hotspot/src/share/vm/opto/library_call.cpp
author johnc
Thu, 07 Apr 2011 09:53:20 -0700
changeset 9176 42d9d1010f38
parent 8734 2dae3d363359
child 9179 6db9c9dffe1f
permissions -rw-r--r--
7009266: G1: assert(obj->is_oop_or_null(true )) failed: Error Summary: A referent object that is only weakly reachable at the start of concurrent marking but is re-attached to the strongly reachable object graph during marking may not be marked as live. This can cause the reference object to be processed prematurely and leave dangling pointers to the referent object. Implement a read barrier for the java.lang.ref.Reference::referent field by intrinsifying the Reference.get() method, and intercepting accesses though JNI, reflection, and Unsafe, so that when a non-null referent object is read it is also logged in an SATB buffer. Reviewed-by: kvn, iveresov, never, tonyp, dholmes

/*
 * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "compiler/compileLog.hpp"
#include "oops/objArrayKlass.hpp"
#include "opto/addnode.hpp"
#include "opto/callGenerator.hpp"
#include "opto/cfgnode.hpp"
#include "opto/idealKit.hpp"
#include "opto/mulnode.hpp"
#include "opto/parse.hpp"
#include "opto/runtime.hpp"
#include "opto/subnode.hpp"
#include "prims/nativeLookup.hpp"
#include "runtime/sharedRuntime.hpp"

class LibraryIntrinsic : public InlineCallGenerator {
  // Extend the set of intrinsics known to the runtime:
 public:
 private:
  bool             _is_virtual;
  vmIntrinsics::ID _intrinsic_id;

 public:
  LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
    : InlineCallGenerator(m),
      _is_virtual(is_virtual),
      _intrinsic_id(id)
  {
  }
  virtual bool is_intrinsic() const { return true; }
  virtual bool is_virtual()   const { return _is_virtual; }
  virtual JVMState* generate(JVMState* jvms);
  vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
};


// Local helper class for LibraryIntrinsic:
class LibraryCallKit : public GraphKit {
 private:
  LibraryIntrinsic* _intrinsic;   // the library intrinsic being called

 public:
  LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
    : GraphKit(caller),
      _intrinsic(intrinsic)
  {
  }

  ciMethod*         caller()    const    { return jvms()->method(); }
  int               bci()       const    { return jvms()->bci(); }
  LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
  vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
  ciMethod*         callee()    const    { return _intrinsic->method(); }
  ciSignature*      signature() const    { return callee()->signature(); }
  int               arg_size()  const    { return callee()->arg_size(); }

  bool try_to_inline();

  // Helper functions to inline natives
  void push_result(RegionNode* region, PhiNode* value);
  Node* generate_guard(Node* test, RegionNode* region, float true_prob);
  Node* generate_slow_guard(Node* test, RegionNode* region);
  Node* generate_fair_guard(Node* test, RegionNode* region);
  Node* generate_negative_guard(Node* index, RegionNode* region,
                                // resulting CastII of index:
                                Node* *pos_index = NULL);
  Node* generate_nonpositive_guard(Node* index, bool never_negative,
                                   // resulting CastII of index:
                                   Node* *pos_index = NULL);
  Node* generate_limit_guard(Node* offset, Node* subseq_length,
                             Node* array_length,
                             RegionNode* region);
  Node* generate_current_thread(Node* &tls_output);
  address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
                              bool disjoint_bases, const char* &name, bool dest_uninitialized);
  Node* load_mirror_from_klass(Node* klass);
  Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
                                      int nargs,
                                      RegionNode* region, int null_path,
                                      int offset);
  Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
                               RegionNode* region, int null_path) {
    int offset = java_lang_Class::klass_offset_in_bytes();
    return load_klass_from_mirror_common(mirror, never_see_null, nargs,
                                         region, null_path,
                                         offset);
  }
  Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
                                     int nargs,
                                     RegionNode* region, int null_path) {
    int offset = java_lang_Class::array_klass_offset_in_bytes();
    return load_klass_from_mirror_common(mirror, never_see_null, nargs,
                                         region, null_path,
                                         offset);
  }
  Node* generate_access_flags_guard(Node* kls,
                                    int modifier_mask, int modifier_bits,
                                    RegionNode* region);
  Node* generate_interface_guard(Node* kls, RegionNode* region);
  Node* generate_array_guard(Node* kls, RegionNode* region) {
    return generate_array_guard_common(kls, region, false, false);
  }
  Node* generate_non_array_guard(Node* kls, RegionNode* region) {
    return generate_array_guard_common(kls, region, false, true);
  }
  Node* generate_objArray_guard(Node* kls, RegionNode* region) {
    return generate_array_guard_common(kls, region, true, false);
  }
  Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
    return generate_array_guard_common(kls, region, true, true);
  }
  Node* generate_array_guard_common(Node* kls, RegionNode* region,
                                    bool obj_array, bool not_array);
  Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
  CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
                                     bool is_virtual = false, bool is_static = false);
  CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
    return generate_method_call(method_id, false, true);
  }
  CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
    return generate_method_call(method_id, true, false);
  }

  Node* make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2);
  bool inline_string_compareTo();
  bool inline_string_indexOf();
  Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
  bool inline_string_equals();
  Node* pop_math_arg();
  bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
  bool inline_math_native(vmIntrinsics::ID id);
  bool inline_trig(vmIntrinsics::ID id);
  bool inline_trans(vmIntrinsics::ID id);
  bool inline_abs(vmIntrinsics::ID id);
  bool inline_sqrt(vmIntrinsics::ID id);
  bool inline_pow(vmIntrinsics::ID id);
  bool inline_exp(vmIntrinsics::ID id);
  bool inline_min_max(vmIntrinsics::ID id);
  Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
  // This returns Type::AnyPtr, RawPtr, or OopPtr.
  int classify_unsafe_addr(Node* &base, Node* &offset);
  Node* make_unsafe_address(Node* base, Node* offset);
  // Helper for inline_unsafe_access.
  // Generates the guards that check whether the result of
  // Unsafe.getObject should be recorded in an SATB log buffer.
  void insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val);
  bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
  bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
  bool inline_unsafe_allocate();
  bool inline_unsafe_copyMemory();
  bool inline_native_currentThread();
  bool inline_native_time_funcs(bool isNano);
  bool inline_native_isInterrupted();
  bool inline_native_Class_query(vmIntrinsics::ID id);
  bool inline_native_subtype_check();

  bool inline_native_newArray();
  bool inline_native_getLength();
  bool inline_array_copyOf(bool is_copyOfRange);
  bool inline_array_equals();
  void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
  bool inline_native_clone(bool is_virtual);
  bool inline_native_Reflection_getCallerClass();
  bool inline_native_AtomicLong_get();
  bool inline_native_AtomicLong_attemptUpdate();
  bool is_method_invoke_or_aux_frame(JVMState* jvms);
  // Helper function for inlining native object hash method
  bool inline_native_hashcode(bool is_virtual, bool is_static);
  bool inline_native_getClass();

  // Helper functions for inlining arraycopy
  bool inline_arraycopy();
  void generate_arraycopy(const TypePtr* adr_type,
                          BasicType basic_elem_type,
                          Node* src,  Node* src_offset,
                          Node* dest, Node* dest_offset,
                          Node* copy_length,
                          bool disjoint_bases = false,
                          bool length_never_negative = false,
                          RegionNode* slow_region = NULL);
  AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
                                                RegionNode* slow_region);
  void generate_clear_array(const TypePtr* adr_type,
                            Node* dest,
                            BasicType basic_elem_type,
                            Node* slice_off,
                            Node* slice_len,
                            Node* slice_end);
  bool generate_block_arraycopy(const TypePtr* adr_type,
                                BasicType basic_elem_type,
                                AllocateNode* alloc,
                                Node* src,  Node* src_offset,
                                Node* dest, Node* dest_offset,
                                Node* dest_size, bool dest_uninitialized);
  void generate_slow_arraycopy(const TypePtr* adr_type,
                               Node* src,  Node* src_offset,
                               Node* dest, Node* dest_offset,
                               Node* copy_length, bool dest_uninitialized);
  Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
                                     Node* dest_elem_klass,
                                     Node* src,  Node* src_offset,
                                     Node* dest, Node* dest_offset,
                                     Node* copy_length, bool dest_uninitialized);
  Node* generate_generic_arraycopy(const TypePtr* adr_type,
                                   Node* src,  Node* src_offset,
                                   Node* dest, Node* dest_offset,
                                   Node* copy_length, bool dest_uninitialized);
  void generate_unchecked_arraycopy(const TypePtr* adr_type,
                                    BasicType basic_elem_type,
                                    bool disjoint_bases,
                                    Node* src,  Node* src_offset,
                                    Node* dest, Node* dest_offset,
                                    Node* copy_length, bool dest_uninitialized);
  bool inline_unsafe_CAS(BasicType type);
  bool inline_unsafe_ordered_store(BasicType type);
  bool inline_fp_conversions(vmIntrinsics::ID id);
  bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
  bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
  bool inline_bitCount(vmIntrinsics::ID id);
  bool inline_reverseBytes(vmIntrinsics::ID id);

  bool inline_reference_get();
};


//---------------------------make_vm_intrinsic----------------------------
CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  vmIntrinsics::ID id = m->intrinsic_id();
  assert(id != vmIntrinsics::_none, "must be a VM intrinsic");

  if (DisableIntrinsic[0] != '\0'
      && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
    // disabled by a user request on the command line:
    // example: -XX:DisableIntrinsic=_hashCode,_getClass
    return NULL;
  }

  if (!m->is_loaded()) {
    // do not attempt to inline unloaded methods
    return NULL;
  }

  // Only a few intrinsics implement a virtual dispatch.
  // They are expensive calls which are also frequently overridden.
  if (is_virtual) {
    switch (id) {
    case vmIntrinsics::_hashCode:
    case vmIntrinsics::_clone:
      // OK, Object.hashCode and Object.clone intrinsics come in both flavors
      break;
    default:
      return NULL;
    }
  }

  // -XX:-InlineNatives disables nearly all intrinsics:
  if (!InlineNatives) {
    switch (id) {
    case vmIntrinsics::_indexOf:
    case vmIntrinsics::_compareTo:
    case vmIntrinsics::_equals:
    case vmIntrinsics::_equalsC:
      break;  // InlineNatives does not control String.compareTo
    default:
      return NULL;
    }
  }

  switch (id) {
  case vmIntrinsics::_compareTo:
    if (!SpecialStringCompareTo)  return NULL;
    break;
  case vmIntrinsics::_indexOf:
    if (!SpecialStringIndexOf)  return NULL;
    break;
  case vmIntrinsics::_equals:
    if (!SpecialStringEquals)  return NULL;
    break;
  case vmIntrinsics::_equalsC:
    if (!SpecialArraysEquals)  return NULL;
    break;
  case vmIntrinsics::_arraycopy:
    if (!InlineArrayCopy)  return NULL;
    break;
  case vmIntrinsics::_copyMemory:
    if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
    if (!InlineArrayCopy)  return NULL;
    break;
  case vmIntrinsics::_hashCode:
    if (!InlineObjectHash)  return NULL;
    break;
  case vmIntrinsics::_clone:
  case vmIntrinsics::_copyOf:
  case vmIntrinsics::_copyOfRange:
    if (!InlineObjectCopy)  return NULL;
    // These also use the arraycopy intrinsic mechanism:
    if (!InlineArrayCopy)  return NULL;
    break;
  case vmIntrinsics::_checkIndex:
    // We do not intrinsify this.  The optimizer does fine with it.
    return NULL;

  case vmIntrinsics::_get_AtomicLong:
  case vmIntrinsics::_attemptUpdate:
    if (!InlineAtomicLong)  return NULL;
    break;

  case vmIntrinsics::_getCallerClass:
    if (!UseNewReflection)  return NULL;
    if (!InlineReflectionGetCallerClass)  return NULL;
    if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
    break;

  case vmIntrinsics::_bitCount_i:
  case vmIntrinsics::_bitCount_l:
    if (!UsePopCountInstruction)  return NULL;
    break;

  case vmIntrinsics::_Reference_get:
    // It is only when G1 is enabled that we absolutely
    // need to use the intrinsic version of Reference.get()
    // so that the value in the referent field, if necessary,
    // can be registered by the pre-barrier code.
    if (!UseG1GC) return NULL;
    break;

 default:
    assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
    assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
    break;
  }

  // -XX:-InlineClassNatives disables natives from the Class class.
  // The flag applies to all reflective calls, notably Array.newArray
  // (visible to Java programmers as Array.newInstance).
  if (m->holder()->name() == ciSymbol::java_lang_Class() ||
      m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
    if (!InlineClassNatives)  return NULL;
  }

  // -XX:-InlineThreadNatives disables natives from the Thread class.
  if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
    if (!InlineThreadNatives)  return NULL;
  }

  // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
  if (m->holder()->name() == ciSymbol::java_lang_Math() ||
      m->holder()->name() == ciSymbol::java_lang_Float() ||
      m->holder()->name() == ciSymbol::java_lang_Double()) {
    if (!InlineMathNatives)  return NULL;
  }

  // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
  if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
    if (!InlineUnsafeOps)  return NULL;
  }

  return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
}

//----------------------register_library_intrinsics-----------------------
// Initialize this file's data structures, for each Compile instance.
void Compile::register_library_intrinsics() {
  // Nothing to do here.
}

JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
  LibraryCallKit kit(jvms, this);
  Compile* C = kit.C;
  int nodes = C->unique();
#ifndef PRODUCT
  if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
    char buf[1000];
    const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
    tty->print_cr("Intrinsic %s", str);
  }
#endif

  if (kit.try_to_inline()) {
    if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
      if (jvms->has_method()) {
        // Not a root compile.
        tty->print("Inlining intrinsic %s%s at bci:%d in",
                   vmIntrinsics::name_at(intrinsic_id()),
                   (is_virtual() ? " (virtual)" : ""), kit.bci());
        kit.caller()->print_short_name(tty);
        tty->print_cr(" (%d bytes)", kit.caller()->code_size());
      } else {
        // Root compile
        tty->print_cr("Generating intrinsic %s%s at bci:%d",
                       vmIntrinsics::name_at(intrinsic_id()),
                       (is_virtual() ? " (virtual)" : ""), kit.bci());
      }
    }
    C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
    if (C->log()) {
      C->log()->elem("intrinsic id='%s'%s nodes='%d'",
                     vmIntrinsics::name_at(intrinsic_id()),
                     (is_virtual() ? " virtual='1'" : ""),
                     C->unique() - nodes);
    }
    return kit.transfer_exceptions_into_jvms();
  }

  if (PrintIntrinsics) {
    if (jvms->has_method()) {
      // Not a root compile.
      tty->print("Did not inline intrinsic %s%s at bci:%d in",
                 vmIntrinsics::name_at(intrinsic_id()),
                 (is_virtual() ? " (virtual)" : ""), kit.bci());
      kit.caller()->print_short_name(tty);
      tty->print_cr(" (%d bytes)", kit.caller()->code_size());
    } else {
      // Root compile
      tty->print("Did not generate intrinsic %s%s at bci:%d in",
               vmIntrinsics::name_at(intrinsic_id()),
               (is_virtual() ? " (virtual)" : ""), kit.bci());
    }
  }
  C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
  return NULL;
}

bool LibraryCallKit::try_to_inline() {
  // Handle symbolic names for otherwise undistinguished boolean switches:
  const bool is_store       = true;
  const bool is_native_ptr  = true;
  const bool is_static      = true;

  if (!jvms()->has_method()) {
    // Root JVMState has a null method.
    assert(map()->memory()->Opcode() == Op_Parm, "");
    // Insert the memory aliasing node
    set_all_memory(reset_memory());
  }
  assert(merged_memory(), "");

  switch (intrinsic_id()) {
  case vmIntrinsics::_hashCode:
    return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
  case vmIntrinsics::_identityHashCode:
    return inline_native_hashcode(/*!virtual*/ false, is_static);
  case vmIntrinsics::_getClass:
    return inline_native_getClass();

  case vmIntrinsics::_dsin:
  case vmIntrinsics::_dcos:
  case vmIntrinsics::_dtan:
  case vmIntrinsics::_dabs:
  case vmIntrinsics::_datan2:
  case vmIntrinsics::_dsqrt:
  case vmIntrinsics::_dexp:
  case vmIntrinsics::_dlog:
  case vmIntrinsics::_dlog10:
  case vmIntrinsics::_dpow:
    return inline_math_native(intrinsic_id());

  case vmIntrinsics::_min:
  case vmIntrinsics::_max:
    return inline_min_max(intrinsic_id());

  case vmIntrinsics::_arraycopy:
    return inline_arraycopy();

  case vmIntrinsics::_compareTo:
    return inline_string_compareTo();
  case vmIntrinsics::_indexOf:
    return inline_string_indexOf();
  case vmIntrinsics::_equals:
    return inline_string_equals();

  case vmIntrinsics::_getObject:
    return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
  case vmIntrinsics::_getBoolean:
    return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
  case vmIntrinsics::_getByte:
    return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
  case vmIntrinsics::_getShort:
    return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
  case vmIntrinsics::_getChar:
    return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
  case vmIntrinsics::_getInt:
    return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
  case vmIntrinsics::_getLong:
    return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
  case vmIntrinsics::_getFloat:
    return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
  case vmIntrinsics::_getDouble:
    return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);

  case vmIntrinsics::_putObject:
    return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
  case vmIntrinsics::_putBoolean:
    return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
  case vmIntrinsics::_putByte:
    return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
  case vmIntrinsics::_putShort:
    return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
  case vmIntrinsics::_putChar:
    return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
  case vmIntrinsics::_putInt:
    return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
  case vmIntrinsics::_putLong:
    return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
  case vmIntrinsics::_putFloat:
    return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
  case vmIntrinsics::_putDouble:
    return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);

  case vmIntrinsics::_getByte_raw:
    return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
  case vmIntrinsics::_getShort_raw:
    return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
  case vmIntrinsics::_getChar_raw:
    return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
  case vmIntrinsics::_getInt_raw:
    return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
  case vmIntrinsics::_getLong_raw:
    return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
  case vmIntrinsics::_getFloat_raw:
    return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
  case vmIntrinsics::_getDouble_raw:
    return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
  case vmIntrinsics::_getAddress_raw:
    return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);

  case vmIntrinsics::_putByte_raw:
    return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
  case vmIntrinsics::_putShort_raw:
    return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
  case vmIntrinsics::_putChar_raw:
    return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
  case vmIntrinsics::_putInt_raw:
    return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
  case vmIntrinsics::_putLong_raw:
    return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
  case vmIntrinsics::_putFloat_raw:
    return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
  case vmIntrinsics::_putDouble_raw:
    return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
  case vmIntrinsics::_putAddress_raw:
    return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);

  case vmIntrinsics::_getObjectVolatile:
    return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
  case vmIntrinsics::_getBooleanVolatile:
    return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
  case vmIntrinsics::_getByteVolatile:
    return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
  case vmIntrinsics::_getShortVolatile:
    return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
  case vmIntrinsics::_getCharVolatile:
    return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
  case vmIntrinsics::_getIntVolatile:
    return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
  case vmIntrinsics::_getLongVolatile:
    return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
  case vmIntrinsics::_getFloatVolatile:
    return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
  case vmIntrinsics::_getDoubleVolatile:
    return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);

  case vmIntrinsics::_putObjectVolatile:
    return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
  case vmIntrinsics::_putBooleanVolatile:
    return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
  case vmIntrinsics::_putByteVolatile:
    return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
  case vmIntrinsics::_putShortVolatile:
    return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
  case vmIntrinsics::_putCharVolatile:
    return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
  case vmIntrinsics::_putIntVolatile:
    return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
  case vmIntrinsics::_putLongVolatile:
    return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
  case vmIntrinsics::_putFloatVolatile:
    return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
  case vmIntrinsics::_putDoubleVolatile:
    return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);

  case vmIntrinsics::_prefetchRead:
    return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
  case vmIntrinsics::_prefetchWrite:
    return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
  case vmIntrinsics::_prefetchReadStatic:
    return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
  case vmIntrinsics::_prefetchWriteStatic:
    return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);

  case vmIntrinsics::_compareAndSwapObject:
    return inline_unsafe_CAS(T_OBJECT);
  case vmIntrinsics::_compareAndSwapInt:
    return inline_unsafe_CAS(T_INT);
  case vmIntrinsics::_compareAndSwapLong:
    return inline_unsafe_CAS(T_LONG);

  case vmIntrinsics::_putOrderedObject:
    return inline_unsafe_ordered_store(T_OBJECT);
  case vmIntrinsics::_putOrderedInt:
    return inline_unsafe_ordered_store(T_INT);
  case vmIntrinsics::_putOrderedLong:
    return inline_unsafe_ordered_store(T_LONG);

  case vmIntrinsics::_currentThread:
    return inline_native_currentThread();
  case vmIntrinsics::_isInterrupted:
    return inline_native_isInterrupted();

  case vmIntrinsics::_currentTimeMillis:
    return inline_native_time_funcs(false);
  case vmIntrinsics::_nanoTime:
    return inline_native_time_funcs(true);
  case vmIntrinsics::_allocateInstance:
    return inline_unsafe_allocate();
  case vmIntrinsics::_copyMemory:
    return inline_unsafe_copyMemory();
  case vmIntrinsics::_newArray:
    return inline_native_newArray();
  case vmIntrinsics::_getLength:
    return inline_native_getLength();
  case vmIntrinsics::_copyOf:
    return inline_array_copyOf(false);
  case vmIntrinsics::_copyOfRange:
    return inline_array_copyOf(true);
  case vmIntrinsics::_equalsC:
    return inline_array_equals();
  case vmIntrinsics::_clone:
    return inline_native_clone(intrinsic()->is_virtual());

  case vmIntrinsics::_isAssignableFrom:
    return inline_native_subtype_check();

  case vmIntrinsics::_isInstance:
  case vmIntrinsics::_getModifiers:
  case vmIntrinsics::_isInterface:
  case vmIntrinsics::_isArray:
  case vmIntrinsics::_isPrimitive:
  case vmIntrinsics::_getSuperclass:
  case vmIntrinsics::_getComponentType:
  case vmIntrinsics::_getClassAccessFlags:
    return inline_native_Class_query(intrinsic_id());

  case vmIntrinsics::_floatToRawIntBits:
  case vmIntrinsics::_floatToIntBits:
  case vmIntrinsics::_intBitsToFloat:
  case vmIntrinsics::_doubleToRawLongBits:
  case vmIntrinsics::_doubleToLongBits:
  case vmIntrinsics::_longBitsToDouble:
    return inline_fp_conversions(intrinsic_id());

  case vmIntrinsics::_numberOfLeadingZeros_i:
  case vmIntrinsics::_numberOfLeadingZeros_l:
    return inline_numberOfLeadingZeros(intrinsic_id());

  case vmIntrinsics::_numberOfTrailingZeros_i:
  case vmIntrinsics::_numberOfTrailingZeros_l:
    return inline_numberOfTrailingZeros(intrinsic_id());

  case vmIntrinsics::_bitCount_i:
  case vmIntrinsics::_bitCount_l:
    return inline_bitCount(intrinsic_id());

  case vmIntrinsics::_reverseBytes_i:
  case vmIntrinsics::_reverseBytes_l:
  case vmIntrinsics::_reverseBytes_s:
  case vmIntrinsics::_reverseBytes_c:
    return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());

  case vmIntrinsics::_get_AtomicLong:
    return inline_native_AtomicLong_get();
  case vmIntrinsics::_attemptUpdate:
    return inline_native_AtomicLong_attemptUpdate();

  case vmIntrinsics::_getCallerClass:
    return inline_native_Reflection_getCallerClass();

  case vmIntrinsics::_Reference_get:
    return inline_reference_get();

  default:
    // If you get here, it may be that someone has added a new intrinsic
    // to the list in vmSymbols.hpp without implementing it here.
#ifndef PRODUCT
    if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
      tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
                    vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
    }
#endif
    return false;
  }
}

//------------------------------push_result------------------------------
// Helper function for finishing intrinsics.
void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
  record_for_igvn(region);
  set_control(_gvn.transform(region));
  BasicType value_type = value->type()->basic_type();
  push_node(value_type, _gvn.transform(value));
}

//------------------------------generate_guard---------------------------
// Helper function for generating guarded fast-slow graph structures.
// The given 'test', if true, guards a slow path.  If the test fails
// then a fast path can be taken.  (We generally hope it fails.)
// In all cases, GraphKit::control() is updated to the fast path.
// The returned value represents the control for the slow path.
// The return value is never 'top'; it is either a valid control
// or NULL if it is obvious that the slow path can never be taken.
// Also, if region and the slow control are not NULL, the slow edge
// is appended to the region.
Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
  if (stopped()) {
    // Already short circuited.
    return NULL;
  }

  // Build an if node and its projections.
  // If test is true we take the slow path, which we assume is uncommon.
  if (_gvn.type(test) == TypeInt::ZERO) {
    // The slow branch is never taken.  No need to build this guard.
    return NULL;
  }

  IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);

  Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
  if (if_slow == top()) {
    // The slow branch is never taken.  No need to build this guard.
    return NULL;
  }

  if (region != NULL)
    region->add_req(if_slow);

  Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
  set_control(if_fast);

  return if_slow;
}

inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
  return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
}
inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
  return generate_guard(test, region, PROB_FAIR);
}

inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
                                                     Node* *pos_index) {
  if (stopped())
    return NULL;                // already stopped
  if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
    return NULL;                // index is already adequately typed
  Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
  Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
  Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
  if (is_neg != NULL && pos_index != NULL) {
    // Emulate effect of Parse::adjust_map_after_if.
    Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
    ccast->set_req(0, control());
    (*pos_index) = _gvn.transform(ccast);
  }
  return is_neg;
}

inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
                                                        Node* *pos_index) {
  if (stopped())
    return NULL;                // already stopped
  if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
    return NULL;                // index is already adequately typed
  Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
  BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
  Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
  Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
  if (is_notp != NULL && pos_index != NULL) {
    // Emulate effect of Parse::adjust_map_after_if.
    Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
    ccast->set_req(0, control());
    (*pos_index) = _gvn.transform(ccast);
  }
  return is_notp;
}

// Make sure that 'position' is a valid limit index, in [0..length].
// There are two equivalent plans for checking this:
//   A. (offset + copyLength)  unsigned<=  arrayLength
//   B. offset  <=  (arrayLength - copyLength)
// We require that all of the values above, except for the sum and
// difference, are already known to be non-negative.
// Plan A is robust in the face of overflow, if offset and copyLength
// are both hugely positive.
//
// Plan B is less direct and intuitive, but it does not overflow at
// all, since the difference of two non-negatives is always
// representable.  Whenever Java methods must perform the equivalent
// check they generally use Plan B instead of Plan A.
// For the moment we use Plan A.
inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
                                                  Node* subseq_length,
                                                  Node* array_length,
                                                  RegionNode* region) {
  if (stopped())
    return NULL;                // already stopped
  bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
  if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
    return NULL;                // common case of whole-array copy
  Node* last = subseq_length;
  if (!zero_offset)             // last += offset
    last = _gvn.transform( new (C, 3) AddINode(last, offset));
  Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
  Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
  Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
  return is_over;
}


//--------------------------generate_current_thread--------------------
Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
  ciKlass*    thread_klass = env()->Thread_klass();
  const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
  Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
  Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
  Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
  tls_output = thread;
  return threadObj;
}


//------------------------------make_string_method_node------------------------
// Helper method for String intrinsic finctions.
Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2) {
  const int value_offset  = java_lang_String::value_offset_in_bytes();
  const int count_offset  = java_lang_String::count_offset_in_bytes();
  const int offset_offset = java_lang_String::offset_offset_in_bytes();

  Node* no_ctrl = NULL;

  ciInstanceKlass* klass = env()->String_klass();
  const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);

  const TypeAryPtr* value_type =
        TypeAryPtr::make(TypePtr::NotNull,
                         TypeAry::make(TypeInt::CHAR,TypeInt::POS),
                         ciTypeArrayKlass::make(T_CHAR), true, 0);

  // Get start addr of string and substring
  Node* str1_valuea  = basic_plus_adr(str1, str1, value_offset);
  Node* str1_value   = make_load(no_ctrl, str1_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
  Node* str1_offseta = basic_plus_adr(str1, str1, offset_offset);
  Node* str1_offset  = make_load(no_ctrl, str1_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
  Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);

  // Pin loads from String::equals() argument since it could be NULL.
  Node* str2_ctrl = (opcode == Op_StrEquals) ? control() : no_ctrl;
  Node* str2_valuea  = basic_plus_adr(str2, str2, value_offset);
  Node* str2_value   = make_load(str2_ctrl, str2_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
  Node* str2_offseta = basic_plus_adr(str2, str2, offset_offset);
  Node* str2_offset  = make_load(str2_ctrl, str2_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
  Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);

  Node* result = NULL;
  switch (opcode) {
  case Op_StrIndexOf:
    result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
                                       str1_start, cnt1, str2_start, cnt2);
    break;
  case Op_StrComp:
    result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
                                    str1_start, cnt1, str2_start, cnt2);
    break;
  case Op_StrEquals:
    result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
                                      str1_start, str2_start, cnt1);
    break;
  default:
    ShouldNotReachHere();
    return NULL;
  }

  // All these intrinsics have checks.
  C->set_has_split_ifs(true); // Has chance for split-if optimization

  return _gvn.transform(result);
}

//------------------------------inline_string_compareTo------------------------
bool LibraryCallKit::inline_string_compareTo() {

  if (!Matcher::has_match_rule(Op_StrComp)) return false;

  const int value_offset = java_lang_String::value_offset_in_bytes();
  const int count_offset = java_lang_String::count_offset_in_bytes();
  const int offset_offset = java_lang_String::offset_offset_in_bytes();

