8130115: REDO - Reduce Symbol::_identity_hash to 2 bytes
Summary: Convert Symbol::_identity_hash from integer to short integer to save two bytes. Also change identity_hash() to have 'this' and first two bytes of symbol join the calculation.
Reviewed-by: iklam, coleenp, shade
/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_OOPS_SYMBOL_HPP
#define SHARE_VM_OOPS_SYMBOL_HPP
#include "utilities/utf8.hpp"
#include "memory/allocation.hpp"
#include "runtime/atomic.hpp"
// A Symbol is a canonicalized string.
// All Symbols reside in global SymbolTable and are reference counted.
// Reference counting
//
// All Symbols are allocated and added to the SymbolTable.
// When a class is unloaded, the reference counts of the Symbol pointers in
// the ConstantPool and in InstanceKlass (see release_C_heap_structures) are
// decremented. When the reference count for a Symbol goes to 0, the garbage
// collector can free the Symbol and remove it from the SymbolTable.
//
// 0) Symbols need to be reference counted when a pointer to the Symbol is
// saved in persistent storage. This does not include the pointer
// in the SymbolTable bucket (the _literal field in HashtableEntry)
// that points to the Symbol. All other stores of a Symbol*
// to a field of a persistent variable (e.g., the _name filed in
// fieldDescriptor or _ptr in a CPSlot) is reference counted.
//
// 1) The lookup of a "name" in the SymbolTable either creates a Symbol F for
// "name" and returns a pointer to F or finds a pre-existing Symbol F for
// "name" and returns a pointer to it. In both cases the reference count for F
// is incremented under the assumption that a pointer to F will be created from
// the return value. Thus the increment of the reference count is on the lookup
// and not on the assignment to the new Symbol*. That is
// Symbol* G = lookup()
// ^ increment on lookup()
// and not
// Symbol* G = lookup()
// ^ increment on assignmnet
// The reference count must be decremented manually when the copy of the
// pointer G is destroyed.
//
// 2) For a local Symbol* A that is a copy of an existing Symbol* B, the
// reference counting is elided when the scope of B is greater than the scope
// of A. For example, in the code fragment
// below "klass" is passed as a parameter to the method. Symbol* "kn"
// is a copy of the name in "klass".
//
// Symbol* kn = klass->name();
// unsigned int d_hash = dictionary()->compute_hash(kn, class_loader);
//
// The scope of "klass" is greater than the scope of "kn" so the reference
// counting for "kn" is elided.
//
// Symbol* copied from ConstantPool entries are good candidates for reference
// counting elision. The ConstantPool entries for a class C exist until C is
// unloaded. If a Symbol* is copied out of the ConstantPool into Symbol* X,
// the Symbol* in the ConstantPool will in general out live X so the reference
// counting on X can be elided.
//
// For cases where the scope of A is not greater than the scope of B,
// the reference counting is explicitly done. See ciSymbol,
// ResolutionErrorEntry and ClassVerifier for examples.
//
// 3) When a Symbol K is created for temporary use, generally for substrings of
// an existing symbol or to create a new symbol, assign it to a
// TempNewSymbol. The SymbolTable methods new_symbol(), lookup()
// and probe() all potentially return a pointer to a new Symbol.
// The allocation (or lookup) of K increments the reference count for K
// and the destructor decrements the reference count.
//
// Another example of TempNewSymbol usage is parsed_name used in
// ClassFileParser::parseClassFile() where parsed_name is used in the cleanup
// after a failed attempt to load a class. Here parsed_name is a
// TempNewSymbol (passed in as a parameter) so the reference count on its symbol
// will be decremented when it goes out of scope.
// This cannot be inherited from ResourceObj because it cannot have a vtable.
// Since sometimes this is allocated from Metadata, pick a base allocation
// type without virtual functions.
class ClassLoaderData;
// Set _refcount to PERM_REFCOUNT to prevent the Symbol from being GC'ed.
