/*
* Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/altHashing.hpp"
#include "classfile/dictionary.hpp"
#include "classfile/javaClasses.inline.hpp"
#include "classfile/moduleEntry.hpp"
#include "classfile/packageEntry.hpp"
#include "classfile/placeholders.hpp"
#include "classfile/protectionDomainCache.hpp"
#include "classfile/stringTable.hpp"
#include "logging/log.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/metaspaceShared.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "oops/weakHandle.inline.hpp"
#include "runtime/safepoint.hpp"
#include "utilities/dtrace.hpp"
#include "utilities/hashtable.hpp"
#include "utilities/hashtable.inline.hpp"
#include "utilities/numberSeq.hpp"
// This hashtable is implemented as an open hash table with a fixed number of buckets.
template <MEMFLAGS F> BasicHashtableEntry<F>* BasicHashtable<F>::new_entry_free_list() {
BasicHashtableEntry<F>* entry = NULL;
if (_free_list != NULL) {
entry = _free_list;
_free_list = _free_list->next();
}
return entry;
}
// HashtableEntrys are allocated in blocks to reduce the space overhead.
template <MEMFLAGS F> BasicHashtableEntry<F>* BasicHashtable<F>::new_entry(unsigned int hashValue) {
BasicHashtableEntry<F>* entry = new_entry_free_list();
if (entry == NULL) {
if (_first_free_entry + _entry_size >= _end_block) {
int block_size = MIN2(512, MAX2((int)_table_size / 2, (int)_number_of_entries));
int len = _entry_size * block_size;
len = 1 << log2_intptr(len); // round down to power of 2
assert(len >= _entry_size, "");
_first_free_entry = NEW_C_HEAP_ARRAY2(char, len, F, CURRENT_PC);
_end_block = _first_free_entry + len;
}
entry = (BasicHashtableEntry<F>*)_first_free_entry;
_first_free_entry += _entry_size;
}
assert(_entry_size % HeapWordSize == 0, "");
entry->set_hash(hashValue);
return entry;
}
template <class T, MEMFLAGS F> HashtableEntry<T, F>* Hashtable<T, F>::new_entry(unsigned int hashValue, T obj) {
HashtableEntry<T, F>* entry;
entry = (HashtableEntry<T, F>*)BasicHashtable<F>::new_entry(hashValue);
entry->set_literal(obj);
return entry;
}
// Version of hashtable entry allocation that allocates in the C heap directly.
// The allocator in blocks is preferable but doesn't have free semantics.
template <class T, MEMFLAGS F> HashtableEntry<T, F>* Hashtable<T, F>::allocate_new_entry(unsigned int hashValue, T obj) {
HashtableEntry<T, F>* entry = (HashtableEntry<T, F>*) NEW_C_HEAP_ARRAY(char, this->entry_size(), F);
entry->set_hash(hashValue);
entry->set_literal(obj);
entry->set_next(NULL);
return entry;
}
// Check to see if the hashtable is unbalanced. The caller set a flag to
// rehash at the next safepoint. If this bucket is 60 times greater than the
// expected average bucket length, it's an unbalanced hashtable.
// This is somewhat an arbitrary heuristic but if one bucket gets to
// rehash_count which is currently 100, there's probably something wrong.
template <class T, MEMFLAGS F> bool RehashableHashtable<T, F>::check_rehash_table(int count) {
assert(this->table_size() != 0, "underflow");
if (count > (((double)this->number_of_entries()/(double)this->table_size())*rehash_multiple)) {
// Set a flag for the next safepoint, which should be at some guaranteed
// safepoint interval.
return true;
}
return false;
}
// Create a new table and using alternate hash code, populate the new table
// with the existing elements. This can be used to change the hash code
// and could in the future change the size of the table.
template <class T, MEMFLAGS F> void RehashableHashtable<T, F>::move_to(RehashableHashtable<T, F>* new_table) {
// Initialize the global seed for hashing.
