/*
* Copyright (c) 2012, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/altHashing.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "oops/markOop.hpp"
#include "runtime/thread.hpp"
// Get the hash code of the classes mirror if it exists, otherwise just
// return a random number, which is one of the possible hash code used for
// objects. We don't want to call the synchronizer hash code to install
// this value because it may safepoint.
intptr_t object_hash(Klass* k) {
intptr_t hc = k->java_mirror()->mark()->hash();
return hc != markOopDesc::no_hash ? hc : os::random();
}
// Seed value used for each alternative hash calculated.
juint AltHashing::compute_seed() {
jlong nanos = os::javaTimeNanos();
jlong now = os::javaTimeMillis();
int SEED_MATERIAL[8] = {
(int) object_hash(SystemDictionary::String_klass()),
(int) object_hash(SystemDictionary::System_klass()),
(int) os::random(), // current thread isn't a java thread
(int) (((julong)nanos) >> 32),
(int) nanos,
(int) (((julong)now) >> 32),
(int) now,
(int) (os::javaTimeNanos() >> 2)
};
return murmur3_32(SEED_MATERIAL, 8);
}
// Murmur3 hashing for Symbol
juint AltHashing::murmur3_32(juint seed, const jbyte* data, int len) {
juint h1 = seed;
int count = len;
int offset = 0;
// body
while (count >= 4) {
juint k1 = (data[offset] & 0x0FF)
| (data[offset + 1] & 0x0FF) << 8
| (data[offset + 2] & 0x0FF) << 16
| data[offset + 3] << 24;
count -= 4;
offset += 4;
k1 *= 0xcc9e2d51;
k1 = Integer_rotateLeft(k1, 15);
k1 *= 0x1b873593;
h1 ^= k1;
h1 = Integer_rotateLeft(h1, 13);
h1 = h1 * 5 + 0xe6546b64;
}
// tail
if (count > 0) {
juint k1 = 0;
switch (count) {
case 3:
k1 ^= (data[offset + 2] & 0xff) << 16;
// fall through
case 2:
k1 ^= (data[offset + 1] & 0xff) << 8;
// fall through
case 1:
k1 ^= (data[offset] & 0xff);
// fall through
default:
k1 *= 0xcc9e2d51;
k1 = Integer_rotateLeft(k1, 15);
k1 *= 0x1b873593;
h1 ^= k1;
}
}
// finalization
h1 ^= len;
// finalization mix force all bits of a hash block to avalanche
h1 ^= h1 >> 16;
h1 *= 0x85ebca6b;
h1 ^= h1 >> 13;
h1 *= 0xc2b2ae35;
h1 ^= h1 >> 16;
return h1;
}
// Murmur3 hashing for Strings
juint AltHashing::murmur3_32(juint seed, const jchar* data, int len) {
juint h1 = seed;
int off = 0;
int count = len;
// body
while (count >= 2) {
jchar d1 = data[off++] & 0xFFFF;
jchar d2 = data[off++];
juint k1 = (d1 | d2 << 16);
count -= 2;
k1 *= 0xcc9e2d51;
k1 = Integer_rotateLeft(k1, 15);
k1 *= 0x1b873593;
h1 ^= k1;
h1 = Integer_rotateLeft(h1, 13);
h1 = h1 * 5 + 0xe6546b64;
}
// tail
if (count > 0) {
juint k1 = (juint)data[off];
k1 *= 0xcc9e2d51;
k1 = Integer_rotateLeft(k1, 15);
k1 *= 0x1b873593;
h1 ^= k1;
}
// finalization
h1 ^= len * 2; // (Character.SIZE / Byte.SIZE);
// finalization mix force all bits of a hash block to avalanche
h1 ^= h1 >> 16;
h1 *= 0x85ebca6b;
h1 ^= h1 >> 13;
h1 *= 0xc2b2ae35;
h1 ^= h1 >> 16;
return h1;
}
// Hash used for the seed.
juint AltHashing::murmur3_32(juint seed, const int* data, int len) {
juint h1 = seed;
int off = 0;
int end = len;
// body
while (off < end) {
juint k1 = (juint)data[off++];
k1 *= 0xcc9e2d51;
k1 = Integer_rotateLeft(k1, 15);
k1 *= 0x1b873593;
h1 ^= k1;
h1 = Integer_rotateLeft(h1, 13);
h1 = h1 * 5 + 0xe6546b64;
}
// tail (always empty, as body is always 32-bit chunks)
// finalization
h1 ^= len * 4; // (Integer.SIZE / Byte.SIZE);
// finalization mix force all bits of a hash block to avalanche
h1 ^= h1 >> 16;
h1 *= 0x85ebca6b;
h1 ^= h1 >> 13;
h1 *= 0xc2b2ae35;
h1 ^= h1 >> 16;
return h1;
}
juint AltHashing::murmur3_32(const int* data, int len) {
return murmur3_32(0, data, len);
}
#ifndef PRODUCT
// Overloaded versions for internal test.
