chunk_at_tail(TreeChunk<Chunk_t, FreeList_t>* chunk) {
assert(chunk != NULL, "returning NULL chunk");
assert(chunk->list() == this, "list should be set for chunk");
assert(tail() != NULL, "The tree list is embedded in the first chunk");
// which means that the list can never be empty.
assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
assert(head() == NULL || head()->prev() == NULL, "list invariant");
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
Chunk_t* fc = tail();
fc->link_after(chunk);
this->link_tail(chunk);
assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
FreeList_t<Chunk_t>::increment_count();
debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
assert(head() == NULL || head()->prev() == NULL, "list invariant");
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
}
// Add this chunk at the head of the list. "At the head of the list"
// is defined to be after the chunk pointer to by head(). This is
// because the TreeList<Chunk_t, FreeList_t> is embedded in the first TreeChunk<Chunk_t, FreeList_t> in the
// list. See the definition of TreeChunk<Chunk_t, FreeList_t>.
template <class Chunk_t, template <class> class FreeList_t>
void TreeList<Chunk_t, FreeList_t>::return_chunk_at_head(TreeChunk<Chunk_t, FreeList_t>* chunk) {
assert(chunk->list() == this, "list should be set for chunk");
assert(head() != NULL, "The tree list is embedded in the first chunk");
assert(chunk != NULL, "returning NULL chunk");
assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
assert(head() == NULL || head()->prev() == NULL, "list invariant");
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
Chunk_t* fc = head()->next();
if (fc != NULL) {
chunk->link_after(fc);
} else {
assert(tail() == NULL, "List is inconsistent");
this->link_tail(chunk);
}
head()->link_after(chunk);
assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
FreeList_t<Chunk_t>::increment_count();
debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
assert(head() == NULL || head()->prev() == NULL, "list invariant");
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
}
template <class Chunk_t, template <class> class FreeList_t>
void TreeChunk<Chunk_t, FreeList_t>::assert_is_mangled() const {
assert((ZapUnusedHeapArea &&
SpaceMangler::is_mangled((HeapWord*) Chunk_t::size_addr()) &&
SpaceMangler::is_mangled((HeapWord*) Chunk_t::prev_addr()) &&
SpaceMangler::is_mangled((HeapWord*) Chunk_t::next_addr())) ||
(size() == 0 && prev() == NULL && next() == NULL),
"Space should be clear or mangled");
}
template <class Chunk_t, template <class> class FreeList_t>
TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::head_as_TreeChunk() {
assert(head() == NULL || (TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head())->list() == this),
"Wrong type of chunk?");
return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head());
}
template <class Chunk_t, template <class> class FreeList_t>
TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::first_available() {
assert(head() != NULL, "The head of the list cannot be NULL");
Chunk_t* fc = head()->next();
TreeChunk<Chunk_t, FreeList_t>* retTC;
if (fc == NULL) {
retTC = head_as_TreeChunk();
} else {
retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
}
assert(retTC->list() == this, "Wrong type of chunk.");
return retTC;
}
// Returns the block with the largest heap address amongst
// those in the list for this size; potentially slow and expensive,
// use with caution!
template <class Chunk_t, template <class> class FreeList_t>
TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::largest_address() {
assert(head() != NULL, "The head of the list cannot be NULL");
Chunk_t* fc = head()->next();
TreeChunk<Chunk_t, FreeList_t>* retTC;
if (fc == NULL) {
retTC = head_as_TreeChunk();
} else {
// walk down the list and return the one with the highest
// heap address among chunks of this size.
Chunk_t* last = fc;
while (fc->next() != NULL) {
if ((HeapWord*)last < (HeapWord*)fc) {
last = fc;
}
fc = fc->next();
}
retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(last);
}
assert(retTC->list() == this, "Wrong type of chunk.");
return retTC;
}
template <class Chunk_t, template <class> class FreeList_t>
BinaryTreeDictionary<Chunk_t, FreeList_t>::BinaryTreeDictionary(MemRegion mr) {
assert((mr.byte_size() > min_size()), "minimum chunk size");
reset(mr);
assert(root()->left() == NULL, "reset check failed");
assert(root()->right() == NULL, "reset check failed");
assert(root()->head()->next() == NULL, "reset check failed");
assert(root()->head()->prev() == NULL, "reset check failed");
assert(total_size() == root()->size(), "reset check failed");
assert(total_free_blocks() == 1, "reset check failed");
}
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::inc_total_size(size_t inc) {
_total_size = _total_size + inc;
}
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::dec_total_size(size_t dec) {
_total_size = _total_size - dec;
}
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(MemRegion mr) {
assert((mr.byte_size() > min_size()), "minimum chunk size");
set_root(TreeList<Chunk_t, FreeList_t>::as_TreeList(mr.start(), mr.word_size()));
set_total_size(mr.word_size());
set_total_free_blocks(1);
}
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(HeapWord* addr, size_t byte_size) {
MemRegion mr(addr, heap_word_size(byte_size));
reset(mr);
}
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset() {
set_root(NULL);
set_total_size(0);
set_total_free_blocks(0);
}
// Get a free block of size at least size from tree, or NULL.