_seed = AltHashing::compute_seed();
assert(seed() != 0, "shouldn't be zero");
int saved_entry_count = this->number_of_entries();
// Iterate through the table and create a new entry for the new table
for (int i = 0; i < new_table->table_size(); ++i) {
for (HashtableEntry<T, F>* p = this->bucket(i); p != NULL; ) {
HashtableEntry<T, F>* next = p->next();
T string = p->literal();
// Use alternate hashing algorithm on the symbol in the first table
unsigned int hashValue = string->new_hash(seed());
// Get a new index relative to the new table (can also change size)
int index = new_table->hash_to_index(hashValue);
p->set_hash(hashValue);
// Keep the shared bit in the Hashtable entry to indicate that this entry
// can't be deleted. The shared bit is the LSB in the _next field so
// walking the hashtable past these entries requires
// BasicHashtableEntry::make_ptr() call.
bool keep_shared = p->is_shared();
this->unlink_entry(p);
new_table->add_entry(index, p);
if (keep_shared) {
p->set_shared();
}
p = next;
}
}
// give the new table the free list as well
new_table->copy_freelist(this);
// Destroy memory used by the buckets in the hashtable. The memory
// for the elements has been used in a new table and is not
// destroyed. The memory reuse will benefit resizing the SystemDictionary
// to avoid a memory allocation spike at safepoint.
BasicHashtable<F>::free_buckets();
}
template <MEMFLAGS F> void BasicHashtable<F>::free_buckets() {
if (NULL != _buckets) {
// Don't delete the buckets in the shared space. They aren't
// allocated by os::malloc
if (!MetaspaceShared::is_in_shared_metaspace(_buckets)) {
FREE_C_HEAP_ARRAY(HashtableBucket, _buckets);
}
_buckets = NULL;
}
}
template <MEMFLAGS F> void BasicHashtable<F>::BucketUnlinkContext::free_entry(BasicHashtableEntry<F>* entry) {
entry->set_next(_removed_head);
_removed_head = entry;
if (_removed_tail == NULL) {
_removed_tail = entry;
}
_num_removed++;
}
template <MEMFLAGS F> void BasicHashtable<F>::bulk_free_entries(BucketUnlinkContext* context) {
if (context->_num_removed == 0) {
assert(context->_removed_head == NULL && context->_removed_tail == NULL,
"Zero entries in the unlink context, but elements linked from " PTR_FORMAT " to " PTR_FORMAT,
p2i(context->_removed_head), p2i(context->_removed_tail));
return;
}
// MT-safe add of the list of BasicHashTableEntrys from the context to the free list.
BasicHashtableEntry<F>* current = _free_list;
while (true) {
context->_removed_tail->set_next(current);
BasicHashtableEntry<F>* old = Atomic::cmpxchg(context->_removed_head, &_free_list, current);
if (old == current) {
break;
}
current = old;
}
Atomic::add(-context->_num_removed, &_number_of_entries);
}
// Copy the table to the shared space.
template <MEMFLAGS F> size_t BasicHashtable<F>::count_bytes_for_table() {
size_t bytes = 0;
bytes += sizeof(intptr_t); // len
for (int i = 0; i < _table_size; ++i) {
for (BasicHashtableEntry<F>** p = _buckets[i].entry_addr();
*p != NULL;
p = (*p)->next_addr()) {
bytes += entry_size();
}
}
return bytes;
}
// Dump the hash table entries (into CDS archive)
template <MEMFLAGS F> void BasicHashtable<F>::copy_table(char* top, char* end) {
assert(is_aligned(top, sizeof(intptr_t)), "bad alignment");
intptr_t *plen = (intptr_t*)(top);
top += sizeof(*plen);
int i;
for (i = 0; i < _table_size; ++i) {
for (BasicHashtableEntry<F>** p = _buckets[i].entry_addr();
*p != NULL;
p = (*p)->next_addr()) {
*p = (BasicHashtableEntry<F>*)memcpy(top, (void*)*p, entry_size());
top += entry_size();
}
}
*plen = (char*)(top) - (char*)plen - sizeof(*plen);
assert(top == end, "count_bytes_for_table is wrong");
// Set the shared bit.
for (i = 0; i < _table_size; ++i) {
for (BasicHashtableEntry<F>* p = bucket(i); p != NULL; p = p->next()) {
p->set_shared();
}
}
}
// For oops and Strings the size of the literal is interesting. For other types, nobody cares.
static int literal_size(ConstantPool*) { return 0; }
static int literal_size(Klass*) { return 0; }
static int literal_size(nmethod*) { return 0; }
static int literal_size(Symbol *symbol) {
return symbol->size() * HeapWordSize;
}
static int literal_size(oop obj) {
// NOTE: this would over-count if (pre-JDK8) java_lang_Class::has_offset_field() is true,
// and the String.value array is shared by several Strings. However, starting from JDK8,
// the String.value array is not shared anymore.
