7081938: JSR292: assert(magic_number_2() == MAGIC_NUMBER_2) failed
Reviewed-by: never, bdelsart
/*
* Copyright (c) 2010, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// Platform-specific definitions for method handles.
// These definitions are inlined into class MethodHandles.
// Adapters
enum /* platform_dependent_constants */ {
adapter_code_size = NOT_LP64(30000 DEBUG_ONLY(+ 10000)) LP64_ONLY(80000 DEBUG_ONLY(+ 120000))
};
public:
// The stack just after the recursive call from a ricochet frame
// looks something like this. Offsets are marked in words, not bytes.
// rsi (r13 on LP64) is part of the interpreter calling sequence
// which tells the callee where is my real rsp (for frame walking).
// (...lower memory addresses)
// rsp: [ return pc ] always the global RicochetBlob::bounce_addr
// rsp+1: [ recursive arg N ]
// rsp+2: [ recursive arg N-1 ]
// ...
// rsp+N: [ recursive arg 1 ]
// rsp+N+1: [ recursive method handle ]
// ...
// rbp-6: [ cleanup continuation pc ] <-- (struct RicochetFrame)
// rbp-5: [ saved target MH ] the MH we will call on the saved args
// rbp-4: [ saved args layout oop ] an int[] array which describes argument layout
// rbp-3: [ saved args pointer ] address of transformed adapter arg M (slot 0)
// rbp-2: [ conversion ] information about how the return value is used
// rbp-1: [ exact sender sp ] exact TOS (rsi/r13) of original sender frame
// rbp+0: [ saved sender fp ] (for original sender of AMH)
// rbp+1: [ saved sender pc ] (back to original sender of AMH)
// rbp+2: [ transformed adapter arg M ] <-- (extended TOS of original sender)
// rbp+3: [ transformed adapter arg M-1]
// ...
// rbp+M+1: [ transformed adapter arg 1 ]
// rbp+M+2: [ padding ] <-- (rbp + saved args base offset)
// ... [ optional padding]
// (higher memory addresses...)
//
// The arguments originally passed by the original sender
// are lost, and arbitrary amounts of stack motion might have
// happened due to argument transformation.
// (This is done by C2I/I2C adapters and non-direct method handles.)
// This is why there is an unpredictable amount of memory between
// the extended and exact TOS of the sender.
// The ricochet adapter itself will also (in general) perform
// transformations before the recursive call.
//
// The transformed and saved arguments, immediately above the saved
// return PC, are a well-formed method handle invocation ready to execute.
// When the GC needs to walk the stack, these arguments are described
// via the saved arg types oop, an int[] array with a private format.
// This array is derived from the type of the transformed adapter
// method handle, which also sits at the base of the saved argument
// bundle. Since the GC may not be able to fish out the int[]
// array, so it is pushed explicitly on the stack. This may be
// an unnecessary expense.
//
// The following register conventions are significant at this point:
// rsp the thread stack, as always; preserved by caller
// rsi/r13 exact TOS of recursive frame (contents of [rbp-2])
// rcx recursive method handle (contents of [rsp+N+1])
// rbp preserved by caller (not used by caller)
// Unless otherwise specified, all registers can be blown by the call.
//
// If this frame must be walked, the transformed adapter arguments
// will be found with the help of the saved arguments descriptor.
//
// Therefore, the descriptor must match the referenced arguments.
// The arguments must be followed by at least one word of padding,
// which will be necessary to complete the final method handle call.
// That word is not treated as holding an oop. Neither is the word
//
// The word pointed to by the return argument pointer is not
// treated as an oop, even if points to a saved argument.
// This allows the saved argument list to have a "hole" in it
// to receive an oop from the recursive call.
// (The hole might temporarily contain RETURN_VALUE_PLACEHOLDER.)
//
// When the recursive callee returns, RicochetBlob::bounce_addr will
// immediately jump to the continuation stored in the RF.