template <class Chunk_t, template <class> class FreeList_t>
TreeChunk<Chunk_t, FreeList_t>*
BinaryTreeDictionary<Chunk_t, FreeList_t>::get_chunk_from_tree(
size_t size,
enum FreeBlockDictionary<Chunk_t>::Dither dither)
{
TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
TreeChunk<Chunk_t, FreeList_t>* retTC = NULL;
assert((size >= min_size()), "minimum chunk size");
if (FLSVerifyDictionary) {
verify_tree();
}
// starting at the root, work downwards trying to find match.
// Remember the last node of size too great or too small.
for (prevTL = curTL = root(); curTL != NULL;) {
if (curTL->size() == size) { // exact match
break;
}
prevTL = curTL;
if (curTL->size() < size) { // proceed to right sub-tree
curTL = curTL->right();
} else { // proceed to left sub-tree
assert(curTL->size() > size, "size inconsistency");
curTL = curTL->left();
}
}
if (curTL == NULL) { // couldn't find exact match
if (dither == FreeBlockDictionary<Chunk_t>::exactly) return NULL;
// try and find the next larger size by walking back up the search path
for (curTL = prevTL; curTL != NULL;) {
if (curTL->size() >= size) break;
else curTL = curTL->parent();
}
assert(curTL == NULL || curTL->count() > 0,
"An empty list should not be in the tree");
}
if (curTL != NULL) {
assert(curTL->size() >= size, "size inconsistency");
curTL = curTL->get_better_list(this);
retTC = curTL->first_available();
assert((retTC != NULL) && (curTL->count() > 0),
"A list in the binary tree should not be NULL");
assert(retTC->size() >= size,
"A chunk of the wrong size was found");
remove_chunk_from_tree(retTC);
assert(retTC->is_free(), "Header is not marked correctly");
}
if (FLSVerifyDictionary) {
verify();
}
return retTC;
}
template <class Chunk_t, template <class> class FreeList_t>
TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_list(size_t size) const {
TreeList<Chunk_t, FreeList_t>* curTL;
for (curTL = root(); curTL != NULL;) {
if (curTL->size() == size) { // exact match
break;
}
if (curTL->size() < size) { // proceed to right sub-tree
curTL = curTL->right();
} else { // proceed to left sub-tree
assert(curTL->size() > size, "size inconsistency");
curTL = curTL->left();
}
}
return curTL;
}
template <class Chunk_t, template <class> class FreeList_t>
bool BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_chunk_in_free_list(Chunk_t* tc) const {
size_t size = tc->size();
TreeList<Chunk_t, FreeList_t>* tl = find_list(size);
if (tl == NULL) {
return false;
} else {
return tl->verify_chunk_in_free_list(tc);
}
}
template <class Chunk_t, template <class> class FreeList_t>
Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_largest_dict() const {
TreeList<Chunk_t, FreeList_t> *curTL = root();
if (curTL != NULL) {
while(curTL->right() != NULL) curTL = curTL->right();
return curTL->largest_address();
} else {
return NULL;
}
}
// Remove the current chunk from the tree. If it is not the last
// chunk in a list on a tree node, just unlink it.
// If it is the last chunk in the list (the next link is NULL),
// remove the node and repair the tree.
template <class Chunk_t, template <class> class FreeList_t>
TreeChunk<Chunk_t, FreeList_t>*
BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_chunk_from_tree(TreeChunk<Chunk_t, FreeList_t>* tc) {
assert(tc != NULL, "Should not call with a NULL chunk");
assert(tc->is_free(), "Header is not marked correctly");
TreeList<Chunk_t, FreeList_t> *newTL, *parentTL;
TreeChunk<Chunk_t, FreeList_t>* retTC;
TreeList<Chunk_t, FreeList_t>* tl = tc->list();
debug_only(
bool removing_only_chunk = false;
if (tl == _root) {
if ((_root->left() == NULL) && (_root->right() == NULL)) {
if (_root->count() == 1) {
assert(_root->head() == tc, "Should only be this one chunk");
removing_only_chunk = true;
}
}
}
)
assert(tl != NULL, "List should be set");
assert(tl->parent() == NULL || tl == tl->parent()->left() ||
tl == tl->parent()->right(), "list is inconsistent");
bool complicated_splice = false;
retTC = tc;
// Removing this chunk can have the side effect of changing the node
// (TreeList<Chunk_t, FreeList_t>*) in the tree. If the node is the root, update it.