juint AltHashing::murmur3_32(const jbyte* data, int len) {
return murmur3_32(0, data, len);
}
juint AltHashing::murmur3_32(const jchar* data, int len) {
return murmur3_32(0, data, len);
}
// Internal test for alternate hashing. Translated from JDK version
// test/sun/misc/Hashing.java
static const jbyte ONE_BYTE[] = { (jbyte) 0x80};
static const jbyte TWO_BYTE[] = { (jbyte) 0x80, (jbyte) 0x81};
static const jchar ONE_CHAR[] = { (jchar) 0x8180};
static const jbyte THREE_BYTE[] = { (jbyte) 0x80, (jbyte) 0x81, (jbyte) 0x82};
static const jbyte FOUR_BYTE[] = { (jbyte) 0x80, (jbyte) 0x81, (jbyte) 0x82, (jbyte) 0x83};
static const jchar TWO_CHAR[] = { (jchar) 0x8180, (jchar) 0x8382};
static const jint ONE_INT[] = { 0x83828180};
static const jbyte SIX_BYTE[] = { (jbyte) 0x80, (jbyte) 0x81, (jbyte) 0x82, (jbyte) 0x83, (jbyte) 0x84, (jbyte) 0x85};
static const jchar THREE_CHAR[] = { (jchar) 0x8180, (jchar) 0x8382, (jchar) 0x8584};
static const jbyte EIGHT_BYTE[] = {
(jbyte) 0x80, (jbyte) 0x81, (jbyte) 0x82,
(jbyte) 0x83, (jbyte) 0x84, (jbyte) 0x85,
(jbyte) 0x86, (jbyte) 0x87};
static const jchar FOUR_CHAR[] = {
(jchar) 0x8180, (jchar) 0x8382,
(jchar) 0x8584, (jchar) 0x8786};
static const jint TWO_INT[] = { 0x83828180, 0x87868584};
static const juint MURMUR3_32_X86_CHECK_VALUE = 0xB0F57EE3;
void AltHashing::testMurmur3_32_ByteArray() {
// printf("testMurmur3_32_ByteArray\n");
jbyte vector[256];
jbyte hashes[4 * 256];
for (int i = 0; i < 256; i++) {
vector[i] = (jbyte) i;
}
// Hash subranges {}, {0}, {0,1}, {0,1,2}, ..., {0,...,255}
for (int i = 0; i < 256; i++) {
juint hash = murmur3_32(256 - i, vector, i);
hashes[i * 4] = (jbyte) hash;
hashes[i * 4 + 1] = (jbyte)(hash >> 8);
hashes[i * 4 + 2] = (jbyte)(hash >> 16);
hashes[i * 4 + 3] = (jbyte)(hash >> 24);
}
// hash to get const result.
juint final_hash = murmur3_32(hashes, 4*256);
assert (MURMUR3_32_X86_CHECK_VALUE == final_hash,
err_msg(
"Calculated hash result not as expected. Expected %08X got %08X\n",
MURMUR3_32_X86_CHECK_VALUE,
final_hash));
}
void AltHashing::testEquivalentHashes() {
juint jbytes, jchars, ints;
// printf("testEquivalentHashes\n");
jbytes = murmur3_32(TWO_BYTE, 2);
jchars = murmur3_32(ONE_CHAR, 1);
assert (jbytes == jchars,
err_msg("Hashes did not match. b:%08x != c:%08x\n", jbytes, jchars));
jbytes = murmur3_32(FOUR_BYTE, 4);
jchars = murmur3_32(TWO_CHAR, 2);
ints = murmur3_32(ONE_INT, 1);
assert ((jbytes == jchars) && (jbytes == ints),
err_msg("Hashes did not match. b:%08x != c:%08x != i:%08x\n", jbytes, jchars, ints));
jbytes = murmur3_32(SIX_BYTE, 6);
jchars = murmur3_32(THREE_CHAR, 3);
assert (jbytes == jchars,
err_msg("Hashes did not match. b:%08x != c:%08x\n", jbytes, jchars));
jbytes = murmur3_32(EIGHT_BYTE, 8);
jchars = murmur3_32(FOUR_CHAR, 4);
ints = murmur3_32(TWO_INT, 2);
assert ((jbytes == jchars) && (jbytes == ints),
err_msg("Hashes did not match. b:%08x != c:%08x != i:%08x\n", jbytes, jchars, ints));
}
// Returns true if the alternate hashcode is correct
void AltHashing::test_alt_hash() {
testMurmur3_32_ByteArray();
testEquivalentHashes();
}
#endif // PRODUCT