if (obj == NULL) {
return 0;
} else if (obj->klass() == SystemDictionary::String_klass()) {
return (obj->size() + java_lang_String::value(obj)->size()) * HeapWordSize;
} else {
return obj->size();
}
}
static int literal_size(ClassLoaderWeakHandle v) {
return literal_size(v.peek());
}
template <MEMFLAGS F> bool BasicHashtable<F>::resize(int new_size) {
assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
// Allocate new buckets
HashtableBucket<F>* buckets_new = NEW_C_HEAP_ARRAY2_RETURN_NULL(HashtableBucket<F>, new_size, F, CURRENT_PC);
if (buckets_new == NULL) {
return false;
}
// Clear the new buckets
for (int i = 0; i < new_size; i++) {
buckets_new[i].clear();
}
int table_size_old = _table_size;
// hash_to_index() uses _table_size, so switch the sizes now
_table_size = new_size;
// Move entries from the old table to a new table
for (int index_old = 0; index_old < table_size_old; index_old++) {
for (BasicHashtableEntry<F>* p = _buckets[index_old].get_entry(); p != NULL; ) {
BasicHashtableEntry<F>* next = p->next();
bool keep_shared = p->is_shared();
int index_new = hash_to_index(p->hash());
p->set_next(buckets_new[index_new].get_entry());
buckets_new[index_new].set_entry(p);
if (keep_shared) {
p->set_shared();
}
p = next;
}
}
// The old backets now can be released
BasicHashtable<F>::free_buckets();
// Switch to the new storage
_buckets = buckets_new;
return true;
}
// Dump footprint and bucket length statistics
//
// Note: if you create a new subclass of Hashtable<MyNewType, F>, you will need to
// add a new function static int literal_size(MyNewType lit)
// because I can't get template <class T> int literal_size(T) to pick the specializations for Symbol and oop.
//
// The StringTable and SymbolTable dumping print how much footprint is used by the String and Symbol
// literals.
template <class T, MEMFLAGS F> void Hashtable<T, F>::print_table_statistics(outputStream* st,
const char *table_name,
T (*literal_load_barrier)(HashtableEntry<T, F>*)) {
NumberSeq summary;
int literal_bytes = 0;
for (int i = 0; i < this->table_size(); ++i) {
int count = 0;
for (HashtableEntry<T, F>* e = this->bucket(i);
e != NULL; e = e->next()) {
count++;
T l = (literal_load_barrier != NULL) ? literal_load_barrier(e) : e->literal();
literal_bytes += literal_size(l);
}
summary.add((double)count);
}
double num_buckets = summary.num();
double num_entries = summary.sum();
int bucket_bytes = (int)num_buckets * sizeof(HashtableBucket<F>);
int entry_bytes = (int)num_entries * sizeof(HashtableEntry<T, F>);
int total_bytes = literal_bytes + bucket_bytes + entry_bytes;
int bucket_size = (num_buckets <= 0) ? 0 : (bucket_bytes / num_buckets);
int entry_size = (num_entries <= 0) ? 0 : (entry_bytes / num_entries);
st->print_cr("%s statistics:", table_name);
st->print_cr("Number of buckets : %9d = %9d bytes, each %d", (int)num_buckets, bucket_bytes, bucket_size);
st->print_cr("Number of entries : %9d = %9d bytes, each %d", (int)num_entries, entry_bytes, entry_size);
if (literal_bytes != 0) {
double literal_avg = (num_entries <= 0) ? 0 : (literal_bytes / num_entries);
st->print_cr("Number of literals : %9d = %9d bytes, avg %7.3f", (int)num_entries, literal_bytes, literal_avg);
}
st->print_cr("Total footprint : %9s = %9d bytes", "", total_bytes);
st->print_cr("Average bucket size : %9.3f", summary.avg());
st->print_cr("Variance of bucket size : %9.3f", summary.variance());
st->print_cr("Std. dev. of bucket size: %9.3f", summary.sd());
st->print_cr("Maximum bucket size : %9d", (int)summary.maximum());
}
// Dump the hash table buckets.
