/*
* Copyright (c) 2001, 2008, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#ifdef WIN32_LEAN_AND_MEAN
typedef signed char byte ;
#endif
struct bytes {
byte* ptr;
size_t len;
byte* limit() { return ptr+len; }
void set(byte* ptr_, size_t len_) { ptr = ptr_; len = len_; }
void set(const char* str) { ptr = (byte*)str; len = strlen(str); }
bool inBounds(const void* p); // p in [ptr, limit)
void malloc(size_t len_);
void realloc(size_t len_);
void free();
void copyFrom(const void* ptr_, size_t len_, size_t offset = 0);
void saveFrom(const void* ptr_, size_t len_);
void saveFrom(const char* str) { saveFrom(str, strlen(str)); }
void copyFrom(bytes& other, size_t offset = 0) {
copyFrom(other.ptr, other.len, offset);
}
void saveFrom(bytes& other) {
saveFrom(other.ptr, other.len);
}
void clear(int fill_byte = 0) { memset(ptr, fill_byte, len); }
byte* writeTo(byte* bp);
bool equals(bytes& other) { return 0 == compareTo(other); }
int compareTo(bytes& other);
bool contains(byte c) { return indexOf(c) >= 0; }
int indexOf(byte c);
// substrings:
static bytes of(byte* ptr, size_t len) {
bytes res;
res.set(ptr, len);
return res;
}
bytes slice(size_t beg, size_t end) {
bytes res;
res.ptr = ptr + beg;
res.len = end - beg;
assert(res.len == 0 || (inBounds(res.ptr) && inBounds(res.limit()-1)));
return res;
}
// building C strings inside byte buffers:
bytes& strcat(const char* str) { ::strcat((char*)ptr, str); return *this; }
bytes& strcat(bytes& other) { ::strncat((char*)ptr, (char*)other.ptr, other.len); return *this; }
char* strval() { assert(strlen((char*)ptr) == len); return (char*) ptr; }
#ifdef PRODUCT
const char* string() { return 0; }
#else
const char* string();
#endif
};
#define BYTES_OF(var) (bytes::of((byte*)&(var), sizeof(var)))
struct fillbytes {
bytes b;
size_t allocated;
byte* base() { return b.ptr; }
size_t size() { return b.len; }
byte* limit() { return b.limit(); } // logical limit
void setLimit(byte* lp) { assert(isAllocated(lp)); b.len = lp - b.ptr; }
byte* end() { return b.ptr + allocated; } // physical limit
byte* loc(size_t o) { assert(o < b.len); return b.ptr + o; }
void init() { allocated = 0; b.set(null, 0); }
void init(size_t s) { init(); ensureSize(s); }
void free() { if (allocated != 0) b.free(); allocated = 0; }
void empty() { b.len = 0; }
byte* grow(size_t s); // grow so that limit() += s
int getByte(uint i) { return *loc(i) & 0xFF; }
void addByte(byte x) { *grow(1) = x; }
void ensureSize(size_t s); // make sure allocated >= s
void trimToSize() { if (allocated > size()) b.realloc(allocated = size()); }
bool canAppend(size_t s) { return allocated > b.len+s; }
bool isAllocated(byte* p) { return p >= base() && p <= end(); } //asserts
void set(bytes& src) { set(src.ptr, src.len); }
void set(byte* ptr, size_t len) {
b.set(ptr, len);
allocated = 0; // mark as not reallocatable
}
// block operations on resizing byte buffer:
fillbytes& append(const void* ptr_, size_t len_)
{ memcpy(grow(len_), ptr_, len_); return (*this); }
fillbytes& append(bytes& other)
{ return append(other.ptr, other.len); }
fillbytes& append(const char* str)
{ return append(str, strlen(str)); }
};
struct ptrlist : fillbytes {
typedef const void* cvptr;
int length() { return (int)(size() / sizeof(cvptr)); }
cvptr* base() { return (cvptr*) fillbytes::base(); }
cvptr& get(int i) { return *(cvptr*)loc(i * sizeof(cvptr)); }
cvptr* limit() { return (cvptr*) fillbytes::limit(); }
void add(cvptr x) { *(cvptr*)grow(sizeof(x)) = x; }
void popTo(int l) { assert(l <= length()); b.len = l * sizeof(cvptr); }
int indexOf(cvptr x);
bool contains(cvptr x) { return indexOf(x) >= 0; }
void freeAll(); // frees every ptr on the list, plus the list itself
};
// Use a macro rather than mess with subtle mismatches
// between member and non-member function pointers.
#define PTRLIST_QSORT(ptrls, fn) \
::qsort((ptrls).base(), (ptrls).length(), sizeof(void*), fn)
struct intlist : fillbytes {
int length() { return (int)(size() / sizeof(int)); }
int* base() { return (int*) fillbytes::base(); }
int& get(int i) { return *(int*)loc(i * sizeof(int)); }
int* limit() { return (int*) fillbytes::limit(); }
void add(int x) { *(int*)grow(sizeof(x)) = x; }
void popTo(int l) { assert(l <= length()); b.len = l * sizeof(int); }
int indexOf(int x);
bool contains(int x) { return indexOf(x) >= 0; }
};