// This continuation will merge the recursive return value
// into the saved argument list. At that point, the original
// rsi, rbp, and rsp will be reloaded, the ricochet frame will
// disappear, and the final target of the adapter method handle
// will be invoked on the transformed argument list.
class RicochetFrame {
friend class MethodHandles;
friend class VMStructs;
private:
intptr_t* _continuation; // what to do when control gets back here
oopDesc* _saved_target; // target method handle to invoke on saved_args
oopDesc* _saved_args_layout; // caching point for MethodTypeForm.vmlayout cookie
intptr_t* _saved_args_base; // base of pushed arguments (slot 0, arg N) (-3)
intptr_t _conversion; // misc. information from original AdapterMethodHandle (-2)
intptr_t* _exact_sender_sp; // parallel to interpreter_frame_sender_sp (-1)
intptr_t* _sender_link; // *must* coincide with frame::link_offset (0)
address _sender_pc; // *must* coincide with frame::return_addr_offset (1)
public:
intptr_t* continuation() const { return _continuation; }
oop saved_target() const { return _saved_target; }
oop saved_args_layout() const { return _saved_args_layout; }
intptr_t* saved_args_base() const { return _saved_args_base; }
intptr_t conversion() const { return _conversion; }
intptr_t* exact_sender_sp() const { return _exact_sender_sp; }
intptr_t* sender_link() const { return _sender_link; }
address sender_pc() const { return _sender_pc; }
intptr_t* extended_sender_sp() const {
// The extended sender SP is above the current RicochetFrame.
return (intptr_t*) (((address) this) + sizeof(RicochetFrame));
}
intptr_t return_value_slot_number() const {
return adapter_conversion_vminfo(conversion());
}
BasicType return_value_type() const {
return adapter_conversion_dest_type(conversion());
}
bool has_return_value_slot() const {
return return_value_type() != T_VOID;
}
intptr_t* return_value_slot_addr() const {
assert(has_return_value_slot(), "");
return saved_arg_slot_addr(return_value_slot_number());
}
intptr_t* saved_target_slot_addr() const {
return saved_arg_slot_addr(saved_args_length());
}
intptr_t* saved_arg_slot_addr(int slot) const {
assert(slot >= 0, "");
return (intptr_t*)( (address)saved_args_base() + (slot * Interpreter::stackElementSize) );
}
jint saved_args_length() const;
jint saved_arg_offset(int arg) const;
// GC interface
oop* saved_target_addr() { return (oop*)&_saved_target; }
oop* saved_args_layout_addr() { return (oop*)&_saved_args_layout; }
oop compute_saved_args_layout(bool read_cache, bool write_cache);
// Compiler/assembler interface.
static int continuation_offset_in_bytes() { return offset_of(RicochetFrame, _continuation); }
static int saved_target_offset_in_bytes() { return offset_of(RicochetFrame, _saved_target); }
static int saved_args_layout_offset_in_bytes(){ return offset_of(RicochetFrame, _saved_args_layout); }
static int saved_args_base_offset_in_bytes() { return offset_of(RicochetFrame, _saved_args_base); }
static int conversion_offset_in_bytes() { return offset_of(RicochetFrame, _conversion); }
static int exact_sender_sp_offset_in_bytes() { return offset_of(RicochetFrame, _exact_sender_sp); }
static int sender_link_offset_in_bytes() { return offset_of(RicochetFrame, _sender_link); }
static int sender_pc_offset_in_bytes() { return offset_of(RicochetFrame, _sender_pc); }
// This value is not used for much, but it apparently must be nonzero.
static int frame_size_in_bytes() { return sender_link_offset_in_bytes(); }
#ifdef ASSERT
// The magic number is supposed to help find ricochet frames within the bytes of stack dumps.
enum { MAGIC_NUMBER_1 = 0xFEED03E, MAGIC_NUMBER_2 = 0xBEEF03E };
static int magic_number_1_offset_in_bytes() { return -wordSize; }
static int magic_number_2_offset_in_bytes() { return sizeof(RicochetFrame); }
intptr_t magic_number_1() const { return *(intptr_t*)((address)this + magic_number_1_offset_in_bytes()); };
intptr_t magic_number_2() const { return *(intptr_t*)((address)this + magic_number_2_offset_in_bytes()); };
#endif //ASSERT
enum { RETURN_VALUE_PLACEHOLDER = (NOT_DEBUG(0) DEBUG_ONLY(42)) };
static void verify_offsets() NOT_DEBUG_RETURN;
void verify() const NOT_DEBUG_RETURN; // check for MAGIC_NUMBER, etc.