TreeList<Chunk_t, FreeList_t>* replacementTL = tl->remove_chunk_replace_if_needed(tc);
assert(tc->is_free(), "Chunk should still be free");
assert(replacementTL->parent() == NULL ||
replacementTL == replacementTL->parent()->left() ||
replacementTL == replacementTL->parent()->right(),
"list is inconsistent");
if (tl == root()) {
assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
set_root(replacementTL);
}
#ifdef ASSERT
if (tl != replacementTL) {
assert(replacementTL->head() != NULL,
"If the tree list was replaced, it should not be a NULL list");
TreeList<Chunk_t, FreeList_t>* rhl = replacementTL->head_as_TreeChunk()->list();
TreeList<Chunk_t, FreeList_t>* rtl =
TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(replacementTL->tail())->list();
assert(rhl == replacementTL, "Broken head");
assert(rtl == replacementTL, "Broken tail");
assert(replacementTL->size() == tc->size(), "Broken size");
}
#endif
// Does the tree need to be repaired?
if (replacementTL->count() == 0) {
assert(replacementTL->head() == NULL &&
replacementTL->tail() == NULL, "list count is incorrect");
// Find the replacement node for the (soon to be empty) node being removed.
// if we have a single (or no) child, splice child in our stead
if (replacementTL->left() == NULL) {
// left is NULL so pick right. right may also be NULL.
newTL = replacementTL->right();
debug_only(replacementTL->clear_right();)
} else if (replacementTL->right() == NULL) {
// right is NULL
newTL = replacementTL->left();
debug_only(replacementTL->clear_left();)
} else { // we have both children, so, by patriarchal convention,
// my replacement is least node in right sub-tree
complicated_splice = true;
newTL = remove_tree_minimum(replacementTL->right());
assert(newTL != NULL && newTL->left() == NULL &&
newTL->right() == NULL, "sub-tree minimum exists");
}
// newTL is the replacement for the (soon to be empty) node.
// newTL may be NULL.
// should verify; we just cleanly excised our replacement
if (FLSVerifyDictionary) {
verify_tree();
}
// first make newTL my parent's child
if ((parentTL = replacementTL->parent()) == NULL) {
// newTL should be root
assert(tl == root(), "Incorrectly replacing root");
set_root(newTL);
if (newTL != NULL) {
newTL->clear_parent();
}
} else if (parentTL->right() == replacementTL) {
// replacementTL is a right child
parentTL->set_right(newTL);
} else { // replacementTL is a left child
assert(parentTL->left() == replacementTL, "should be left child");
parentTL->set_left(newTL);
}
debug_only(replacementTL->clear_parent();)
if (complicated_splice) { // we need newTL to get replacementTL's
// two children
assert(newTL != NULL &&
newTL->left() == NULL && newTL->right() == NULL,
"newTL should not have encumbrances from the past");
// we'd like to assert as below:
// assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
// "else !complicated_splice");
// ... however, the above assertion is too strong because we aren't
// guaranteed that replacementTL->right() is still NULL.
// Recall that we removed
// the right sub-tree minimum from replacementTL.
// That may well have been its right
// child! So we'll just assert half of the above:
assert(replacementTL->left() != NULL, "else !complicated_splice");
newTL->set_left(replacementTL->left());
newTL->set_right(replacementTL->right());
debug_only(
replacementTL->clear_right();
replacementTL->clear_left();
)
}
assert(replacementTL->right() == NULL &&
replacementTL->left() == NULL &&
replacementTL->parent() == NULL,
"delete without encumbrances");
}
assert(total_size() >= retTC->size(), "Incorrect total size");
dec_total_size(retTC->size()); // size book-keeping
assert(total_free_blocks() > 0, "Incorrect total count");
set_total_free_blocks(total_free_blocks() - 1);
assert(retTC != NULL, "null chunk?");
assert(retTC->prev() == NULL && retTC->next() == NULL,
"should return without encumbrances");
if (FLSVerifyDictionary) {
verify_tree();
}
assert(!removing_only_chunk || _root == NULL, "root should be NULL");
return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(retTC);
}
// Remove the leftmost node (lm) in the tree and return it.