  _sp += 2;
  Node *argument = pop();  // pop non-receiver first:  it was pushed second
  Node *receiver = pop();

  // Null check on self without removing any arguments.  The argument
  // null check technically happens in the wrong place, which can lead to
  // invalid stack traces when string compare is inlined into a method
  // which handles NullPointerExceptions.
  _sp += 2;
  receiver = do_null_check(receiver, T_OBJECT);
  argument = do_null_check(argument, T_OBJECT);
  _sp -= 2;
  if (stopped()) {
    return true;
  }

  ciInstanceKlass* klass = env()->String_klass();
  const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  Node* no_ctrl = NULL;

  // Get counts for string and argument
  Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
  Node* receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));

  Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
  Node* argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));

  Node* compare = make_string_method_node(Op_StrComp, receiver, receiver_cnt, argument, argument_cnt);
  push(compare);
  return true;
}

//------------------------------inline_string_equals------------------------
bool LibraryCallKit::inline_string_equals() {

  if (!Matcher::has_match_rule(Op_StrEquals)) return false;

  const int value_offset = java_lang_String::value_offset_in_bytes();
  const int count_offset = java_lang_String::count_offset_in_bytes();
  const int offset_offset = java_lang_String::offset_offset_in_bytes();

  int nargs = 2;
  _sp += nargs;
  Node* argument = pop();  // pop non-receiver first:  it was pushed second
  Node* receiver = pop();

  // Null check on self without removing any arguments.  The argument
  // null check technically happens in the wrong place, which can lead to
  // invalid stack traces when string compare is inlined into a method
  // which handles NullPointerExceptions.
  _sp += nargs;
  receiver = do_null_check(receiver, T_OBJECT);
  //should not do null check for argument for String.equals(), because spec
  //allows to specify NULL as argument.
  _sp -= nargs;

  if (stopped()) {
    return true;
  }

  // paths (plus control) merge
  RegionNode* region = new (C, 5) RegionNode(5);
  Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);

  // does source == target string?
  Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
  Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));

  Node* if_eq = generate_slow_guard(bol, NULL);
  if (if_eq != NULL) {
    // receiver == argument
    phi->init_req(2, intcon(1));
    region->init_req(2, if_eq);
  }

  // get String klass for instanceOf
  ciInstanceKlass* klass = env()->String_klass();

  if (!stopped()) {
    _sp += nargs;          // gen_instanceof might do an uncommon trap
    Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
    _sp -= nargs;
    Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
    Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));

    Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
    //instanceOf == true, fallthrough

    if (inst_false != NULL) {
      phi->init_req(3, intcon(0));
      region->init_req(3, inst_false);
    }
  }

  const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);

  Node* no_ctrl = NULL;
  Node* receiver_cnt;
  Node* argument_cnt;

  if (!stopped()) {
    // Properly cast the argument to String
    argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));

    // Get counts for string and argument
    Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
    receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));

    // Pin load from argument string since it could be NULL.
    Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
    argument_cnt  = make_load(control(), argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));

    // Check for receiver count != argument count
    Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
    Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
    Node* if_ne = generate_slow_guard(bol, NULL);
    if (if_ne != NULL) {
      phi->init_req(4, intcon(0));
      region->init_req(4, if_ne);
    }
  }

  // Check for count == 0 is done by mach node StrEquals.

  if (!stopped()) {
    Node* equals = make_string_method_node(Op_StrEquals, receiver, receiver_cnt, argument, argument_cnt);
    phi->init_req(1, equals);
    region->init_req(1, control());
  }

  // post merge
  set_control(_gvn.transform(region));
  record_for_igvn(region);

  push(_gvn.transform(phi));

  return true;
}

//------------------------------inline_array_equals----------------------------
bool LibraryCallKit::inline_array_equals() {

  if (!Matcher::has_match_rule(Op_AryEq)) return false;

  _sp += 2;
  Node *argument2 = pop();
  Node *argument1 = pop();

  Node* equals =
    _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
                                        argument1, argument2) );
  push(equals);
  return true;
}

// Java version of String.indexOf(constant string)
// class StringDecl {
//   StringDecl(char[] ca) {
//     offset = 0;
//     count = ca.length;
//     value = ca;
//   }
//   int offset;
//   int count;
//   char[] value;
// }
//
// static int string_indexOf_J(StringDecl string_object, char[] target_object,
//                             int targetOffset, int cache_i, int md2) {
//   int cache = cache_i;
//   int sourceOffset = string_object.offset;
//   int sourceCount = string_object.count;
//   int targetCount = target_object.length;
//
//   int targetCountLess1 = targetCount - 1;
//   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
//
//   char[] source = string_object.value;
//   char[] target = target_object;
//   int lastChar = target[targetCountLess1];
//
//  outer_loop:
//   for (int i = sourceOffset; i < sourceEnd; ) {
//     int src = source[i + targetCountLess1];
//     if (src == lastChar) {
//       // With random strings and a 4-character alphabet,
//       // reverse matching at this point sets up 0.8% fewer
//       // frames, but (paradoxically) makes 0.3% more probes.
//       // Since those probes are nearer the lastChar probe,
//       // there is may be a net D$ win with reverse matching.
//       // But, reversing loop inhibits unroll of inner loop
//       // for unknown reason.  So, does running outer loop from
//       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
//       for (int j = 0; j < targetCountLess1; j++) {
//         if (target[targetOffset + j] != source[i+j]) {
//           if ((cache & (1 << source[i+j])) == 0) {
//             if (md2 < j+1) {
//               i += j+1;
//               continue outer_loop;
//             }
//           }
//           i += md2;
//           continue outer_loop;
//         }
//       }
//       return i - sourceOffset;
//     }
//     if ((cache & (1 << src)) == 0) {
//       i += targetCountLess1;
//     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
//     i++;
//   }
//   return -1;
// }

//------------------------------string_indexOf------------------------
Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
                                     jint cache_i, jint md2_i) {

  Node* no_ctrl  = NULL;
  float likely   = PROB_LIKELY(0.9);
  float unlikely = PROB_UNLIKELY(0.9);

  const int nargs = 2; // number of arguments to push back for uncommon trap in predicate

  const int value_offset  = java_lang_String::value_offset_in_bytes();
  const int count_offset  = java_lang_String::count_offset_in_bytes();
  const int offset_offset = java_lang_String::offset_offset_in_bytes();

  ciInstanceKlass* klass = env()->String_klass();
  const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);

  Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
  Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
  Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
  Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
  Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));

  Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
  jint target_length = target_array->length();
  const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);

  IdealKit kit(gvn(), control(), merged_memory(), false, true);
#define __ kit.
  Node* zero             = __ ConI(0);
  Node* one              = __ ConI(1);
  Node* cache            = __ ConI(cache_i);
  Node* md2              = __ ConI(md2_i);
  Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  Node* targetCount      = __ ConI(target_length);
  Node* targetCountLess1 = __ ConI(target_length - 1);
  Node* targetOffset     = __ ConI(targetOffset_i);
  Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);

  IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  Node* outer_loop = __ make_label(2 /* goto */);
  Node* return_    = __ make_label(1);

  __ set(rtn,__ ConI(-1));
  __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
       Node* i2  = __ AddI(__ value(i), targetCountLess1);
       // pin to prohibit loading of "next iteration" value which may SEGV (rare)
       Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
       __ if_then(src, BoolTest::eq, lastChar, unlikely); {
         __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
              Node* tpj = __ AddI(targetOffset, __ value(j));
              Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
              Node* ipj  = __ AddI(__ value(i), __ value(j));
              Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
              __ if_then(targ, BoolTest::ne, src2); {
                __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
                  __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
                    __ increment(i, __ AddI(__ value(j), one));
                    __ goto_(outer_loop);
                  } __ end_if(); __ dead(j);
                }__ end_if(); __ dead(j);
                __ increment(i, md2);
                __ goto_(outer_loop);
              }__ end_if();
              __ increment(j, one);
         }__ end_loop(); __ dead(j);
         __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
         __ goto_(return_);
       }__ end_if();
       __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
         __ increment(i, targetCountLess1);
       }__ end_if();
       __ increment(i, one);
       __ bind(outer_loop);
  }__ end_loop(); __ dead(i);
  __ bind(return_);

  // Final sync IdealKit and GraphKit.
  sync_kit(kit);
  Node* result = __ value(rtn);
#undef __
  C->set_has_loops(true);
  return result;
}

//------------------------------inline_string_indexOf------------------------
bool LibraryCallKit::inline_string_indexOf() {

  const int value_offset  = java_lang_String::value_offset_in_bytes();
  const int count_offset  = java_lang_String::count_offset_in_bytes();
  const int offset_offset = java_lang_String::offset_offset_in_bytes();

  _sp += 2;
  Node *argument = pop();  // pop non-receiver first:  it was pushed second
  Node *receiver = pop();

  Node* result;
  // Disable the use of pcmpestri until it can be guaranteed that
  // the load doesn't cross into the uncommited space.
  if (Matcher::has_match_rule(Op_StrIndexOf) &&
      UseSSE42Intrinsics) {
    // Generate SSE4.2 version of indexOf
    // We currently only have match rules that use SSE4.2

    // Null check on self without removing any arguments.  The argument
    // null check technically happens in the wrong place, which can lead to
    // invalid stack traces when string compare is inlined into a method
    // which handles NullPointerExceptions.
    _sp += 2;
    receiver = do_null_check(receiver, T_OBJECT);
    argument = do_null_check(argument, T_OBJECT);
    _sp -= 2;

    if (stopped()) {
      return true;
    }

    ciInstanceKlass* str_klass = env()->String_klass();
    const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);

    // Make the merge point
    RegionNode* result_rgn = new (C, 4) RegionNode(4);
    Node*       result_phi = new (C, 4) PhiNode(result_rgn, TypeInt::INT);
    Node* no_ctrl  = NULL;

    // Get counts for string and substr
    Node* source_cnta = basic_plus_adr(receiver, receiver, count_offset);
    Node* source_cnt  = make_load(no_ctrl, source_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));

    Node* substr_cnta = basic_plus_adr(argument, argument, count_offset);
    Node* substr_cnt  = make_load(no_ctrl, substr_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));

    // Check for substr count > string count
    Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
    Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
    Node* if_gt = generate_slow_guard(bol, NULL);
    if (if_gt != NULL) {
      result_phi->init_req(2, intcon(-1));
      result_rgn->init_req(2, if_gt);
    }

    if (!stopped()) {
      // Check for substr count == 0
      cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, intcon(0)) );
      bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
      Node* if_zero = generate_slow_guard(bol, NULL);
      if (if_zero != NULL) {
        result_phi->init_req(3, intcon(0));
        result_rgn->init_req(3, if_zero);
      }
    }

    if (!stopped()) {
      result = make_string_method_node(Op_StrIndexOf, receiver, source_cnt, argument, substr_cnt);
      result_phi->init_req(1, result);
      result_rgn->init_req(1, control());
    }
    set_control(_gvn.transform(result_rgn));
    record_for_igvn(result_rgn);
    result = _gvn.transform(result_phi);

  } else { // Use LibraryCallKit::string_indexOf
    // don't intrinsify if argument isn't a constant string.
    if (!argument->is_Con()) {
     return false;
    }
    const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
    if (str_type == NULL) {
      return false;
    }
    ciInstanceKlass* klass = env()->String_klass();
    ciObject* str_const = str_type->const_oop();
    if (str_const == NULL || str_const->klass() != klass) {
      return false;
    }
    ciInstance* str = str_const->as_instance();
    assert(str != NULL, "must be instance");

    ciObject* v = str->field_value_by_offset(value_offset).as_object();
    int       o = str->field_value_by_offset(offset_offset).as_int();
    int       c = str->field_value_by_offset(count_offset).as_int();
    ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array

    // constant strings have no offset and count == length which
    // simplifies the resulting code somewhat so lets optimize for that.
    if (o != 0 || c != pat->length()) {
     return false;
    }

    // Null check on self without removing any arguments.  The argument
    // null check technically happens in the wrong place, which can lead to
    // invalid stack traces when string compare is inlined into a method
    // which handles NullPointerExceptions.
    _sp += 2;
    receiver = do_null_check(receiver, T_OBJECT);
    // No null check on the argument is needed since it's a constant String oop.
    _sp -= 2;
    if (stopped()) {
      return true;
    }

    // The null string as a pattern always returns 0 (match at beginning of string)
    if (c == 0) {
      push(intcon(0));
      return true;
    }

    // Generate default indexOf
    jchar lastChar = pat->char_at(o + (c - 1));
    int cache = 0;
    int i;
    for (i = 0; i < c - 1; i++) {
      assert(i < pat->length(), "out of range");
      cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
    }

    int md2 = c;
    for (i = 0; i < c - 1; i++) {
      assert(i < pat->length(), "out of range");
      if (pat->char_at(o + i) == lastChar) {
        md2 = (c - 1) - i;
      }
    }

    result = string_indexOf(receiver, pat, o, cache, md2);
  }

  push(result);
  return true;
}

//--------------------------pop_math_arg--------------------------------
// Pop a double argument to a math function from the stack
// rounding it if necessary.
Node * LibraryCallKit::pop_math_arg() {
  Node *arg = pop_pair();
  if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
    arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
  return arg;
}

//------------------------------inline_trig----------------------------------
// Inline sin/cos/tan instructions, if possible.  If rounding is required, do
// argument reduction which will turn into a fast/slow diamond.
bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  _sp += arg_size();            // restore stack pointer
  Node* arg = pop_math_arg();
  Node* trig = NULL;

  switch (id) {
  case vmIntrinsics::_dsin:
    trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
    break;
  case vmIntrinsics::_dcos:
    trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
    break;
  case vmIntrinsics::_dtan:
    trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
    break;
  default:
    assert(false, "bad intrinsic was passed in");
    return false;
  }

  // Rounding required?  Check for argument reduction!
  if( Matcher::strict_fp_requires_explicit_rounding ) {

    static const double     pi_4 =  0.7853981633974483;
    static const double neg_pi_4 = -0.7853981633974483;
    // pi/2 in 80-bit extended precision
    // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
    // -pi/2 in 80-bit extended precision
    // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
    // Cutoff value for using this argument reduction technique
    //static const double    pi_2_minus_epsilon =  1.564660403643354;
    //static const double neg_pi_2_plus_epsilon = -1.564660403643354;

    // Pseudocode for sin:
    // if (x <= Math.PI / 4.0) {
    //   if (x >= -Math.PI / 4.0) return  fsin(x);
    //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
    // } else {
    //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
    // }
    // return StrictMath.sin(x);

    // Pseudocode for cos:
    // if (x <= Math.PI / 4.0) {
    //   if (x >= -Math.PI / 4.0) return  fcos(x);
    //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
    // } else {
    //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
    // }
    // return StrictMath.cos(x);

    // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
    // requires a special machine instruction to load it.  Instead we'll try
    // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
    // probably do the math inside the SIN encoding.