void zap_arguments() NOT_DEBUG_RETURN;
static void generate_ricochet_blob(MacroAssembler* _masm,
// output params:
int* bounce_offset,
int* exception_offset,
int* frame_size_in_words);
static void enter_ricochet_frame(MacroAssembler* _masm,
Register rcx_recv,
Register rax_argv,
address return_handler,
Register rbx_temp);
static void leave_ricochet_frame(MacroAssembler* _masm,
Register rcx_recv,
Register new_sp_reg,
Register sender_pc_reg);
static Address frame_address(int offset = 0) {
// The RicochetFrame is found by subtracting a constant offset from rbp.
return Address(rbp, - sender_link_offset_in_bytes() + offset);
}
static RicochetFrame* from_frame(const frame& fr) {
address bp = (address) fr.fp();
RicochetFrame* rf = (RicochetFrame*)(bp - sender_link_offset_in_bytes());
rf->verify();
return rf;
}
static void verify_clean(MacroAssembler* _masm) NOT_DEBUG_RETURN;
};
// Additional helper methods for MethodHandles code generation:
public:
static void load_klass_from_Class(MacroAssembler* _masm, Register klass_reg);
static void load_conversion_vminfo(MacroAssembler* _masm, Register reg, Address conversion_field_addr);
static void load_conversion_dest_type(MacroAssembler* _masm, Register reg, Address conversion_field_addr);
static void load_stack_move(MacroAssembler* _masm,
Register rdi_stack_move,
Register rcx_amh,
bool might_be_negative);
static void insert_arg_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register rax_argslot,
Register rbx_temp, Register rdx_temp);
static void remove_arg_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register rax_argslot,
Register rbx_temp, Register rdx_temp);
static void push_arg_slots(MacroAssembler* _masm,
Register rax_argslot,
RegisterOrConstant slot_count,
int skip_words_count,
Register rbx_temp, Register rdx_temp);
static void move_arg_slots_up(MacroAssembler* _masm,
Register rbx_bottom, // invariant
Address top_addr, // can use rax_temp
RegisterOrConstant positive_distance_in_slots,
Register rax_temp, Register rdx_temp);
static void move_arg_slots_down(MacroAssembler* _masm,
Address bottom_addr, // can use rax_temp
Register rbx_top, // invariant
RegisterOrConstant negative_distance_in_slots,
Register rax_temp, Register rdx_temp);
static void move_typed_arg(MacroAssembler* _masm,
BasicType type, bool is_element,
Address slot_dest, Address value_src,
Register rbx_temp, Register rdx_temp);
static void move_return_value(MacroAssembler* _masm, BasicType type,
Address return_slot);
static void verify_argslot(MacroAssembler* _masm, Register argslot_reg,
const char* error_message) NOT_DEBUG_RETURN;
static void verify_argslots(MacroAssembler* _masm,
RegisterOrConstant argslot_count,
Register argslot_reg,
bool negate_argslot,
const char* error_message) NOT_DEBUG_RETURN;
static void verify_stack_move(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
int direction) NOT_DEBUG_RETURN;
static void verify_klass(MacroAssembler* _masm,
Register obj, KlassHandle klass,
const char* error_message = "wrong klass") NOT_DEBUG_RETURN;
static void verify_method_handle(MacroAssembler* _masm, Register mh_reg) {
verify_klass(_masm, mh_reg, SystemDictionaryHandles::MethodHandle_klass(),
"reference is a MH");
}
// Similar to InterpreterMacroAssembler::jump_from_interpreted.
// Takes care of special dispatch from single stepping too.
static void jump_from_method_handle(MacroAssembler* _masm, Register method, Register temp);
static void trace_method_handle(MacroAssembler* _masm, const char* adaptername) PRODUCT_RETURN;
static Register saved_last_sp_register() {
// Should be in sharedRuntime, not here.
return LP64_ONLY(r13) NOT_LP64(rsi);
}