// If lm has a right child, link it to the left node of
// the parent of lm.
template <class Chunk_t, template <class> class FreeList_t>
TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_tree_minimum(TreeList<Chunk_t, FreeList_t>* tl) {
assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
// locate the subtree minimum by walking down left branches
TreeList<Chunk_t, FreeList_t>* curTL = tl;
for (; curTL->left() != NULL; curTL = curTL->left());
// obviously curTL now has at most one child, a right child
if (curTL != root()) { // Should this test just be removed?
TreeList<Chunk_t, FreeList_t>* parentTL = curTL->parent();
if (parentTL->left() == curTL) { // curTL is a left child
parentTL->set_left(curTL->right());
} else {
// If the list tl has no left child, then curTL may be
// the right child of parentTL.
assert(parentTL->right() == curTL, "should be a right child");
parentTL->set_right(curTL->right());
}
} else {
// The only use of this method would not pass the root of the
// tree (as indicated by the assertion above that the tree list
// has a parent) but the specification does not explicitly exclude the
// passing of the root so accommodate it.
set_root(NULL);
}
debug_only(
curTL->clear_parent(); // Test if this needs to be cleared
curTL->clear_right(); // recall, above, left child is already null
)
// we just excised a (non-root) node, we should still verify all tree invariants
if (FLSVerifyDictionary) {
verify_tree();
}
return curTL;
}
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::insert_chunk_in_tree(Chunk_t* fc) {
TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
size_t size = fc->size();
assert((size >= min_size()),
err_msg(SIZE_FORMAT " is too small to be a TreeChunk<Chunk_t, FreeList_t> " SIZE_FORMAT,
size, min_size()));
if (FLSVerifyDictionary) {
verify_tree();
}
fc->clear_next();
fc->link_prev(NULL);
// work down from the _root, looking for insertion point
for (prevTL = curTL = root(); curTL != NULL;) {
if (curTL->size() == size) // exact match
break;
prevTL = curTL;
if (curTL->size() > size) { // follow left branch
curTL = curTL->left();
} else { // follow right branch
assert(curTL->size() < size, "size inconsistency");
curTL = curTL->right();
}
}
TreeChunk<Chunk_t, FreeList_t>* tc = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
// This chunk is being returned to the binary tree. Its embedded
// TreeList<Chunk_t, FreeList_t> should be unused at this point.
tc->initialize();
if (curTL != NULL) { // exact match
tc->set_list(curTL);
curTL->return_chunk_at_tail(tc);
} else { // need a new node in tree
tc->clear_next();
tc->link_prev(NULL);
TreeList<Chunk_t, FreeList_t>* newTL = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
assert(((TreeChunk<Chunk_t, FreeList_t>*)tc)->list() == newTL,
"List was not initialized correctly");
if (prevTL == NULL) { // we are the only tree node
assert(root() == NULL, "control point invariant");
set_root(newTL);
} else { // insert under prevTL ...
if (prevTL->size() < size) { // am right child
assert(prevTL->right() == NULL, "control point invariant");
prevTL->set_right(newTL);
} else { // am left child
assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
prevTL->set_left(newTL);
}
}
}
assert(tc->list() != NULL, "Tree list should be set");
inc_total_size(size);
// Method 'total_size_in_tree' walks through the every block in the
// tree, so it can cause significant performance loss if there are
// many blocks in the tree
assert(!FLSVerifyDictionary || total_size_in_tree(root()) == total_size(), "_total_size inconsistency");
set_total_free_blocks(total_free_blocks() + 1);
if (FLSVerifyDictionary) {
verify_tree();
}
}
template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::max_chunk_size() const {
FreeBlockDictionary<Chunk_t>::verify_par_locked();
TreeList<Chunk_t, FreeList_t>* tc = root();
if (tc == NULL) return 0;
for (; tc->right() != NULL; tc = tc->right());
return tc->size();
}
template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_list_length(TreeList<Chunk_t, FreeList_t>* tl) const {
size_t res;
res = tl->count();
#ifdef ASSERT
size_t cnt;
Chunk_t* tc = tl->head();
for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
assert(res == cnt, "The count is not being maintained correctly");
#endif
return res;
}
template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_size_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
if (tl == NULL)
return 0;
return (tl->size() * total_list_length(tl)) +
total_size_in_tree(tl->left()) +
total_size_in_tree(tl->right());
}
template <class Chunk_t, template <class> class FreeList_t>
double BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_of_squared_block_sizes(TreeList<Chunk_t, FreeList_t>* const tl) const {
if (tl == NULL) {
return 0.0;
}
double size = (double)(tl->size());