    // Make the merge point
    RegionNode *r = new (C, 3) RegionNode(3);
    Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);

    // Flatten arg so we need only 1 test
    Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
    // Node for PI/4 constant
    Node *pi4 = makecon(TypeD::make(pi_4));
    // Check PI/4 : abs(arg)
    Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
    // Check: If PI/4 < abs(arg) then go slow
    Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
    // Branch either way
    IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
    set_control(opt_iff(r,iff));

    // Set fast path result
    phi->init_req(2,trig);

    // Slow path - non-blocking leaf call
    Node* call = NULL;
    switch (id) {
    case vmIntrinsics::_dsin:
      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
                               CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
                               "Sin", NULL, arg, top());
      break;
    case vmIntrinsics::_dcos:
      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
                               CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
                               "Cos", NULL, arg, top());
      break;
    case vmIntrinsics::_dtan:
      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
                               CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
                               "Tan", NULL, arg, top());
      break;
    }
    assert(control()->in(0) == call, "");
    Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
    r->init_req(1,control());
    phi->init_req(1,slow_result);

    // Post-merge
    set_control(_gvn.transform(r));
    record_for_igvn(r);
    trig = _gvn.transform(phi);

    C->set_has_split_ifs(true); // Has chance for split-if optimization
  }
  // Push result back on JVM stack
  push_pair(trig);
  return true;
}

//------------------------------inline_sqrt-------------------------------------
// Inline square root instruction, if possible.
bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
  assert(id == vmIntrinsics::_dsqrt, "Not square root");
  _sp += arg_size();        // restore stack pointer
  push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
  return true;
}

//------------------------------inline_abs-------------------------------------
// Inline absolute value instruction, if possible.
bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
  assert(id == vmIntrinsics::_dabs, "Not absolute value");
  _sp += arg_size();        // restore stack pointer
  push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
  return true;
}

//------------------------------inline_exp-------------------------------------
// Inline exp instructions, if possible.  The Intel hardware only misses
// really odd corner cases (+/- Infinity).  Just uncommon-trap them.
bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
  assert(id == vmIntrinsics::_dexp, "Not exp");

  // If this inlining ever returned NaN in the past, we do not intrinsify it
  // every again.  NaN results requires StrictMath.exp handling.
  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;

  // Do not intrinsify on older platforms which lack cmove.
  if (ConditionalMoveLimit == 0)  return false;

  _sp += arg_size();        // restore stack pointer
  Node *x = pop_math_arg();
  Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));

  //-------------------
  //result=(result.isNaN())? StrictMath::exp():result;
  // Check: If isNaN() by checking result!=result? then go to Strict Math
  Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  // Build the boolean node
  Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );

  { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
    // End the current control-flow path
    push_pair(x);
    // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
    // to handle.  Recompile without intrinsifying Math.exp
    uncommon_trap(Deoptimization::Reason_intrinsic,
                  Deoptimization::Action_make_not_entrant);
  }

  C->set_has_split_ifs(true); // Has chance for split-if optimization

  push_pair(result);

  return true;
}

//------------------------------inline_pow-------------------------------------
// Inline power instructions, if possible.
bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
  assert(id == vmIntrinsics::_dpow, "Not pow");

  // If this inlining ever returned NaN in the past, we do not intrinsify it
  // every again.  NaN results requires StrictMath.pow handling.
  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;

  // Do not intrinsify on older platforms which lack cmove.
  if (ConditionalMoveLimit == 0)  return false;

  // Pseudocode for pow
  // if (x <= 0.0) {
  //   if ((double)((int)y)==y) { // if y is int
  //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
  //   } else {
  //     result = NaN;
  //   }
  // } else {
  //   result = DPow(x,y);
  // }
  // if (result != result)?  {
  //   uncommon_trap();
  // }
  // return result;

  _sp += arg_size();        // restore stack pointer
  Node* y = pop_math_arg();
  Node* x = pop_math_arg();

  Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );

  // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
  // inside of something) then skip the fancy tests and just check for
  // NaN result.
  Node *result = NULL;
  if( jvms()->depth() >= 1 ) {
    result = fast_result;
  } else {

    // Set the merge point for If node with condition of (x <= 0.0)
    // There are four possible paths to region node and phi node
    RegionNode *r = new (C, 4) RegionNode(4);
    Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);

    // Build the first if node: if (x <= 0.0)
    // Node for 0 constant
    Node *zeronode = makecon(TypeD::ZERO);
    // Check x:0
    Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
    // Check: If (x<=0) then go complex path
    Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
    // Branch either way
    IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
    Node *opt_test = _gvn.transform(if1);
    //assert( opt_test->is_If(), "Expect an IfNode");
    IfNode *opt_if1 = (IfNode*)opt_test;
    // Fast path taken; set region slot 3
    Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
    r->init_req(3,fast_taken); // Capture fast-control

    // Fast path not-taken, i.e. slow path
    Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );

    // Set fast path result
    Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
    phi->init_req(3, fast_result);

    // Complex path
    // Build the second if node (if y is int)
    // Node for (int)y
    Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
    // Node for (double)((int) y)
    Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
    // Check (double)((int) y) : y
    Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
    // Check if (y isn't int) then go to slow path

    Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
    // Branch either way
    IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
    Node *slow_path = opt_iff(r,if2); // Set region path 2

    // Calculate DPow(abs(x), y)*(1 & (int)y)
    // Node for constant 1
    Node *conone = intcon(1);
    // 1& (int)y
    Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
    // zero node
    Node *conzero = intcon(0);
    // Check (1&(int)y)==0?
    Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
    // Check if (1&(int)y)!=0?, if so the result is negative
    Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
    // abs(x)
    Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
    // abs(x)^y
    Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
    // -abs(x)^y
    Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
    // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
    Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
    // Set complex path fast result
    phi->init_req(2, signresult);

    static const jlong nan_bits = CONST64(0x7ff8000000000000);
    Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
    r->init_req(1,slow_path);
    phi->init_req(1,slow_result);

    // Post merge
    set_control(_gvn.transform(r));
    record_for_igvn(r);
    result=_gvn.transform(phi);
  }

  //-------------------
  //result=(result.isNaN())? uncommon_trap():result;
  // Check: If isNaN() by checking result!=result? then go to Strict Math
  Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  // Build the boolean node
  Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );

  { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
    // End the current control-flow path
    push_pair(x);
    push_pair(y);
    // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
    // to handle.  Recompile without intrinsifying Math.pow.
    uncommon_trap(Deoptimization::Reason_intrinsic,
                  Deoptimization::Action_make_not_entrant);
  }

  C->set_has_split_ifs(true); // Has chance for split-if optimization

  push_pair(result);

  return true;
}

//------------------------------inline_trans-------------------------------------
// Inline transcendental instructions, if possible.  The Intel hardware gets
// these right, no funny corner cases missed.
bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
  _sp += arg_size();        // restore stack pointer
  Node* arg = pop_math_arg();
  Node* trans = NULL;

  switch (id) {
  case vmIntrinsics::_dlog:
    trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
    break;
  case vmIntrinsics::_dlog10:
    trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
    break;
  default:
    assert(false, "bad intrinsic was passed in");
    return false;
  }

  // Push result back on JVM stack
  push_pair(trans);
  return true;
}

//------------------------------runtime_math-----------------------------
bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  Node* a = NULL;
  Node* b = NULL;

  assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
         "must be (DD)D or (D)D type");

  // Inputs
  _sp += arg_size();        // restore stack pointer
  if (call_type == OptoRuntime::Math_DD_D_Type()) {
    b = pop_math_arg();
  }
  a = pop_math_arg();

  const TypePtr* no_memory_effects = NULL;
  Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
                                 no_memory_effects,
                                 a, top(), b, b ? top() : NULL);
  Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
#ifdef ASSERT
  Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
  assert(value_top == top(), "second value must be top");
#endif

  push_pair(value);
  return true;
}

//------------------------------inline_math_native-----------------------------
bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  switch (id) {
    // These intrinsics are not properly supported on all hardware
  case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
  case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
  case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");

  case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
  case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");

    // These intrinsics are supported on all hardware
  case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
  case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;

    // These intrinsics don't work on X86.  The ad implementation doesn't
    // handle NaN's properly.  Instead of returning infinity, the ad
    // implementation returns a NaN on overflow. See bug: 6304089
    // Once the ad implementations are fixed, change the code below
    // to match the intrinsics above

  case vmIntrinsics::_dexp:  return
    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  case vmIntrinsics::_dpow:  return
    runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");

   // These intrinsics are not yet correctly implemented
  case vmIntrinsics::_datan2:
    return false;

  default:
    ShouldNotReachHere();
    return false;
  }
}

static bool is_simple_name(Node* n) {
  return (n->req() == 1         // constant
          || (n->is_Type() && n->as_Type()->type()->singleton())
          || n->is_Proj()       // parameter or return value
          || n->is_Phi()        // local of some sort
          );
}

//----------------------------inline_min_max-----------------------------------
bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  push(generate_min_max(id, argument(0), argument(1)));

  return true;
}

Node*
LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  // These are the candidate return value:
  Node* xvalue = x0;
  Node* yvalue = y0;

  if (xvalue == yvalue) {
    return xvalue;
  }

  bool want_max = (id == vmIntrinsics::_max);

  const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  if (txvalue == NULL || tyvalue == NULL)  return top();
  // This is not really necessary, but it is consistent with a
  // hypothetical MaxINode::Value method:
  int widen = MAX2(txvalue->_widen, tyvalue->_widen);

  // %%% This folding logic should (ideally) be in a different place.
  // Some should be inside IfNode, and there to be a more reliable
  // transformation of ?: style patterns into cmoves.  We also want
  // more powerful optimizations around cmove and min/max.

  // Try to find a dominating comparison of these guys.
  // It can simplify the index computation for Arrays.copyOf
  // and similar uses of System.arraycopy.
  // First, compute the normalized version of CmpI(x, y).
  int   cmp_op = Op_CmpI;
  Node* xkey = xvalue;
  Node* ykey = yvalue;
  Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
  if (ideal_cmpxy->is_Cmp()) {
    // E.g., if we have CmpI(length - offset, count),
    // it might idealize to CmpI(length, count + offset)
    cmp_op = ideal_cmpxy->Opcode();
    xkey = ideal_cmpxy->in(1);
    ykey = ideal_cmpxy->in(2);
  }

  // Start by locating any relevant comparisons.
  Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  Node* cmpxy = NULL;
  Node* cmpyx = NULL;
  for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
    Node* cmp = start_from->fast_out(k);
    if (cmp->outcnt() > 0 &&            // must have prior uses
        cmp->in(0) == NULL &&           // must be context-independent
        cmp->Opcode() == cmp_op) {      // right kind of compare
      if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
      if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
    }
  }

  const int NCMPS = 2;
  Node* cmps[NCMPS] = { cmpxy, cmpyx };
  int cmpn;
  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
    if (cmps[cmpn] != NULL)  break;     // find a result
  }
  if (cmpn < NCMPS) {
    // Look for a dominating test that tells us the min and max.
    int depth = 0;                // Limit search depth for speed
    Node* dom = control();
    for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
      if (++depth >= 100)  break;
      Node* ifproj = dom;
      if (!ifproj->is_Proj())  continue;
      Node* iff = ifproj->in(0);
      if (!iff->is_If())  continue;
      Node* bol = iff->in(1);
      if (!bol->is_Bool())  continue;
      Node* cmp = bol->in(1);
      if (cmp == NULL)  continue;
      for (cmpn = 0; cmpn < NCMPS; cmpn++)
        if (cmps[cmpn] == cmp)  break;
      if (cmpn == NCMPS)  continue;
      BoolTest::mask btest = bol->as_Bool()->_test._test;
      if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
      if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
      // At this point, we know that 'x btest y' is true.
      switch (btest) {
      case BoolTest::eq:
        // They are proven equal, so we can collapse the min/max.
        // Either value is the answer.  Choose the simpler.
        if (is_simple_name(yvalue) && !is_simple_name(xvalue))
          return yvalue;
        return xvalue;
      case BoolTest::lt:          // x < y
      case BoolTest::le:          // x <= y
        return (want_max ? yvalue : xvalue);
      case BoolTest::gt:          // x > y
      case BoolTest::ge:          // x >= y
        return (want_max ? xvalue : yvalue);
      }
    }
  }

  // We failed to find a dominating test.
  // Let's pick a test that might GVN with prior tests.
  Node*          best_bol   = NULL;
  BoolTest::mask best_btest = BoolTest::illegal;
  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
    Node* cmp = cmps[cmpn];
    if (cmp == NULL)  continue;
    for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
      Node* bol = cmp->fast_out(j);
      if (!bol->is_Bool())  continue;
      BoolTest::mask btest = bol->as_Bool()->_test._test;
      if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
      if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
      if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
        best_bol   = bol->as_Bool();
        best_btest = btest;
      }
    }
  }

  Node* answer_if_true  = NULL;
  Node* answer_if_false = NULL;
  switch (best_btest) {
  default:
    if (cmpxy == NULL)
      cmpxy = ideal_cmpxy;
    best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
    // and fall through:
  case BoolTest::lt:          // x < y
  case BoolTest::le:          // x <= y
    answer_if_true  = (want_max ? yvalue : xvalue);
    answer_if_false = (want_max ? xvalue : yvalue);
    break;
  case BoolTest::gt:          // x > y
  case BoolTest::ge:          // x >= y
    answer_if_true  = (want_max ? xvalue : yvalue);
    answer_if_false = (want_max ? yvalue : xvalue);
    break;
  }

  jint hi, lo;
  if (want_max) {
    // We can sharpen the minimum.
    hi = MAX2(txvalue->_hi, tyvalue->_hi);
    lo = MAX2(txvalue->_lo, tyvalue->_lo);
  } else {
    // We can sharpen the maximum.
    hi = MIN2(txvalue->_hi, tyvalue->_hi);
    lo = MIN2(txvalue->_lo, tyvalue->_lo);
  }

  // Use a flow-free graph structure, to avoid creating excess control edges
  // which could hinder other optimizations.
  // Since Math.min/max is often used with arraycopy, we want
  // tightly_coupled_allocation to be able to see beyond min/max expressions.
  Node* cmov = CMoveNode::make(C, NULL, best_bol,
                               answer_if_false, answer_if_true,
                               TypeInt::make(lo, hi, widen));

  return _gvn.transform(cmov);

