/*
* Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_DIRTYCARDQUEUE_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_DIRTYCARDQUEUE_HPP
#include "gc_implementation/g1/ptrQueue.hpp"
#include "memory/allocation.hpp"
class FreeIdSet;
// A closure class for processing card table entries. Note that we don't
// require these closure objects to be stack-allocated.
class CardTableEntryClosure: public CHeapObj<mtGC> {
public:
// Process the card whose card table entry is "card_ptr". If returns
// "false", terminate the iteration early.
virtual bool do_card_ptr(jbyte* card_ptr, uint worker_i = 0) = 0;
};
// A ptrQueue whose elements are "oops", pointers to object heads.
class DirtyCardQueue: public PtrQueue {
public:
DirtyCardQueue(PtrQueueSet* qset_, bool perm = false) :
// Dirty card queues are always active, so we create them with their
// active field set to true.
PtrQueue(qset_, perm, true /* active */) { }
// Flush before destroying; queue may be used to capture pending work while
// doing something else, with auto-flush on completion.
~DirtyCardQueue() { if (!is_permanent()) flush(); }
// Process queue entries and release resources.
void flush() { flush_impl(); }
// Apply the closure to all elements, and reset the index to make the
// buffer empty. If a closure application returns "false", return
// "false" immediately, halting the iteration. If "consume" is true,
// deletes processed entries from logs.
bool apply_closure(CardTableEntryClosure* cl,
bool consume = true,
uint worker_i = 0);
// Apply the closure to all elements of "buf", down to "index"
// (inclusive.) If returns "false", then a closure application returned
// "false", and we return immediately. If "consume" is true, entries are
// set to NULL as they are processed, so they will not be processed again
// later.
static bool apply_closure_to_buffer(CardTableEntryClosure* cl,
void** buf, size_t index, size_t sz,
bool consume = true,
uint worker_i = 0);
void **get_buf() { return _buf;}
void set_buf(void **buf) {_buf = buf;}
size_t get_index() { return _index;}
void reinitialize() { _buf = 0; _sz = 0; _index = 0;}
};
class DirtyCardQueueSet: public PtrQueueSet {
// The closure used in mut_process_buffer().
CardTableEntryClosure* _mut_process_closure;
DirtyCardQueue _shared_dirty_card_queue;
// Override.
bool mut_process_buffer(void** buf);
// Protected by the _cbl_mon.
FreeIdSet* _free_ids;
// The number of completed buffers processed by mutator and rs thread,
// respectively.
jint _processed_buffers_mut;
jint _processed_buffers_rs_thread;
// Current buffer node used for parallel iteration.
BufferNode* volatile _cur_par_buffer_node;
public:
DirtyCardQueueSet(bool notify_when_complete = true);
void initialize(CardTableEntryClosure* cl, Monitor* cbl_mon, Mutex* fl_lock,
int process_completed_threshold,
int max_completed_queue,
Mutex* lock, PtrQueueSet* fl_owner = NULL);
// The number of parallel ids that can be claimed to allow collector or
// mutator threads to do card-processing work.
static uint num_par_ids();
static void handle_zero_index_for_thread(JavaThread* t);
// Apply the given closure to all entries in all currently-active buffers.
// This should only be applied at a safepoint. (Currently must not be called
// in parallel; this should change in the future.) If "consume" is true,
// processed entries are discarded.
void iterate_closure_all_threads(CardTableEntryClosure* cl,
bool consume = true,
uint worker_i = 0);
// If there exists some completed buffer, pop it, then apply the
// specified closure to all its elements, nulling out those elements
// processed. If all elements are processed, returns "true". If no
// completed buffers exist, returns false. If a completed buffer exists,
// but is only partially completed before a "yield" happens, the
// partially completed buffer (with its processed elements set to NULL)
// is returned to the completed buffer set, and this call returns false.
bool apply_closure_to_completed_buffer(CardTableEntryClosure* cl,
uint worker_i = 0,
int stop_at = 0,
bool during_pause = false);
// Helper routine for the above.
bool apply_closure_to_completed_buffer_helper(CardTableEntryClosure* cl,
uint worker_i,
BufferNode* nd);
BufferNode* get_completed_buffer(int stop_at);
// Applies the current closure to all completed buffers,
// non-consumptively.
void apply_closure_to_all_completed_buffers(CardTableEntryClosure* cl);
void reset_for_par_iteration() { _cur_par_buffer_node = _completed_buffers_head; }
// Applies the current closure to all completed buffers, non-consumptively.
// Parallel version.
void par_apply_closure_to_all_completed_buffers(CardTableEntryClosure* cl);
DirtyCardQueue* shared_dirty_card_queue() {
return &_shared_dirty_card_queue;
}
// Deallocate any completed log buffers
void clear();
// If a full collection is happening, reset partial logs, and ignore
// completed ones: the full collection will make them all irrelevant.
void abandon_logs();
// If any threads have partial logs, add them to the global list of logs.
void concatenate_logs();
void clear_n_completed_buffers() { _n_completed_buffers = 0;}
jint processed_buffers_mut() {
return _processed_buffers_mut;
}
jint processed_buffers_rs_thread() {
return _processed_buffers_rs_thread;
}
};
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_DIRTYCARDQUEUE_HPP