double curr = size * size * total_list_length(tl);
curr += sum_of_squared_block_sizes(tl->left());
curr += sum_of_squared_block_sizes(tl->right());
return curr;
}
template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_free_blocks_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
if (tl == NULL)
return 0;
return total_list_length(tl) +
total_free_blocks_in_tree(tl->left()) +
total_free_blocks_in_tree(tl->right());
}
template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::num_free_blocks() const {
assert(total_free_blocks_in_tree(root()) == total_free_blocks(),
"_total_free_blocks inconsistency");
return total_free_blocks();
}
template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
if (tl == NULL)
return 0;
return 1 + MAX2(tree_height_helper(tl->left()),
tree_height_helper(tl->right()));
}
template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height() const {
return tree_height_helper(root());
}
template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
if (tl == NULL) {
return 0;
}
return 1 + total_nodes_helper(tl->left()) +
total_nodes_helper(tl->right());
}
template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
return total_nodes_helper(root());
}
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::dict_census_update(size_t size, bool split, bool birth){}
#if INCLUDE_ALL_GCS
template <>
void AFLBinaryTreeDictionary::dict_census_update(size_t size, bool split, bool birth){
TreeList<FreeChunk, AdaptiveFreeList>* nd = find_list(size);
if (nd) {
if (split) {
if (birth) {
nd->increment_split_births();
nd->increment_surplus();
} else {
nd->increment_split_deaths();
nd->decrement_surplus();
}
} else {
if (birth) {
nd->increment_coal_births();
nd->increment_surplus();
} else {
nd->increment_coal_deaths();
nd->decrement_surplus();
}
}
}
// A list for this size may not be found (nd == 0) if
// This is a death where the appropriate list is now
// empty and has been removed from the list.
// This is a birth associated with a LinAB. The chunk
// for the LinAB is not in the dictionary.
}
#endif // INCLUDE_ALL_GCS
template <class Chunk_t, template <class> class FreeList_t>
bool BinaryTreeDictionary<Chunk_t, FreeList_t>::coal_dict_over_populated(size_t size) {
// For the general type of freelists, encourage coalescing by
// returning true.
return true;
}
#if INCLUDE_ALL_GCS
template <>
bool AFLBinaryTreeDictionary::coal_dict_over_populated(size_t size) {
if (FLSAlwaysCoalesceLarge) return true;
TreeList<FreeChunk, AdaptiveFreeList>* list_of_size = find_list(size);
// None of requested size implies overpopulated.
return list_of_size == NULL || list_of_size->coal_desired() <= 0 ||
list_of_size->count() > list_of_size->coal_desired();
}
#endif // INCLUDE_ALL_GCS
// Closures for walking the binary tree.
// do_list() walks the free list in a node applying the closure
// to each free chunk in the list
// do_tree() walks the nodes in the binary tree applying do_list()
// to each list at each node.
template <class Chunk_t, template <class> class FreeList_t>
class TreeCensusClosure : public StackObj {
protected:
virtual void do_list(FreeList_t<Chunk_t>* fl) = 0;
public:
virtual void do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
};
template <class Chunk_t, template <class> class FreeList_t>
class AscendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
public:
void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
if (tl != NULL) {
do_tree(tl->left());
this->do_list(tl);
do_tree(tl->right());
}
}
};
template <class Chunk_t, template <class> class FreeList_t>
class DescendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
public:
void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
if (tl != NULL) {
do_tree(tl->right());
this->do_list(tl);
do_tree(tl->left());
}
}
};
// For each list in the tree, calculate the desired, desired
// coalesce, count before sweep, and surplus before sweep.
template <class Chunk_t, template <class> class FreeList_t>
class BeginSweepClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
double _percentage;
float _inter_sweep_current;
float _inter_sweep_estimate;
float _intra_sweep_estimate;
public:
BeginSweepClosure(double p, float inter_sweep_current,
float inter_sweep_estimate,
float intra_sweep_estimate) :
_percentage(p),
_inter_sweep_current(inter_sweep_current),
_inter_sweep_estimate(inter_sweep_estimate),
_intra_sweep_estimate(intra_sweep_estimate) { }
void do_list(FreeList<Chunk_t>* fl) {}
#if INCLUDE_ALL_GCS
void do_list(AdaptiveFreeList<Chunk_t>* fl) {
double coalSurplusPercent = _percentage;
fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
fl->set_coal_desired((ssize_t)((double)fl->desired() * coalSurplusPercent));
fl->set_before_sweep(fl->count());
fl->set_bfr_surp(fl->surplus());
}
#endif // INCLUDE_ALL_GCS
};
// Used to search the tree until a condition is met.