template <MEMFLAGS F> size_t BasicHashtable<F>::count_bytes_for_buckets() {
size_t bytes = 0;
bytes += sizeof(intptr_t); // len
bytes += sizeof(intptr_t); // _number_of_entries
bytes += _table_size * sizeof(HashtableBucket<F>); // the buckets
return bytes;
}
// Dump the buckets (into CDS archive)
template <MEMFLAGS F> void BasicHashtable<F>::copy_buckets(char* top, char* end) {
assert(is_aligned(top, sizeof(intptr_t)), "bad alignment");
intptr_t len = _table_size * sizeof(HashtableBucket<F>);
*(intptr_t*)(top) = len;
top += sizeof(intptr_t);
*(intptr_t*)(top) = _number_of_entries;
top += sizeof(intptr_t);
_buckets = (HashtableBucket<F>*)memcpy(top, (void*)_buckets, len);
top += len;
assert(top == end, "count_bytes_for_buckets is wrong");
}
#ifndef PRODUCT
template <class T> void print_literal(T l) {
l->print();
}
static void print_literal(ClassLoaderWeakHandle l) {
l.print();
}
template <class T, MEMFLAGS F> void Hashtable<T, F>::print() {
ResourceMark rm;
for (int i = 0; i < BasicHashtable<F>::table_size(); i++) {
HashtableEntry<T, F>* entry = bucket(i);
while(entry != NULL) {
tty->print("%d : ", i);
print_literal(entry->literal());
tty->cr();
entry = entry->next();
}
}
}
template <MEMFLAGS F>
template <class T> void BasicHashtable<F>::verify_table(const char* table_name) {
int element_count = 0;
int max_bucket_count = 0;
int max_bucket_number = 0;
for (int index = 0; index < table_size(); index++) {
int bucket_count = 0;
for (T* probe = (T*)bucket(index); probe != NULL; probe = probe->next()) {
probe->verify();
bucket_count++;
}
element_count += bucket_count;
if (bucket_count > max_bucket_count) {
max_bucket_count = bucket_count;
max_bucket_number = index;
}
}
guarantee(number_of_entries() == element_count,
"Verify of %s failed", table_name);
// Log some statistics about the hashtable
log_info(hashtables)("%s max bucket size %d bucket %d element count %d table size %d", table_name,
max_bucket_count, max_bucket_number, _number_of_entries, _table_size);
if (_number_of_entries > 0 && log_is_enabled(Debug, hashtables)) {
for (int index = 0; index < table_size(); index++) {
int bucket_count = 0;
for (T* probe = (T*)bucket(index); probe != NULL; probe = probe->next()) {
log_debug(hashtables)("bucket %d hash " INTPTR_FORMAT, index, (intptr_t)probe->hash());
bucket_count++;
}
if (bucket_count > 0) {
log_debug(hashtables)("bucket %d count %d", index, bucket_count);
}
}
}
}
#endif // PRODUCT
// Explicitly instantiate these types
template class Hashtable<nmethod*, mtGC>;
template class HashtableEntry<nmethod*, mtGC>;
template class BasicHashtable<mtGC>;
template class Hashtable<ConstantPool*, mtClass>;
template class RehashableHashtable<Symbol*, mtSymbol>;
template class RehashableHashtable<oop, mtSymbol>;
template class Hashtable<Symbol*, mtSymbol>;
template class Hashtable<Klass*, mtClass>;
template class Hashtable<InstanceKlass*, mtClass>;
template class Hashtable<ClassLoaderWeakHandle, mtClass>;
template class Hashtable<Symbol*, mtModule>;
template class Hashtable<oop, mtSymbol>;
template class Hashtable<ClassLoaderWeakHandle, mtSymbol>;
template class Hashtable<Symbol*, mtClass>;
template class HashtableEntry<Symbol*, mtSymbol>;
template class HashtableEntry<Symbol*, mtClass>;
template class HashtableEntry<oop, mtSymbol>;
template class HashtableEntry<ClassLoaderWeakHandle, mtSymbol>;
template class HashtableBucket<mtClass>;
template class BasicHashtableEntry<mtSymbol>;
template class BasicHashtableEntry<mtCode>;
template class BasicHashtable<mtClass>;
template class BasicHashtable<mtClassShared>;
template class BasicHashtable<mtSymbol>;
template class BasicHashtable<mtCode>;
template class BasicHashtable<mtInternal>;
template class BasicHashtable<mtModule>;
template class BasicHashtable<mtCompiler>;
template void BasicHashtable<mtClass>::verify_table<DictionaryEntry>(char const*);
template void BasicHashtable<mtModule>::verify_table<ModuleEntry>(char const*);
template void BasicHashtable<mtModule>::verify_table<PackageEntry>(char const*);
template void BasicHashtable<mtClass>::verify_table<ProtectionDomainCacheEntry>(char const*);
template void BasicHashtable<mtClass>::verify_table<PlaceholderEntry>(char const*);