  /*
  // This is not as desirable as it may seem, since Min and Max
  // nodes do not have a full set of optimizations.
  // And they would interfere, anyway, with 'if' optimizations
  // and with CMoveI canonical forms.
  switch (id) {
  case vmIntrinsics::_min:
    result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  case vmIntrinsics::_max:
    result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  default:
    ShouldNotReachHere();
  }
  */
}

inline int
LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  const TypePtr* base_type = TypePtr::NULL_PTR;
  if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  if (base_type == NULL) {
    // Unknown type.
    return Type::AnyPtr;
  } else if (base_type == TypePtr::NULL_PTR) {
    // Since this is a NULL+long form, we have to switch to a rawptr.
    base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
    offset = MakeConX(0);
    return Type::RawPtr;
  } else if (base_type->base() == Type::RawPtr) {
    return Type::RawPtr;
  } else if (base_type->isa_oopptr()) {
    // Base is never null => always a heap address.
    if (base_type->ptr() == TypePtr::NotNull) {
      return Type::OopPtr;
    }
    // Offset is small => always a heap address.
    const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
    if (offset_type != NULL &&
        base_type->offset() == 0 &&     // (should always be?)
        offset_type->_lo >= 0 &&
        !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
      return Type::OopPtr;
    }
    // Otherwise, it might either be oop+off or NULL+addr.
    return Type::AnyPtr;
  } else {
    // No information:
    return Type::AnyPtr;
  }
}

inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  int kind = classify_unsafe_addr(base, offset);
  if (kind == Type::RawPtr) {
    return basic_plus_adr(top(), base, offset);
  } else {
    return basic_plus_adr(base, offset);
  }
}

//-------------------inline_numberOfLeadingZeros_int/long-----------------------
// inline int Integer.numberOfLeadingZeros(int)
// inline int Long.numberOfLeadingZeros(long)
bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
  assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
  if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
  if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
  _sp += arg_size();  // restore stack pointer
  switch (id) {
  case vmIntrinsics::_numberOfLeadingZeros_i:
    push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
    break;
  case vmIntrinsics::_numberOfLeadingZeros_l:
    push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
    break;
  default:
    ShouldNotReachHere();
  }
  return true;
}

//-------------------inline_numberOfTrailingZeros_int/long----------------------
// inline int Integer.numberOfTrailingZeros(int)
// inline int Long.numberOfTrailingZeros(long)
bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
  assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
  if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
  if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
  _sp += arg_size();  // restore stack pointer
  switch (id) {
  case vmIntrinsics::_numberOfTrailingZeros_i:
    push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
    break;
  case vmIntrinsics::_numberOfTrailingZeros_l:
    push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
    break;
  default:
    ShouldNotReachHere();
  }
  return true;
}

//----------------------------inline_bitCount_int/long-----------------------
// inline int Integer.bitCount(int)
// inline int Long.bitCount(long)
bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
  assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
  if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
  if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
  _sp += arg_size();  // restore stack pointer
  switch (id) {
  case vmIntrinsics::_bitCount_i:
    push(_gvn.transform(new (C, 2) PopCountINode(pop())));
    break;
  case vmIntrinsics::_bitCount_l:
    push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
    break;
  default:
    ShouldNotReachHere();
  }
  return true;
}

//----------------------------inline_reverseBytes_int/long/char/short-------------------
// inline Integer.reverseBytes(int)
// inline Long.reverseBytes(long)
// inline Character.reverseBytes(char)
// inline Short.reverseBytes(short)
bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
  assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
         id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
         "not reverse Bytes");
  if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI))  return false;
  if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL))  return false;
  if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
  if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS))  return false;
  _sp += arg_size();        // restore stack pointer
  switch (id) {
  case vmIntrinsics::_reverseBytes_i:
    push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
    break;
  case vmIntrinsics::_reverseBytes_l:
    push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
    break;
  case vmIntrinsics::_reverseBytes_c:
    push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
    break;
  case vmIntrinsics::_reverseBytes_s:
    push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
    break;
  default:
    ;
  }
  return true;
}

//----------------------------inline_unsafe_access----------------------------

const static BasicType T_ADDRESS_HOLDER = T_LONG;

// Helper that guards and inserts a G1 pre-barrier.
void LibraryCallKit::insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val) {
  assert(UseG1GC, "should not call this otherwise");

  // We could be accessing the referent field of a reference object. If so, when G1
  // is enabled, we need to log the value in the referent field in an SATB buffer.
  // This routine performs some compile time filters and generates suitable
  // runtime filters that guard the pre-barrier code.

  // Some compile time checks.

  // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  const TypeX* otype = offset->find_intptr_t_type();
  if (otype != NULL && otype->is_con() &&
      otype->get_con() != java_lang_ref_Reference::referent_offset) {
    // Constant offset but not the reference_offset so just return
    return;
  }

  // We only need to generate the runtime guards for instances.
  const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  if (btype != NULL) {
    if (btype->isa_aryptr()) {
      // Array type so nothing to do
      return;
    }

    const TypeInstPtr* itype = btype->isa_instptr();
    if (itype != NULL) {
      // Can the klass of base_oop be statically determined
      // to be _not_ a sub-class of Reference?
      ciKlass* klass = itype->klass();
      if (klass->is_subtype_of(env()->Reference_klass()) &&
          !env()->Reference_klass()->is_subtype_of(klass)) {
        return;
      }
    }
  }

  // The compile time filters did not reject base_oop/offset so
  // we need to generate the following runtime filters
  //
  // if (offset == java_lang_ref_Reference::_reference_offset) {
  //   if (base != null) {
  //     if (klass(base)->reference_type() != REF_NONE)) {
  //       pre_barrier(_, pre_val, ...);
  //     }
  //   }
  // }

  float likely  = PROB_LIKELY(0.999);
  float unlikely  = PROB_UNLIKELY(0.999);

  IdealKit ideal(gvn(), control(),  merged_memory());
#define __ ideal.

  const int reference_type_offset = instanceKlass::reference_type_offset_in_bytes() +
                                        sizeof(oopDesc);

  Node* referent_off = __ ConI(java_lang_ref_Reference::referent_offset);

  __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
    __ if_then(base_oop, BoolTest::ne, null(), likely); {

      // Update graphKit memory and control from IdealKit.
      set_all_memory(__ merged_memory());
      set_control(__ ctrl());

      Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
      Node* is_instof = gen_instanceof(base_oop, ref_klass_con);

      // Update IdealKit memory and control from graphKit.
      __ set_all_memory(merged_memory());
      __ set_ctrl(control());

      Node* one = __ ConI(1);

      __ if_then(is_instof, BoolTest::eq, one, unlikely); {

        // Update graphKit from IdeakKit.
        set_all_memory(__ merged_memory());
        set_control(__ ctrl());

        // Use the pre-barrier to record the value in the referent field
        pre_barrier(false /* do_load */,
                    __ ctrl(),
                    NULL /* obj */, NULL /* adr */, -1 /* alias_idx */, NULL /* val */, NULL /* val_type */,
                    pre_val /* pre_val */,
                    T_OBJECT);

        // Update IdealKit from graphKit.
        __ set_all_memory(merged_memory());
        __ set_ctrl(control());

      } __ end_if(); // _ref_type != ref_none
    } __ end_if(); // base  != NULL
  } __ end_if(); // offset == referent_offset

  // Final sync IdealKit and GraphKit.
  sync_kit(ideal);
#undef __
}


// Interpret Unsafe.fieldOffset cookies correctly:
extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);

bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  if (callee()->is_static())  return false;  // caller must have the capability!

#ifndef PRODUCT
  {
    ResourceMark rm;
    // Check the signatures.
    ciSignature* sig = signature();
#ifdef ASSERT
    if (!is_store) {
      // Object getObject(Object base, int/long offset), etc.
      BasicType rtype = sig->return_type()->basic_type();
      if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
          rtype = T_ADDRESS;  // it is really a C void*
      assert(rtype == type, "getter must return the expected value");
      if (!is_native_ptr) {
        assert(sig->count() == 2, "oop getter has 2 arguments");
        assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
        assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
      } else {
        assert(sig->count() == 1, "native getter has 1 argument");
        assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
      }
    } else {
      // void putObject(Object base, int/long offset, Object x), etc.
      assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
      if (!is_native_ptr) {
        assert(sig->count() == 3, "oop putter has 3 arguments");
        assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
        assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
      } else {
        assert(sig->count() == 2, "native putter has 2 arguments");
        assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
      }
      BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
      if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
        vtype = T_ADDRESS;  // it is really a C void*
      assert(vtype == type, "putter must accept the expected value");
    }
#endif // ASSERT
 }
#endif //PRODUCT

  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".

  int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];

  // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
  int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);

  debug_only(int saved_sp = _sp);
  _sp += nargs;

  Node* val;
  debug_only(val = (Node*)(uintptr_t)-1);


  if (is_store) {
    // Get the value being stored.  (Pop it first; it was pushed last.)
    switch (type) {
    case T_DOUBLE:
    case T_LONG:
    case T_ADDRESS:
      val = pop_pair();
      break;
    default:
      val = pop();
    }
  }

  // Build address expression.  See the code in inline_unsafe_prefetch.
  Node *adr;
  Node *heap_base_oop = top();
  Node* offset = top();

  if (!is_native_ptr) {
    // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
    offset = pop_pair();
    // The base is either a Java object or a value produced by Unsafe.staticFieldBase
    Node* base   = pop();
    // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
    // to be plain byte offsets, which are also the same as those accepted
    // by oopDesc::field_base.
    assert(Unsafe_field_offset_to_byte_offset(11) == 11,
           "fieldOffset must be byte-scaled");
    // 32-bit machines ignore the high half!
    offset = ConvL2X(offset);
    adr = make_unsafe_address(base, offset);
    heap_base_oop = base;
  } else {
    Node* ptr = pop_pair();
    // Adjust Java long to machine word:
    ptr = ConvL2X(ptr);
    adr = make_unsafe_address(NULL, ptr);
  }

  // Pop receiver last:  it was pushed first.
  Node *receiver = pop();

  assert(saved_sp == _sp, "must have correct argument count");

  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();

  // First guess at the value type.
  const Type *value_type = Type::get_const_basic_type(type);

  // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  // there was not enough information to nail it down.
  Compile::AliasType* alias_type = C->alias_type(adr_type);
  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");

  // We will need memory barriers unless we can determine a unique
  // alias category for this reference.  (Note:  If for some reason
  // the barriers get omitted and the unsafe reference begins to "pollute"
  // the alias analysis of the rest of the graph, either Compile::can_alias
  // or Compile::must_alias will throw a diagnostic assert.)
  bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);

  // If we are reading the value of the referent field of a Reference
  // object (either by using Unsafe directly or through reflection)
  // then, if G1 is enabled, we need to record the referent in an
  // SATB log buffer using the pre-barrier mechanism.
  bool need_read_barrier = UseG1GC && !is_native_ptr && !is_store &&
                           offset != top() && heap_base_oop != top();

  if (!is_store && type == T_OBJECT) {
    // Attempt to infer a sharper value type from the offset and base type.
    ciKlass* sharpened_klass = NULL;

    // See if it is an instance field, with an object type.
    if (alias_type->field() != NULL) {
      assert(!is_native_ptr, "native pointer op cannot use a java address");
      if (alias_type->field()->type()->is_klass()) {
        sharpened_klass = alias_type->field()->type()->as_klass();
      }
    }

    // See if it is a narrow oop array.
    if (adr_type->isa_aryptr()) {
      if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
        const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
        if (elem_type != NULL) {
          sharpened_klass = elem_type->klass();
        }
      }
    }

    if (sharpened_klass != NULL) {
      const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);

      // Sharpen the value type.
      value_type = tjp;

#ifndef PRODUCT
      if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
        tty->print("  from base type:  ");   adr_type->dump();
        tty->print("  sharpened value: "); value_type->dump();
      }
#endif
    }
  }

  // Null check on self without removing any arguments.  The argument
  // null check technically happens in the wrong place, which can lead to
  // invalid stack traces when the primitive is inlined into a method
  // which handles NullPointerExceptions.
  _sp += nargs;
  do_null_check(receiver, T_OBJECT);
  _sp -= nargs;
  if (stopped()) {
    return true;
  }
  // Heap pointers get a null-check from the interpreter,
  // as a courtesy.  However, this is not guaranteed by Unsafe,
  // and it is not possible to fully distinguish unintended nulls
  // from intended ones in this API.

  if (is_volatile) {
    // We need to emit leading and trailing CPU membars (see below) in
    // addition to memory membars when is_volatile. This is a little
    // too strong, but avoids the need to insert per-alias-type
    // volatile membars (for stores; compare Parse::do_put_xxx), which
    // we cannot do effectively here because we probably only have a
    // rough approximation of type.
    need_mem_bar = true;
    // For Stores, place a memory ordering barrier now.
    if (is_store)
      insert_mem_bar(Op_MemBarRelease);
  }

  // Memory barrier to prevent normal and 'unsafe' accesses from
  // bypassing each other.  Happens after null checks, so the
  // exception paths do not take memory state from the memory barrier,
  // so there's no problems making a strong assert about mixing users
  // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);

  if (!is_store) {
    Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
    // load value and push onto stack
    switch (type) {
    case T_BOOLEAN:
    case T_CHAR:
    case T_BYTE:
    case T_SHORT:
    case T_INT:
    case T_FLOAT:
      push(p);
      break;
    case T_OBJECT:
      if (need_read_barrier) {
        insert_g1_pre_barrier(heap_base_oop, offset, p);
      }
      push(p);
      break;
    case T_ADDRESS:
      // Cast to an int type.
      p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
      p = ConvX2L(p);
      push_pair(p);
      break;
    case T_DOUBLE:
    case T_LONG:
      push_pair( p );
      break;
    default: ShouldNotReachHere();
    }
  } else {
    // place effect of store into memory
    switch (type) {
    case T_DOUBLE:
      val = dstore_rounding(val);
      break;
    case T_ADDRESS:
      // Repackage the long as a pointer.
      val = ConvL2X(val);
      val = _gvn.transform( new (C, 2) CastX2PNode(val) );
      break;
    }

    if (type != T_OBJECT ) {
      (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
    } else {
      // Possibly an oop being stored to Java heap or native memory
      if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
        // oop to Java heap.
        (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
      } else {
        // We can't tell at compile time if we are storing in the Java heap or outside
        // of it. So we need to emit code to conditionally do the proper type of
        // store.

        IdealKit ideal(gvn(), control(),  merged_memory());
#define __ ideal.
        // QQQ who knows what probability is here??
        __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
          // Sync IdealKit and graphKit.
          set_all_memory( __ merged_memory());
          set_control(__ ctrl());
          Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
          // Update IdealKit memory.
          __ set_all_memory(merged_memory());
          __ set_ctrl(control());
        } __ else_(); {
          __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
        } __ end_if();
        // Final sync IdealKit and GraphKit.
        sync_kit(ideal);
#undef __
      }
    }
  }

  if (is_volatile) {
    if (!is_store)
      insert_mem_bar(Op_MemBarAcquire);
    else
      insert_mem_bar(Op_MemBarVolatile);
  }

  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);

  return true;
}

//----------------------------inline_unsafe_prefetch----------------------------

bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
#ifndef PRODUCT
  {
    ResourceMark rm;
    // Check the signatures.
    ciSignature* sig = signature();
#ifdef ASSERT
    // Object getObject(Object base, int/long offset), etc.
    BasicType rtype = sig->return_type()->basic_type();
    if (!is_native_ptr) {
      assert(sig->count() == 2, "oop prefetch has 2 arguments");
      assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
      assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
    } else {
      assert(sig->count() == 1, "native prefetch has 1 argument");
      assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
    }
#endif // ASSERT
  }
#endif // !PRODUCT

  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".

  // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
  int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);

  debug_only(int saved_sp = _sp);
  _sp += nargs;

  // Build address expression.  See the code in inline_unsafe_access.
  Node *adr;
  if (!is_native_ptr) {
    // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
    Node* offset = pop_pair();
    // The base is either a Java object or a value produced by Unsafe.staticFieldBase
    Node* base   = pop();
    // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
    // to be plain byte offsets, which are also the same as those accepted
    // by oopDesc::field_base.
    assert(Unsafe_field_offset_to_byte_offset(11) == 11,
           "fieldOffset must be byte-scaled");
    // 32-bit machines ignore the high half!
    offset = ConvL2X(offset);
    adr = make_unsafe_address(base, offset);
  } else {
    Node* ptr = pop_pair();
    // Adjust Java long to machine word:
    ptr = ConvL2X(ptr);
    adr = make_unsafe_address(NULL, ptr);
  }

  if (is_static) {
    assert(saved_sp == _sp, "must have correct argument count");
  } else {
    // Pop receiver last:  it was pushed first.
    Node *receiver = pop();
    assert(saved_sp == _sp, "must have correct argument count");

    // Null check on self without removing any arguments.  The argument
    // null check technically happens in the wrong place, which can lead to
    // invalid stack traces when the primitive is inlined into a method
    // which handles NullPointerExceptions.
    _sp += nargs;
    do_null_check(receiver, T_OBJECT);
    _sp -= nargs;
    if (stopped()) {
      return true;
    }
  }

  // Generate the read or write prefetch
  Node *prefetch;
  if (is_store) {
    prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
  } else {
    prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
  }
  prefetch->init_req(0, control());
  set_i_o(_gvn.transform(prefetch));

  return true;
}

//----------------------------inline_unsafe_CAS----------------------------

bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
  // This basic scheme here is the same as inline_unsafe_access, but
  // differs in enough details that combining them would make the code
  // overly confusing.  (This is a true fact! I originally combined
  // them, but even I was confused by it!) As much code/comments as
  // possible are retained from inline_unsafe_access though to make
  // the correspondences clearer. - dl

  if (callee()->is_static())  return false;  // caller must have the capability!

#ifndef PRODUCT
  {
    ResourceMark rm;
    // Check the signatures.
    ciSignature* sig = signature();
#ifdef ASSERT
    BasicType rtype = sig->return_type()->basic_type();
    assert(rtype == T_BOOLEAN, "CAS must return boolean");
    assert(sig->count() == 4, "CAS has 4 arguments");
    assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
    assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
#endif // ASSERT
  }
#endif //PRODUCT

  // number of stack slots per value argument (1 or 2)
  int type_words = type2size[type];

  // Cannot inline wide CAS on machines that don't support it natively
  if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
    return false;

  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".

  // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
  int nargs = 1 + 1 + 2  + type_words + type_words;

  // pop arguments: newval, oldval, offset, base, and receiver
  debug_only(int saved_sp = _sp);
  _sp += nargs;
  Node* newval   = (type_words == 1) ? pop() : pop_pair();
  Node* oldval   = (type_words == 1) ? pop() : pop_pair();
  Node *offset   = pop_pair();
  Node *base     = pop();
  Node *receiver = pop();
  assert(saved_sp == _sp, "must have correct argument count");

  //  Null check receiver.
  _sp += nargs;
  do_null_check(receiver, T_OBJECT);
  _sp -= nargs;
  if (stopped()) {
    return true;
  }

  // Build field offset expression.
  // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  // to be plain byte offsets, which are also the same as those accepted
  // by oopDesc::field_base.
  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  // 32-bit machines ignore the high half of long offsets
  offset = ConvL2X(offset);
  Node* adr = make_unsafe_address(base, offset);
  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();

  // (Unlike inline_unsafe_access, there seems no point in trying
  // to refine types. Just use the coarse types here.
  const Type *value_type = Type::get_const_basic_type(type);
  Compile::AliasType* alias_type = C->alias_type(adr_type);
  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  int alias_idx = C->get_alias_index(adr_type);

  // Memory-model-wise, a CAS acts like a little synchronized block,
  // so needs barriers on each side.  These don't translate into
  // actual barriers on most machines, but we still need rest of
  // compiler to respect ordering.

  insert_mem_bar(Op_MemBarRelease);
  insert_mem_bar(Op_MemBarCPUOrder);

  // 4984716: MemBars must be inserted before this
  //          memory node in order to avoid a false
  //          dependency which will confuse the scheduler.
  Node *mem = memory(alias_idx);

  // For now, we handle only those cases that actually exist: ints,
  // longs, and Object. Adding others should be straightforward.
  Node* cas;
  switch(type) {
  case T_INT:
    cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
    break;
  case T_LONG:
    cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
    break;
  case T_OBJECT:
     // reference stores need a store barrier.
    // (They don't if CAS fails, but it isn't worth checking.)
    pre_barrier(true /* do_load*/,
                control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
                NULL /* pre_val*/,
                T_OBJECT);
#ifdef _LP64
    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
      Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
      Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
      cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
                                                          newval_enc, oldval_enc));
    } else
#endif
    {
      cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
    }
    post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
    break;
  default:
    ShouldNotReachHere();
    break;
  }

  // SCMemProjNodes represent the memory state of CAS. Their main
  // role is to prevent CAS nodes from being optimized away when their
  // results aren't used.
  Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  set_memory(proj, alias_idx);

  // Add the trailing membar surrounding the access
  insert_mem_bar(Op_MemBarCPUOrder);
  insert_mem_bar(Op_MemBarAcquire);

  push(cas);
  return true;
}

bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  // This is another variant of inline_unsafe_access, differing in
  // that it always issues store-store ("release") barrier and ensures
  // store-atomicity (which only matters for "long").

  if (callee()->is_static())  return false;  // caller must have the capability!

#ifndef PRODUCT
  {
    ResourceMark rm;
    // Check the signatures.
    ciSignature* sig = signature();
#ifdef ASSERT
    BasicType rtype = sig->return_type()->basic_type();
    assert(rtype == T_VOID, "must return void");
    assert(sig->count() == 3, "has 3 arguments");
    assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
    assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
#endif // ASSERT
  }
#endif //PRODUCT

  // number of stack slots per value argument (1 or 2)
  int type_words = type2size[type];

  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".

  // Argument words:  "this" plus oop plus offset plus value;
  int nargs = 1 + 1 + 2 + type_words;

  // pop arguments: val, offset, base, and receiver
  debug_only(int saved_sp = _sp);
  _sp += nargs;
  Node* val      = (type_words == 1) ? pop() : pop_pair();
  Node *offset   = pop_pair();
  Node *base     = pop();
  Node *receiver = pop();
  assert(saved_sp == _sp, "must have correct argument count");

  //  Null check receiver.
  _sp += nargs;
  do_null_check(receiver, T_OBJECT);
  _sp -= nargs;
  if (stopped()) {
    return true;
  }

  // Build field offset expression.
  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  // 32-bit machines ignore the high half of long offsets
  offset = ConvL2X(offset);
  Node* adr = make_unsafe_address(base, offset);
  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  const Type *value_type = Type::get_const_basic_type(type);
  Compile::AliasType* alias_type = C->alias_type(adr_type);

  insert_mem_bar(Op_MemBarRelease);
  insert_mem_bar(Op_MemBarCPUOrder);
  // Ensure that the store is atomic for longs:
  bool require_atomic_access = true;
  Node* store;
  if (type == T_OBJECT) // reference stores need a store barrier.
    store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
  else {
    store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  }
  insert_mem_bar(Op_MemBarCPUOrder);
  return true;
}

bool LibraryCallKit::inline_unsafe_allocate() {
  if (callee()->is_static())  return false;  // caller must have the capability!
  int nargs = 1 + 1;
  assert(signature()->size() == nargs-1, "alloc has 1 argument");
  null_check_receiver(callee());  // check then ignore argument(0)
  _sp += nargs;  // set original stack for use by uncommon_trap
  Node* cls = do_null_check(argument(1), T_OBJECT);
  _sp -= nargs;
  if (stopped())  return true;

  Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  _sp += nargs;  // set original stack for use by uncommon_trap
  kls = do_null_check(kls, T_OBJECT);
  _sp -= nargs;
  if (stopped())  return true;  // argument was like int.class

  // Note:  The argument might still be an illegal value like
  // Serializable.class or Object[].class.   The runtime will handle it.
  // But we must make an explicit check for initialization.
  Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
  Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
  Node* bits = intcon(instanceKlass::fully_initialized);
  Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
  // The 'test' is non-zero if we need to take a slow path.

  Node* obj = new_instance(kls, test);
  push(obj);

  return true;
}

//------------------------inline_native_time_funcs--------------
// inline code for System.currentTimeMillis() and System.nanoTime()
// these have the same type and signature
bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
  address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
                              CAST_FROM_FN_PTR(address, os::javaTimeMillis);
  const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
  const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
  const TypePtr* no_memory_effects = NULL;
  Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
#ifdef ASSERT
  Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
  assert(value_top == top(), "second value must be top");
#endif
  push_pair(value);
  return true;
}

//------------------------inline_native_currentThread------------------
bool LibraryCallKit::inline_native_currentThread() {
  Node* junk = NULL;
  push(generate_current_thread(junk));
  return true;
}

//------------------------inline_native_isInterrupted------------------
bool LibraryCallKit::inline_native_isInterrupted() {
  const int nargs = 1+1;  // receiver + boolean
  assert(nargs == arg_size(), "sanity");
  // Add a fast path to t.isInterrupted(clear_int):
  //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  // So, in the common case that the interrupt bit is false,
  // we avoid making a call into the VM.  Even if the interrupt bit
  // is true, if the clear_int argument is false, we avoid the VM call.
  // However, if the receiver is not currentThread, we must call the VM,
  // because there must be some locking done around the operation.

  // We only go to the fast case code if we pass two guards.
  // Paths which do not pass are accumulated in the slow_region.
  RegionNode* slow_region = new (C, 1) RegionNode(1);
  record_for_igvn(slow_region);
  RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
  PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
  enum { no_int_result_path   = 1,
         no_clear_result_path = 2,
         slow_result_path     = 3
  };

  // (a) Receiving thread must be the current thread.
  Node* rec_thr = argument(0);
  Node* tls_ptr = NULL;
  Node* cur_thr = generate_current_thread(tls_ptr);
  Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
  Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );

  bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
  if (!known_current_thread)
    generate_slow_guard(bol_thr, slow_region);

  // (b) Interrupt bit on TLS must be false.
  Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  // Set the control input on the field _interrupted read to prevent it floating up.
  Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
  Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
  Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );

  IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);

  // First fast path:  if (!TLS._interrupted) return false;
  Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
  result_rgn->init_req(no_int_result_path, false_bit);
  result_val->init_req(no_int_result_path, intcon(0));

  // drop through to next case
  set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );

  // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  Node* clr_arg = argument(1);
  Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
  Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
  IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);

  // Second fast path:  ... else if (!clear_int) return true;
  Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
  result_rgn->init_req(no_clear_result_path, false_arg);
  result_val->init_req(no_clear_result_path, intcon(1));

  // drop through to next case
  set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );

  // (d) Otherwise, go to the slow path.
  slow_region->add_req(control());
  set_control( _gvn.transform(slow_region) );

  if (stopped()) {
    // There is no slow path.
    result_rgn->init_req(slow_result_path, top());
    result_val->init_req(slow_result_path, top());
  } else {
    // non-virtual because it is a private non-static
    CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);

    Node* slow_val = set_results_for_java_call(slow_call);
    // this->control() comes from set_results_for_java_call

    // If we know that the result of the slow call will be true, tell the optimizer!
    if (known_current_thread)  slow_val = intcon(1);

    Node* fast_io  = slow_call->in(TypeFunc::I_O);
    Node* fast_mem = slow_call->in(TypeFunc::Memory);
    // These two phis are pre-filled with copies of of the fast IO and Memory
    Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
    Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);

    result_rgn->init_req(slow_result_path, control());
    io_phi    ->init_req(slow_result_path, i_o());
    mem_phi   ->init_req(slow_result_path, reset_memory());
    result_val->init_req(slow_result_path, slow_val);

    set_all_memory( _gvn.transform(mem_phi) );
    set_i_o(        _gvn.transform(io_phi) );
  }

  push_result(result_rgn, result_val);
  C->set_has_split_ifs(true); // Has chance for split-if optimization

  return true;
}

//---------------------------load_mirror_from_klass----------------------------
// Given a klass oop, load its java mirror (a java.lang.Class oop).
Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
  return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
}

//-----------------------load_klass_from_mirror_common-------------------------
// Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
// Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
// and branch to the given path on the region.
// If never_see_null, take an uncommon trap on null, so we can optimistically
// compile for the non-null case.
// If the region is NULL, force never_see_null = true.
Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
                                                    bool never_see_null,
                                                    int nargs,
                                                    RegionNode* region,
                                                    int null_path,
                                                    int offset) {
  if (region == NULL)  never_see_null = true;
  Node* p = basic_plus_adr(mirror, offset);
  const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
  _sp += nargs; // any deopt will start just before call to enclosing method
  Node* null_ctl = top();
  kls = null_check_oop(kls, &null_ctl, never_see_null);
  if (region != NULL) {
    // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
    region->init_req(null_path, null_ctl);
  } else {
    assert(null_ctl == top(), "no loose ends");
  }
  _sp -= nargs;
  return kls;
}

//--------------------(inline_native_Class_query helpers)---------------------
// Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
// Fall through if (mods & mask) == bits, take the guard otherwise.
Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  // Branch around if the given klass has the given modifier bit set.
  // Like generate_guard, adds a new path onto the region.
  Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  Node* mask = intcon(modifier_mask);
  Node* bits = intcon(modifier_bits);
  Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
  Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
  Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
  return generate_fair_guard(bol, region);
}
Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
}

//-------------------------inline_native_Class_query-------------------
bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  int nargs = 1+0;  // just the Class mirror, in most cases
  const Type* return_type = TypeInt::BOOL;
  Node* prim_return_value = top();  // what happens if it's a primitive class?
  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  bool expect_prim = false;     // most of these guys expect to work on refs

  enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };

  switch (id) {
  case vmIntrinsics::_isInstance:
    nargs = 1+1;  // the Class mirror, plus the object getting queried about
    // nothing is an instance of a primitive type
    prim_return_value = intcon(0);
    break;
  case vmIntrinsics::_getModifiers:
    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
    assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
    return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
    break;
  case vmIntrinsics::_isInterface:
    prim_return_value = intcon(0);
    break;
  case vmIntrinsics::_isArray:
    prim_return_value = intcon(0);
    expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
    break;
  case vmIntrinsics::_isPrimitive:
    prim_return_value = intcon(1);
    expect_prim = true;  // obviously
    break;
  case vmIntrinsics::_getSuperclass:
    prim_return_value = null();
    return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
    break;
  case vmIntrinsics::_getComponentType:
    prim_return_value = null();
    return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
    break;
  case vmIntrinsics::_getClassAccessFlags:
    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
    return_type = TypeInt::INT;  // not bool!  6297094
    break;
  default:
    ShouldNotReachHere();
  }

  Node* mirror =                      argument(0);
  Node* obj    = (nargs <= 1)? top(): argument(1);

  const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  if (mirror_con == NULL)  return false;  // cannot happen?