#ifndef PERM_REFCOUNT
#define PERM_REFCOUNT -1
#endif
class Symbol : public MetaspaceObj {
friend class VMStructs;
friend class SymbolTable;
friend class MoveSymbols;
private:
ATOMIC_SHORT_PAIR(
volatile short _refcount, // needs atomic operation
unsigned short _length // number of UTF8 characters in the symbol (does not need atomic op)
);
short _identity_hash;
jbyte _body[2];
enum {
// max_symbol_length is constrained by type of _length
max_symbol_length = (1 << 16) -1
};
static int size(int length) {
size_t sz = heap_word_size(sizeof(Symbol) + (length > 2 ? length - 2 : 0));
return align_object_size(sz);
}
void byte_at_put(int index, int value) {
assert(index >=0 && index < _length, "symbol index overflow");
_body[index] = value;
}
Symbol(const u1* name, int length, int refcount);
void* operator new(size_t size, int len, TRAPS) throw();
void* operator new(size_t size, int len, Arena* arena, TRAPS) throw();
void* operator new(size_t size, int len, ClassLoaderData* loader_data, TRAPS) throw();
void operator delete(void* p);
public:
// Low-level access (used with care, since not GC-safe)
const jbyte* base() const { return &_body[0]; }
int size() { return size(utf8_length()); }
// Returns the largest size symbol we can safely hold.
static int max_length() { return max_symbol_length; }
unsigned identity_hash() {
unsigned addr_bits = (unsigned)((uintptr_t)this >> (LogMinObjAlignmentInBytes + 3));
return ((unsigned)_identity_hash & 0xffff) |
((addr_bits ^ (_length << 8) ^ (( _body[0] << 8) | _body[1])) << 16);
}
// For symbol table alternate hashing
unsigned int new_hash(juint seed);
// Reference counting. See comments above this class for when to use.
int refcount() const { return _refcount; }
void increment_refcount();
void decrement_refcount();
// Set _refcount non zero to avoid being reclaimed by GC.
void set_permanent() {
assert(LogTouchedMethods, "Should not be called with LogTouchedMethods off");
if (_refcount != PERM_REFCOUNT) {
_refcount = PERM_REFCOUNT;
}
}
int byte_at(int index) const {
assert(index >=0 && index < _length, "symbol index overflow");
return base()[index];
}
const jbyte* bytes() const { return base(); }
int utf8_length() const { return _length; }
// Compares the symbol with a string.
bool equals(const char* str, int len) const;
bool equals(const char* str) const { return equals(str, (int) strlen(str)); }
// Tests if the symbol starts with the given prefix.
bool starts_with(const char* prefix, int len) const;
bool starts_with(const char* prefix) const {
return starts_with(prefix, (int) strlen(prefix));
}
// Tests if the symbol starts with the given prefix.
int index_of_at(int i, const char* str, int len) const;
int index_of_at(int i, const char* str) const {
return index_of_at(i, str, (int) strlen(str));
}
// Three-way compare for sorting; returns -1/0/1 if receiver is </==/> than arg
// note that the ordering is not alfabetical
inline int fast_compare(Symbol* other) const;
// Returns receiver converted to null-terminated UTF-8 string; string is
// allocated in resource area, or in the char buffer provided by caller.
char* as_C_string() const;
char* as_C_string(char* buf, int size) const;
// Use buf if needed buffer length is <= size.
char* as_C_string_flexible_buffer(Thread* t, char* buf, int size) const;
// Returns an escaped form of a Java string.
char* as_quoted_ascii() const;
// Returns a null terminated utf8 string in a resource array
char* as_utf8() const { return as_C_string(); }
char* as_utf8_flexible_buffer(Thread* t, char* buf, int size) const {
return as_C_string_flexible_buffer(t, buf, size);
}
jchar* as_unicode(int& length) const;
// Treating this symbol as a class name, returns the Java name for the class.
// String is allocated in resource area if buffer is not provided.
// See Klass::external_name()
const char* as_klass_external_name() const;
const char* as_klass_external_name(char* buf, int size) const;
// Printing
void print_symbol_on(outputStream* st = NULL) const;
void print_on(outputStream* st) const; // First level print
void print_value_on(outputStream* st) const; // Second level print.
// printing on default output stream
void print() { print_on(tty); }
void print_value() { print_value_on(tty); }
#ifndef PRODUCT
// Empty constructor to create a dummy symbol object on stack
// only for getting its vtable pointer.
Symbol() { }
static int _total_count;
#endif
};
// Note: this comparison is used for vtable sorting only; it doesn't matter
// what order it defines, as long as it is a total, time-invariant order
// Since Symbol*s are in C_HEAP, their relative order in memory never changes,
// so use address comparison for speed
int Symbol::fast_compare(Symbol* other) const {
return (((uintptr_t)this < (uintptr_t)other) ? -1
: ((uintptr_t)this == (uintptr_t) other) ? 0 : 1);
}
#endif // SHARE_VM_OOPS_SYMBOL_HPP