// Similar to TreeCensusClosure but searches the
// tree and returns promptly when found.
template <class Chunk_t, template <class> class FreeList_t>
class TreeSearchClosure : public StackObj {
protected:
virtual bool do_list(FreeList_t<Chunk_t>* fl) = 0;
public:
virtual bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
};
#if 0 // Don't need this yet but here for symmetry.
template <class Chunk_t, template <class> class FreeList_t>
class AscendTreeSearchClosure : public TreeSearchClosure<Chunk_t> {
public:
bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
if (tl != NULL) {
if (do_tree(tl->left())) return true;
if (do_list(tl)) return true;
if (do_tree(tl->right())) return true;
}
return false;
}
};
#endif
template <class Chunk_t, template <class> class FreeList_t>
class DescendTreeSearchClosure : public TreeSearchClosure<Chunk_t, FreeList_t> {
public:
bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
if (tl != NULL) {
if (do_tree(tl->right())) return true;
if (this->do_list(tl)) return true;
if (do_tree(tl->left())) return true;
}
return false;
}
};
// Searches the tree for a chunk that ends at the
// specified address.
template <class Chunk_t, template <class> class FreeList_t>
class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk_t, FreeList_t> {
HeapWord* _target;
Chunk_t* _found;
public:
EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
bool do_list(FreeList_t<Chunk_t>* fl) {
Chunk_t* item = fl->head();
while (item != NULL) {
if (item->end() == (uintptr_t*) _target) {
_found = item;
return true;
}
item = item->next();
}
return false;
}
Chunk_t* found() { return _found; }
};
template <class Chunk_t, template <class> class FreeList_t>
Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_chunk_ends_at(HeapWord* target) const {
EndTreeSearchClosure<Chunk_t, FreeList_t> etsc(target);
bool found_target = etsc.do_tree(root());
assert(found_target || etsc.found() == NULL, "Consistency check");
assert(!found_target || etsc.found() != NULL, "Consistency check");
return etsc.found();
}
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::begin_sweep_dict_census(double coalSurplusPercent,
float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
BeginSweepClosure<Chunk_t, FreeList_t> bsc(coalSurplusPercent, inter_sweep_current,
inter_sweep_estimate,
intra_sweep_estimate);
bsc.do_tree(root());
}
// Closures and methods for calculating total bytes returned to the
// free lists in the tree.
#ifndef PRODUCT
template <class Chunk_t, template <class> class FreeList_t>
class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
public:
void do_list(FreeList_t<Chunk_t>* fl) {
fl->set_returned_bytes(0);
}
};
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::initialize_dict_returned_bytes() {
InitializeDictReturnedBytesClosure<Chunk_t, FreeList_t> idrb;
idrb.do_tree(root());
}
template <class Chunk_t, template <class> class FreeList_t>
class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
size_t _dict_returned_bytes;
public:
ReturnedBytesClosure() { _dict_returned_bytes = 0; }
void do_list(FreeList_t<Chunk_t>* fl) {
_dict_returned_bytes += fl->returned_bytes();
}
size_t dict_returned_bytes() { return _dict_returned_bytes; }
};
template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_dict_returned_bytes() {
ReturnedBytesClosure<Chunk_t, FreeList_t> rbc;
rbc.do_tree(root());
return rbc.dict_returned_bytes();
}
// Count the number of entries in the tree.
template <class Chunk_t, template <class> class FreeList_t>
class treeCountClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
public:
uint count;
treeCountClosure(uint c) { count = c; }
void do_list(FreeList_t<Chunk_t>* fl) {
count++;
}
};
template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_count() {
treeCountClosure<Chunk_t, FreeList_t> ctc(0);
ctc.do_tree(root());
return ctc.count;
}
#endif // PRODUCT
// Calculate surpluses for the lists in the tree.
template <class Chunk_t, template <class> class FreeList_t>
class setTreeSurplusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
double percentage;
public:
setTreeSurplusClosure(double v) { percentage = v; }
void do_list(FreeList<Chunk_t>* fl) {}
#if INCLUDE_ALL_GCS
void do_list(AdaptiveFreeList<Chunk_t>* fl) {
double splitSurplusPercent = percentage;
fl->set_surplus(fl->count() -
(ssize_t)((double)fl->desired() * splitSurplusPercent));
}
#endif // INCLUDE_ALL_GCS
};
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_surplus(double splitSurplusPercent) {
setTreeSurplusClosure<Chunk_t, FreeList_t> sts(splitSurplusPercent);
sts.do_tree(root());
}
// Set hints for the lists in the tree.