#ifndef PRODUCT
  if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
    ciType* k = mirror_con->java_mirror_type();
    if (k) {
      tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
      k->print_name();
      tty->cr();
    }
  }
#endif

  // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  record_for_igvn(region);
  PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);

  // The mirror will never be null of Reflection.getClassAccessFlags, however
  // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  // if it is. See bug 4774291.

  // For Reflection.getClassAccessFlags(), the null check occurs in
  // the wrong place; see inline_unsafe_access(), above, for a similar
  // situation.
  _sp += nargs;  // set original stack for use by uncommon_trap
  mirror = do_null_check(mirror, T_OBJECT);
  _sp -= nargs;
  // If mirror or obj is dead, only null-path is taken.
  if (stopped())  return true;

  if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)

  // Now load the mirror's klass metaobject, and null-check it.
  // Side-effects region with the control path if the klass is null.
  Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
                                     region, _prim_path);
  // If kls is null, we have a primitive mirror.
  phi->init_req(_prim_path, prim_return_value);
  if (stopped()) { push_result(region, phi); return true; }

  Node* p;  // handy temp
  Node* null_ctl;

  // Now that we have the non-null klass, we can perform the real query.
  // For constant classes, the query will constant-fold in LoadNode::Value.
  Node* query_value = top();
  switch (id) {
  case vmIntrinsics::_isInstance:
    // nothing is an instance of a primitive type
    _sp += nargs;          // gen_instanceof might do an uncommon trap
    query_value = gen_instanceof(obj, kls);
    _sp -= nargs;
    break;

  case vmIntrinsics::_getModifiers:
    p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
    query_value = make_load(NULL, p, TypeInt::INT, T_INT);
    break;

  case vmIntrinsics::_isInterface:
    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
    if (generate_interface_guard(kls, region) != NULL)
      // A guard was added.  If the guard is taken, it was an interface.
      phi->add_req(intcon(1));
    // If we fall through, it's a plain class.
    query_value = intcon(0);
    break;

  case vmIntrinsics::_isArray:
    // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
    if (generate_array_guard(kls, region) != NULL)
      // A guard was added.  If the guard is taken, it was an array.
      phi->add_req(intcon(1));
    // If we fall through, it's a plain class.
    query_value = intcon(0);
    break;

  case vmIntrinsics::_isPrimitive:
    query_value = intcon(0); // "normal" path produces false
    break;

  case vmIntrinsics::_getSuperclass:
    // The rules here are somewhat unfortunate, but we can still do better
    // with random logic than with a JNI call.
    // Interfaces store null or Object as _super, but must report null.
    // Arrays store an intermediate super as _super, but must report Object.
    // Other types can report the actual _super.
    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
    if (generate_interface_guard(kls, region) != NULL)
      // A guard was added.  If the guard is taken, it was an interface.
      phi->add_req(null());
    if (generate_array_guard(kls, region) != NULL)
      // A guard was added.  If the guard is taken, it was an array.
      phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
    // If we fall through, it's a plain class.  Get its _super.
    p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
    kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
    null_ctl = top();
    kls = null_check_oop(kls, &null_ctl);
    if (null_ctl != top()) {
      // If the guard is taken, Object.superClass is null (both klass and mirror).
      region->add_req(null_ctl);
      phi   ->add_req(null());
    }
    if (!stopped()) {
      query_value = load_mirror_from_klass(kls);
    }
    break;

  case vmIntrinsics::_getComponentType:
    if (generate_array_guard(kls, region) != NULL) {
      // Be sure to pin the oop load to the guard edge just created:
      Node* is_array_ctrl = region->in(region->req()-1);
      Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
      Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
      phi->add_req(cmo);
    }
    query_value = null();  // non-array case is null
    break;

  case vmIntrinsics::_getClassAccessFlags:
    p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
    query_value = make_load(NULL, p, TypeInt::INT, T_INT);
    break;

  default:
    ShouldNotReachHere();
  }

  // Fall-through is the normal case of a query to a real class.
  phi->init_req(1, query_value);
  region->init_req(1, control());

  push_result(region, phi);
  C->set_has_split_ifs(true); // Has chance for split-if optimization

  return true;
}

//--------------------------inline_native_subtype_check------------------------
// This intrinsic takes the JNI calls out of the heart of
// UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
bool LibraryCallKit::inline_native_subtype_check() {
  int nargs = 1+1;  // the Class mirror, plus the other class getting examined

  // Pull both arguments off the stack.
  Node* args[2];                // two java.lang.Class mirrors: superc, subc
  args[0] = argument(0);
  args[1] = argument(1);
  Node* klasses[2];             // corresponding Klasses: superk, subk
  klasses[0] = klasses[1] = top();

  enum {
    // A full decision tree on {superc is prim, subc is prim}:
    _prim_0_path = 1,           // {P,N} => false
                                // {P,P} & superc!=subc => false
    _prim_same_path,            // {P,P} & superc==subc => true
    _prim_1_path,               // {N,P} => false
    _ref_subtype_path,          // {N,N} & subtype check wins => true
    _both_ref_path,             // {N,N} & subtype check loses => false
    PATH_LIMIT
  };

  RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
  record_for_igvn(region);

  const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  int class_klass_offset = java_lang_Class::klass_offset_in_bytes();

  // First null-check both mirrors and load each mirror's klass metaobject.
  int which_arg;
  for (which_arg = 0; which_arg <= 1; which_arg++) {
    Node* arg = args[which_arg];
    _sp += nargs;  // set original stack for use by uncommon_trap
    arg = do_null_check(arg, T_OBJECT);
    _sp -= nargs;
    if (stopped())  break;
    args[which_arg] = _gvn.transform(arg);

    Node* p = basic_plus_adr(arg, class_klass_offset);
    Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
    klasses[which_arg] = _gvn.transform(kls);
  }

  // Having loaded both klasses, test each for null.
  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  for (which_arg = 0; which_arg <= 1; which_arg++) {
    Node* kls = klasses[which_arg];
    Node* null_ctl = top();
    _sp += nargs;  // set original stack for use by uncommon_trap
    kls = null_check_oop(kls, &null_ctl, never_see_null);
    _sp -= nargs;
    int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
    region->init_req(prim_path, null_ctl);
    if (stopped())  break;
    klasses[which_arg] = kls;
  }

  if (!stopped()) {
    // now we have two reference types, in klasses[0..1]
    Node* subk   = klasses[1];  // the argument to isAssignableFrom
    Node* superk = klasses[0];  // the receiver
    region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
    // now we have a successful reference subtype check
    region->set_req(_ref_subtype_path, control());
  }

  // If both operands are primitive (both klasses null), then
  // we must return true when they are identical primitives.
  // It is convenient to test this after the first null klass check.
  set_control(region->in(_prim_0_path)); // go back to first null check
  if (!stopped()) {
    // Since superc is primitive, make a guard for the superc==subc case.
    Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
    Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
    generate_guard(bol_eq, region, PROB_FAIR);
    if (region->req() == PATH_LIMIT+1) {
      // A guard was added.  If the added guard is taken, superc==subc.
      region->swap_edges(PATH_LIMIT, _prim_same_path);
      region->del_req(PATH_LIMIT);
    }
    region->set_req(_prim_0_path, control()); // Not equal after all.
  }

  // these are the only paths that produce 'true':
  phi->set_req(_prim_same_path,   intcon(1));
  phi->set_req(_ref_subtype_path, intcon(1));

  // pull together the cases:
  assert(region->req() == PATH_LIMIT, "sane region");
  for (uint i = 1; i < region->req(); i++) {
    Node* ctl = region->in(i);
    if (ctl == NULL || ctl == top()) {
      region->set_req(i, top());
      phi   ->set_req(i, top());
    } else if (phi->in(i) == NULL) {
      phi->set_req(i, intcon(0)); // all other paths produce 'false'
    }
  }

  set_control(_gvn.transform(region));
  push(_gvn.transform(phi));

  return true;
}

//---------------------generate_array_guard_common------------------------
Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
                                                  bool obj_array, bool not_array) {
  // If obj_array/non_array==false/false:
  // Branch around if the given klass is in fact an array (either obj or prim).
  // If obj_array/non_array==false/true:
  // Branch around if the given klass is not an array klass of any kind.
  // If obj_array/non_array==true/true:
  // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  // If obj_array/non_array==true/false:
  // Branch around if the kls is an oop array (Object[] or subtype)
  //
  // Like generate_guard, adds a new path onto the region.
  jint  layout_con = 0;
  Node* layout_val = get_layout_helper(kls, layout_con);
  if (layout_val == NULL) {
    bool query = (obj_array
                  ? Klass::layout_helper_is_objArray(layout_con)
                  : Klass::layout_helper_is_javaArray(layout_con));
    if (query == not_array) {
      return NULL;                       // never a branch
    } else {                             // always a branch
      Node* always_branch = control();
      if (region != NULL)
        region->add_req(always_branch);
      set_control(top());
      return always_branch;
    }
  }
  // Now test the correct condition.
  jint  nval = (obj_array
                ? ((jint)Klass::_lh_array_tag_type_value
                   <<    Klass::_lh_array_tag_shift)
                : Klass::_lh_neutral_value);
  Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
  BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  // invert the test if we are looking for a non-array
  if (not_array)  btest = BoolTest(btest).negate();
  Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
  return generate_fair_guard(bol, region);
}


//-----------------------inline_native_newArray--------------------------
bool LibraryCallKit::inline_native_newArray() {
  int nargs = 2;
  Node* mirror    = argument(0);
  Node* count_val = argument(1);

  _sp += nargs;  // set original stack for use by uncommon_trap
  mirror = do_null_check(mirror, T_OBJECT);
  _sp -= nargs;
  // If mirror or obj is dead, only null-path is taken.
  if (stopped())  return true;

  enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
                                                      TypeInstPtr::NOTNULL);
  PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
                                                      TypePtr::BOTTOM);

  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
                                                  nargs,
                                                  result_reg, _slow_path);
  Node* normal_ctl   = control();
  Node* no_array_ctl = result_reg->in(_slow_path);

  // Generate code for the slow case.  We make a call to newArray().
  set_control(no_array_ctl);
  if (!stopped()) {
    // Either the input type is void.class, or else the
    // array klass has not yet been cached.  Either the
    // ensuing call will throw an exception, or else it
    // will cache the array klass for next time.
    PreserveJVMState pjvms(this);
    CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
    Node* slow_result = set_results_for_java_call(slow_call);
    // this->control() comes from set_results_for_java_call
    result_reg->set_req(_slow_path, control());
    result_val->set_req(_slow_path, slow_result);
    result_io ->set_req(_slow_path, i_o());
    result_mem->set_req(_slow_path, reset_memory());
  }

  set_control(normal_ctl);
  if (!stopped()) {
    // Normal case:  The array type has been cached in the java.lang.Class.
    // The following call works fine even if the array type is polymorphic.
    // It could be a dynamic mix of int[], boolean[], Object[], etc.
    Node* obj = new_array(klass_node, count_val, nargs);
    result_reg->init_req(_normal_path, control());
    result_val->init_req(_normal_path, obj);
    result_io ->init_req(_normal_path, i_o());
    result_mem->init_req(_normal_path, reset_memory());
  }

  // Return the combined state.
  set_i_o(        _gvn.transform(result_io)  );
  set_all_memory( _gvn.transform(result_mem) );
  push_result(result_reg, result_val);
  C->set_has_split_ifs(true); // Has chance for split-if optimization

  return true;
}

//----------------------inline_native_getLength--------------------------
bool LibraryCallKit::inline_native_getLength() {
  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;

  int nargs = 1;
  Node* array = argument(0);

  _sp += nargs;  // set original stack for use by uncommon_trap
  array = do_null_check(array, T_OBJECT);
  _sp -= nargs;

  // If array is dead, only null-path is taken.
  if (stopped())  return true;

  // Deoptimize if it is a non-array.
  Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);

  if (non_array != NULL) {
    PreserveJVMState pjvms(this);
    set_control(non_array);
    _sp += nargs;  // push the arguments back on the stack
    uncommon_trap(Deoptimization::Reason_intrinsic,
                  Deoptimization::Action_maybe_recompile);
  }

  // If control is dead, only non-array-path is taken.
  if (stopped())  return true;

  // The works fine even if the array type is polymorphic.
  // It could be a dynamic mix of int[], boolean[], Object[], etc.
  push( load_array_length(array) );

  C->set_has_split_ifs(true); // Has chance for split-if optimization

  return true;
}

//------------------------inline_array_copyOf----------------------------
bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;

  // Restore the stack and pop off the arguments.
  int nargs = 3 + (is_copyOfRange? 1: 0);
  Node* original          = argument(0);
  Node* start             = is_copyOfRange? argument(1): intcon(0);
  Node* end               = is_copyOfRange? argument(2): argument(1);
  Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);

  Node* newcopy;

  //set the original stack and the reexecute bit for the interpreter to reexecute
  //the bytecode that invokes Arrays.copyOf if deoptimization happens
  { PreserveReexecuteState preexecs(this);
    _sp += nargs;
    jvms()->set_should_reexecute(true);

    array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
    original          = do_null_check(original, T_OBJECT);

    // Check if a null path was taken unconditionally.
    if (stopped())  return true;

    Node* orig_length = load_array_length(original);

    Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
                                              NULL, 0);
    klass_node = do_null_check(klass_node, T_OBJECT);

    RegionNode* bailout = new (C, 1) RegionNode(1);
    record_for_igvn(bailout);

    // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
    // Bail out if that is so.
    Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
    if (not_objArray != NULL) {
      // Improve the klass node's type from the new optimistic assumption:
      ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
      const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
      Node* cast = new (C, 2) CastPPNode(klass_node, akls);
      cast->init_req(0, control());
      klass_node = _gvn.transform(cast);
    }

    // Bail out if either start or end is negative.
    generate_negative_guard(start, bailout, &start);
    generate_negative_guard(end,   bailout, &end);

    Node* length = end;
    if (_gvn.type(start) != TypeInt::ZERO) {
      length = _gvn.transform( new (C, 3) SubINode(end, start) );
    }

