jdk/src/share/classes/java/util/RandomAccess.java
author darcy
Wed, 10 Jul 2013 11:05:39 -0700
changeset 18796 486b43748d9b
parent 5506 202f599c92aa
permissions -rw-r--r--
8020294: Fix doclint issues in java.util.Spliterator Reviewed-by: psandoz

/*
 * Copyright (c) 2000, 2006, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.util;

/**
 * Marker interface used by <tt>List</tt> implementations to indicate that
 * they support fast (generally constant time) random access.  The primary
 * purpose of this interface is to allow generic algorithms to alter their
 * behavior to provide good performance when applied to either random or
 * sequential access lists.
 *
 * <p>The best algorithms for manipulating random access lists (such as
 * <tt>ArrayList</tt>) can produce quadratic behavior when applied to
 * sequential access lists (such as <tt>LinkedList</tt>).  Generic list
 * algorithms are encouraged to check whether the given list is an
 * <tt>instanceof</tt> this interface before applying an algorithm that would
 * provide poor performance if it were applied to a sequential access list,
 * and to alter their behavior if necessary to guarantee acceptable
 * performance.
 *
 * <p>It is recognized that the distinction between random and sequential
 * access is often fuzzy.  For example, some <tt>List</tt> implementations
 * provide asymptotically linear access times if they get huge, but constant
 * access times in practice.  Such a <tt>List</tt> implementation
 * should generally implement this interface.  As a rule of thumb, a
 * <tt>List</tt> implementation should implement this interface if,
 * for typical instances of the class, this loop:
 * <pre>
 *     for (int i=0, n=list.size(); i &lt; n; i++)
 *         list.get(i);
 * </pre>
 * runs faster than this loop:
 * <pre>
 *     for (Iterator i=list.iterator(); i.hasNext(); )
 *         i.next();
 * </pre>
 *
 * <p>This interface is a member of the
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 * Java Collections Framework</a>.
 *
 * @since 1.4
 */
public interface RandomAccess {
}