template <class Chunk_t, template <class> class FreeList_t>
class setTreeHintsClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
size_t hint;
public:
setTreeHintsClosure(size_t v) { hint = v; }
void do_list(FreeList<Chunk_t>* fl) {}
#if INCLUDE_ALL_GCS
void do_list(AdaptiveFreeList<Chunk_t>* fl) {
fl->set_hint(hint);
assert(fl->hint() == 0 || fl->hint() > fl->size(),
"Current hint is inconsistent");
if (fl->surplus() > 0) {
hint = fl->size();
}
}
#endif // INCLUDE_ALL_GCS
};
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_hints(void) {
setTreeHintsClosure<Chunk_t, FreeList_t> sth(0);
sth.do_tree(root());
}
// Save count before previous sweep and splits and coalesces.
template <class Chunk_t, template <class> class FreeList_t>
class clearTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
void do_list(FreeList<Chunk_t>* fl) {}
#if INCLUDE_ALL_GCS
void do_list(AdaptiveFreeList<Chunk_t>* fl) {
fl->set_prev_sweep(fl->count());
fl->set_coal_births(0);
fl->set_coal_deaths(0);
fl->set_split_births(0);
fl->set_split_deaths(0);
}
#endif // INCLUDE_ALL_GCS
};
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::clear_tree_census(void) {
clearTreeCensusClosure<Chunk_t, FreeList_t> ctc;
ctc.do_tree(root());
}
// Do reporting and post sweep clean up.
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::end_sweep_dict_census(double splitSurplusPercent) {
// Does walking the tree 3 times hurt?
set_tree_surplus(splitSurplusPercent);
set_tree_hints();
if (PrintGC && Verbose) {
report_statistics();
}
clear_tree_census();
}
// Print summary statistics
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::report_statistics() const {
FreeBlockDictionary<Chunk_t>::verify_par_locked();
gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
"------------------------------------\n");
size_t total_size = total_chunk_size(debug_only(NULL));
size_t free_blocks = num_free_blocks();
gclog_or_tty->print("Total Free Space: %d\n", total_size);
gclog_or_tty->print("Max Chunk Size: %d\n", max_chunk_size());
gclog_or_tty->print("Number of Blocks: %d\n", free_blocks);
if (free_blocks > 0) {
gclog_or_tty->print("Av. Block Size: %d\n", total_size/free_blocks);
}
gclog_or_tty->print("Tree Height: %d\n", tree_height());
}
// Print census information - counts, births, deaths, etc.
// for each list in the tree. Also print some summary
// information.
template <class Chunk_t, template <class> class FreeList_t>
class PrintTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
int _print_line;
size_t _total_free;
FreeList_t<Chunk_t> _total;
public:
PrintTreeCensusClosure() {
_print_line = 0;
_total_free = 0;
}
FreeList_t<Chunk_t>* total() { return &_total; }
size_t total_free() { return _total_free; }
void do_list(FreeList<Chunk_t>* fl) {
if (++_print_line >= 40) {
FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
_print_line = 0;
}
fl->print_on(gclog_or_tty);
_total_free += fl->count() * fl->size() ;
total()->set_count( total()->count() + fl->count() );
}
#if INCLUDE_ALL_GCS
void do_list(AdaptiveFreeList<Chunk_t>* fl) {
if (++_print_line >= 40) {
FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
_print_line = 0;
}
fl->print_on(gclog_or_tty);
_total_free += fl->count() * fl->size() ;
total()->set_count( total()->count() + fl->count() );
total()->set_bfr_surp( total()->bfr_surp() + fl->bfr_surp() );
total()->set_surplus( total()->split_deaths() + fl->surplus() );
total()->set_desired( total()->desired() + fl->desired() );
total()->set_prev_sweep( total()->prev_sweep() + fl->prev_sweep() );
total()->set_before_sweep(total()->before_sweep() + fl->before_sweep());
total()->set_coal_births( total()->coal_births() + fl->coal_births() );
total()->set_coal_deaths( total()->coal_deaths() + fl->coal_deaths() );
total()->set_split_births(total()->split_births() + fl->split_births());
total()->set_split_deaths(total()->split_deaths() + fl->split_deaths());
}
#endif // INCLUDE_ALL_GCS
};
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_dict_census(void) const {
gclog_or_tty->print("\nBinaryTree\n");
FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
PrintTreeCensusClosure<Chunk_t, FreeList_t> ptc;
ptc.do_tree(root());
FreeList_t<Chunk_t>* total = ptc.total();
FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, " ");
}
#if INCLUDE_ALL_GCS
template <>
void AFLBinaryTreeDictionary::print_dict_census(void) const {
gclog_or_tty->print("\nBinaryTree\n");
AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
PrintTreeCensusClosure<FreeChunk, AdaptiveFreeList> ptc;
ptc.do_tree(root());
AdaptiveFreeList<FreeChunk>* total = ptc.total();
AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, " ");
total->print_on(gclog_or_tty, "TOTAL\t");
gclog_or_tty->print(
"total_free(words): " SIZE_FORMAT_W(16)
" growth: %8.5f deficit: %8.5f\n",
ptc.total_free(),
(double)(total->split_births() + total->coal_births()
- total->split_deaths() - total->coal_deaths())
/(total->prev_sweep() != 0 ? (double)total->prev_sweep() : 1.0),
(double)(total->desired() - total->count())
/(total->desired() != 0 ? (double)total->desired() : 1.0));
}
#endif // INCLUDE_ALL_GCS
template <class Chunk_t, template <class> class FreeList_t>
class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
outputStream* _st;
int _print_line;
public:
PrintFreeListsClosure(outputStream* st) {
_st = st;
_print_line = 0;
}
void do_list(FreeList_t<Chunk_t>* fl) {
if (++_print_line >= 40) {
FreeList_t<Chunk_t>::print_labels_on(_st, "size");
_print_line = 0;
}
fl->print_on(gclog_or_tty);
size_t sz = fl->size();
for (Chunk_t* fc = fl->head(); fc != NULL;
fc = fc->next()) {
_st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ") %s",
fc, (HeapWord*)fc + sz,
fc->cantCoalesce() ? "\t CC" : "");
}
}
};
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_free_lists(outputStream* st) const {
FreeList_t<Chunk_t>::print_labels_on(st, "size");
PrintFreeListsClosure<Chunk_t, FreeList_t> pflc(st);
pflc.do_tree(root());
}
// Verify the following tree invariants:
// . _root has no parent
// . parent and child point to each other
// . each node's key correctly related to that of its child(ren)
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree() const {
guarantee(root() == NULL || total_free_blocks() == 0 ||
total_size() != 0, "_total_size shouldn't be 0?");
guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
verify_tree_helper(root());
}
template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_prev_free_ptrs(TreeList<Chunk_t, FreeList_t>* tl) {
size_t ct = 0;
for (Chunk_t* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
ct++;
assert(curFC->prev() == NULL || curFC->prev()->is_free(),
"Chunk should be free");
}
return ct;
}
// Note: this helper is recursive rather than iterative, so use with
// caution on very deep trees; and watch out for stack overflow errors;
// In general, to be used only for debugging.
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
if (tl == NULL)
return;
guarantee(tl->size() != 0, "A list must has a size");
guarantee(tl->left() == NULL || tl->left()->parent() == tl,
"parent<-/->left");
guarantee(tl->right() == NULL || tl->right()->parent() == tl,
"parent<-/->right");;
guarantee(tl->left() == NULL || tl->left()->size() < tl->size(),
"parent !> left");
guarantee(tl->right() == NULL || tl->right()->size() > tl->size(),
"parent !< left");
guarantee(tl->head() == NULL || tl->head()->is_free(), "!Free");
guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
"list inconsistency");
guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
"list count is inconsistent");
guarantee(tl->count() > 1 || tl->head() == tl->tail(),
"list is incorrectly constructed");
size_t count = verify_prev_free_ptrs(tl);
guarantee(count == (size_t)tl->count(), "Node count is incorrect");
if (tl->head() != NULL) {
tl->head_as_TreeChunk()->verify_tree_chunk_list();
}
verify_tree_helper(tl->left());
verify_tree_helper(tl->right());
}
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify() const {
verify_tree();
guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency");
}
template class TreeList<Metablock, FreeList>;
template class BinaryTreeDictionary<Metablock, FreeList>;
template class TreeChunk<Metablock, FreeList>;
template class TreeList<Metachunk, FreeList>;
template class BinaryTreeDictionary<Metachunk, FreeList>;
template class TreeChunk<Metachunk, FreeList>;
#if INCLUDE_ALL_GCS
// Explicitly instantiate these types for FreeChunk.
template class TreeList<FreeChunk, AdaptiveFreeList>;
template class BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>;
template class TreeChunk<FreeChunk, AdaptiveFreeList>;
#endif // INCLUDE_ALL_GCS