    // Bail out if length is negative.
    // ...Not needed, since the new_array will throw the right exception.
    //generate_negative_guard(length, bailout, &length);

    if (bailout->req() > 1) {
      PreserveJVMState pjvms(this);
      set_control( _gvn.transform(bailout) );
      uncommon_trap(Deoptimization::Reason_intrinsic,
                    Deoptimization::Action_maybe_recompile);
    }

    if (!stopped()) {

      // How many elements will we copy from the original?
      // The answer is MinI(orig_length - start, length).
      Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
      Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);

      const bool raw_mem_only = true;
      newcopy = new_array(klass_node, length, 0, raw_mem_only);

      // Generate a direct call to the right arraycopy function(s).
      // We know the copy is disjoint but we might not know if the
      // oop stores need checking.
      // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
      // This will fail a store-check if x contains any non-nulls.
      bool disjoint_bases = true;
      bool length_never_negative = true;
      generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
                         original, start, newcopy, intcon(0), moved,
                         disjoint_bases, length_never_negative);
    }
  } //original reexecute and sp are set back here

  if(!stopped()) {
    push(newcopy);
  }

  C->set_has_split_ifs(true); // Has chance for split-if optimization

  return true;
}


//----------------------generate_virtual_guard---------------------------
// Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
                                             RegionNode* slow_region) {
  ciMethod* method = callee();
  int vtable_index = method->vtable_index();
  // Get the methodOop out of the appropriate vtable entry.
  int entry_offset  = (instanceKlass::vtable_start_offset() +
                     vtable_index*vtableEntry::size()) * wordSize +
                     vtableEntry::method_offset_in_bytes();
  Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);

  // Compare the target method with the expected method (e.g., Object.hashCode).
  const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);

  Node* native_call = makecon(native_call_addr);
  Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
  Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );

  return generate_slow_guard(test_native, slow_region);
}

//-----------------------generate_method_call----------------------------
// Use generate_method_call to make a slow-call to the real
// method if the fast path fails.  An alternative would be to
// use a stub like OptoRuntime::slow_arraycopy_Java.
// This only works for expanding the current library call,
// not another intrinsic.  (E.g., don't use this for making an
// arraycopy call inside of the copyOf intrinsic.)
CallJavaNode*
LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  // When compiling the intrinsic method itself, do not use this technique.
  guarantee(callee() != C->method(), "cannot make slow-call to self");

  ciMethod* method = callee();
  // ensure the JVMS we have will be correct for this call
  guarantee(method_id == method->intrinsic_id(), "must match");

  const TypeFunc* tf = TypeFunc::make(method);
  int tfdc = tf->domain()->cnt();
  CallJavaNode* slow_call;
  if (is_static) {
    assert(!is_virtual, "");
    slow_call = new(C, tfdc) CallStaticJavaNode(tf,
                                SharedRuntime::get_resolve_static_call_stub(),
                                method, bci());
  } else if (is_virtual) {
    null_check_receiver(method);
    int vtable_index = methodOopDesc::invalid_vtable_index;
    if (UseInlineCaches) {
      // Suppress the vtable call
    } else {
      // hashCode and clone are not a miranda methods,
      // so the vtable index is fixed.
      // No need to use the linkResolver to get it.
       vtable_index = method->vtable_index();
    }
    slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
                                SharedRuntime::get_resolve_virtual_call_stub(),
                                method, vtable_index, bci());
  } else {  // neither virtual nor static:  opt_virtual
    null_check_receiver(method);
    slow_call = new(C, tfdc) CallStaticJavaNode(tf,
                                SharedRuntime::get_resolve_opt_virtual_call_stub(),
                                method, bci());
    slow_call->set_optimized_virtual(true);
  }
  set_arguments_for_java_call(slow_call);
  set_edges_for_java_call(slow_call);
  return slow_call;
}


//------------------------------inline_native_hashcode--------------------
// Build special case code for calls to hashCode on an object.
bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  assert(is_static == callee()->is_static(), "correct intrinsic selection");
  assert(!(is_virtual && is_static), "either virtual, special, or static");

  enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };

  RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
                                                      TypeInt::INT);
  PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
                                                      TypePtr::BOTTOM);
  Node* obj = NULL;
  if (!is_static) {
    // Check for hashing null object
    obj = null_check_receiver(callee());
    if (stopped())  return true;        // unconditionally null
    result_reg->init_req(_null_path, top());
    result_val->init_req(_null_path, top());
  } else {
    // Do a null check, and return zero if null.
    // System.identityHashCode(null) == 0
    obj = argument(0);
    Node* null_ctl = top();
    obj = null_check_oop(obj, &null_ctl);
    result_reg->init_req(_null_path, null_ctl);
    result_val->init_req(_null_path, _gvn.intcon(0));
  }

  // Unconditionally null?  Then return right away.
  if (stopped()) {
    set_control( result_reg->in(_null_path) );
    if (!stopped())
      push(      result_val ->in(_null_path) );
    return true;
  }

  // After null check, get the object's klass.
  Node* obj_klass = load_object_klass(obj);

  // This call may be virtual (invokevirtual) or bound (invokespecial).
  // For each case we generate slightly different code.

  // We only go to the fast case code if we pass a number of guards.  The
  // paths which do not pass are accumulated in the slow_region.
  RegionNode* slow_region = new (C, 1) RegionNode(1);
  record_for_igvn(slow_region);

  // If this is a virtual call, we generate a funny guard.  We pull out
  // the vtable entry corresponding to hashCode() from the target object.
  // If the target method which we are calling happens to be the native
  // Object hashCode() method, we pass the guard.  We do not need this
  // guard for non-virtual calls -- the caller is known to be the native
  // Object hashCode().
  if (is_virtual) {
    generate_virtual_guard(obj_klass, slow_region);
  }

  // Get the header out of the object, use LoadMarkNode when available
  Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());

  // Test the header to see if it is unlocked.
  Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
  Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
  Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );

  generate_slow_guard(test_unlocked, slow_region);

  // Get the hash value and check to see that it has been properly assigned.
  // We depend on hash_mask being at most 32 bits and avoid the use of
  // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  // vm: see markOop.hpp.
  Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
  // This hack lets the hash bits live anywhere in the mark object now, as long
  // as the shift drops the relevant bits into the low 32 bits.  Note that
  // Java spec says that HashCode is an int so there's no point in capturing
  // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  hshifted_header      = ConvX2I(hshifted_header);
  Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );

  Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
  Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );

  generate_slow_guard(test_assigned, slow_region);

  Node* init_mem = reset_memory();
  // fill in the rest of the null path:
  result_io ->init_req(_null_path, i_o());
  result_mem->init_req(_null_path, init_mem);

  result_val->init_req(_fast_path, hash_val);
  result_reg->init_req(_fast_path, control());
  result_io ->init_req(_fast_path, i_o());
  result_mem->init_req(_fast_path, init_mem);

  // Generate code for the slow case.  We make a call to hashCode().
  set_control(_gvn.transform(slow_region));
  if (!stopped()) {
    // No need for PreserveJVMState, because we're using up the present state.
    set_all_memory(init_mem);
    vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
    if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
    CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
    Node* slow_result = set_results_for_java_call(slow_call);
    // this->control() comes from set_results_for_java_call
    result_reg->init_req(_slow_path, control());
    result_val->init_req(_slow_path, slow_result);
    result_io  ->set_req(_slow_path, i_o());
    result_mem ->set_req(_slow_path, reset_memory());
  }

  // Return the combined state.
  set_i_o(        _gvn.transform(result_io)  );
  set_all_memory( _gvn.transform(result_mem) );
  push_result(result_reg, result_val);

  return true;
}

//---------------------------inline_native_getClass----------------------------
// Build special case code for calls to getClass on an object.
bool LibraryCallKit::inline_native_getClass() {
  Node* obj = null_check_receiver(callee());
  if (stopped())  return true;
  push( load_mirror_from_klass(load_object_klass(obj)) );
  return true;
}

//-----------------inline_native_Reflection_getCallerClass---------------------
// In the presence of deep enough inlining, getCallerClass() becomes a no-op.
//
// NOTE that this code must perform the same logic as
// vframeStream::security_get_caller_frame in that it must skip
// Method.invoke() and auxiliary frames.




bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  ciMethod*       method = callee();

#ifndef PRODUCT
  if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
    tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  }
#endif

  debug_only(int saved_sp = _sp);

  // Argument words:  (int depth)
  int nargs = 1;

  _sp += nargs;
  Node* caller_depth_node = pop();

  assert(saved_sp == _sp, "must have correct argument count");

  // The depth value must be a constant in order for the runtime call
  // to be eliminated.
  const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
  if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
#ifndef PRODUCT
    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
      tty->print_cr("  Bailing out because caller depth was not a constant");
    }
#endif
    return false;
  }
  // Note that the JVM state at this point does not include the
  // getCallerClass() frame which we are trying to inline. The
  // semantics of getCallerClass(), however, are that the "first"
  // frame is the getCallerClass() frame, so we subtract one from the
  // requested depth before continuing. We don't inline requests of
  // getCallerClass(0).
  int caller_depth = caller_depth_type->get_con() - 1;
  if (caller_depth < 0) {
#ifndef PRODUCT
    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
      tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
    }
#endif
    return false;
  }

  if (!jvms()->has_method()) {
#ifndef PRODUCT
    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
      tty->print_cr("  Bailing out because intrinsic was inlined at top level");
    }
#endif
    return false;
  }
  int _depth = jvms()->depth();  // cache call chain depth

  // Walk back up the JVM state to find the caller at the required
  // depth. NOTE that this code must perform the same logic as
  // vframeStream::security_get_caller_frame in that it must skip
  // Method.invoke() and auxiliary frames. Note also that depth is
  // 1-based (1 is the bottom of the inlining).
  int inlining_depth = _depth;
  JVMState* caller_jvms = NULL;

  if (inlining_depth > 0) {
    caller_jvms = jvms();
    assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
    do {
      // The following if-tests should be performed in this order
      if (is_method_invoke_or_aux_frame(caller_jvms)) {
        // Skip a Method.invoke() or auxiliary frame
      } else if (caller_depth > 0) {
        // Skip real frame
        --caller_depth;
      } else {
        // We're done: reached desired caller after skipping.
        break;
      }
      caller_jvms = caller_jvms->caller();
      --inlining_depth;
    } while (inlining_depth > 0);
  }

  if (inlining_depth == 0) {
#ifndef PRODUCT
    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
      tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
      tty->print_cr("  JVM state at this point:");
      for (int i = _depth; i >= 1; i--) {
        tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
      }
    }
#endif
    return false; // Reached end of inlining
  }

  // Acquire method holder as java.lang.Class
  ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
  ciInstance*      caller_mirror = caller_klass->java_mirror();
  // Push this as a constant
  push(makecon(TypeInstPtr::make(caller_mirror)));
#ifndef PRODUCT
  if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
    tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
    tty->print_cr("  JVM state at this point:");
    for (int i = _depth; i >= 1; i--) {
      tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
    }
  }
#endif
  return true;
}

// Helper routine for above
bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
  ciMethod* method = jvms->method();

  // Is this the Method.invoke method itself?
  if (method->intrinsic_id() == vmIntrinsics::_invoke)
    return true;

  // Is this a helper, defined somewhere underneath MethodAccessorImpl.
  ciKlass* k = method->holder();
  if (k->is_instance_klass()) {
    ciInstanceKlass* ik = k->as_instance_klass();
    for (; ik != NULL; ik = ik->super()) {
      if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
          ik == env()->find_system_klass(ik->name())) {
        return true;
      }
    }
  }
  else if (method->is_method_handle_adapter()) {
    // This is an internal adapter frame from the MethodHandleCompiler -- skip it
    return true;
  }

  return false;
}

static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
                                     // inline_native_AtomicLong_attemptUpdate() but it has no way of
                                     // computing it since there is no lookup field by name function in the
                                     // CI interface.  This is computed and set by inline_native_AtomicLong_get().
                                     // Using a static variable here is safe even if we have multiple compilation
                                     // threads because the offset is constant.  At worst the same offset will be
                                     // computed and  stored multiple

bool LibraryCallKit::inline_native_AtomicLong_get() {
  // Restore the stack and pop off the argument
  _sp+=1;
  Node *obj = pop();

  // get the offset of the "value" field. Since the CI interfaces
  // does not provide a way to look up a field by name, we scan the bytecodes
  // to get the field index.  We expect the first 2 instructions of the method
  // to be:
  //    0 aload_0
  //    1 getfield "value"
  ciMethod* method = callee();
  if (value_field_offset == -1)
  {
    ciField* value_field;
    ciBytecodeStream iter(method);
    Bytecodes::Code bc = iter.next();

    if ((bc != Bytecodes::_aload_0) &&
              ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
      return false;
    bc = iter.next();
    if (bc != Bytecodes::_getfield)
      return false;
    bool ignore;
    value_field = iter.get_field(ignore);
    value_field_offset = value_field->offset_in_bytes();
  }

  // Null check without removing any arguments.
  _sp++;
  obj = do_null_check(obj, T_OBJECT);
  _sp--;
  // Check for locking null object
  if (stopped()) return true;

  Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  int alias_idx = C->get_alias_index(adr_type);

  Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));

  push_pair(result);

  return true;
}

bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
  // Restore the stack and pop off the arguments
  _sp+=5;
  Node *newVal = pop_pair();
  Node *oldVal = pop_pair();
  Node *obj = pop();

  // we need the offset of the "value" field which was computed when
  // inlining the get() method.  Give up if we don't have it.
  if (value_field_offset == -1)
    return false;

  // Null check without removing any arguments.
  _sp+=5;
  obj = do_null_check(obj, T_OBJECT);
  _sp-=5;
  // Check for locking null object
  if (stopped()) return true;

  Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  int alias_idx = C->get_alias_index(adr_type);

  Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
  Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  set_memory(store_proj, alias_idx);
  Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );

  Node *result;
  // CMove node is not used to be able fold a possible check code
  // after attemptUpdate() call. This code could be transformed
  // into CMove node by loop optimizations.
  {
    RegionNode *r = new (C, 3) RegionNode(3);
    result = new (C, 3) PhiNode(r, TypeInt::BOOL);

    Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
    Node *iftrue = opt_iff(r, iff);
    r->init_req(1, iftrue);
    result->init_req(1, intcon(1));
    result->init_req(2, intcon(0));

    set_control(_gvn.transform(r));
    record_for_igvn(r);

    C->set_has_split_ifs(true); // Has chance for split-if optimization
  }

  push(_gvn.transform(result));
  return true;
}

bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  // restore the arguments
  _sp += arg_size();

  switch (id) {
  case vmIntrinsics::_floatToRawIntBits:
    push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
    break;

  case vmIntrinsics::_intBitsToFloat:
    push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
    break;

  case vmIntrinsics::_doubleToRawLongBits:
    push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
    break;

  case vmIntrinsics::_longBitsToDouble:
    push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
    break;

  case vmIntrinsics::_doubleToLongBits: {
    Node* value = pop_pair();

    // two paths (plus control) merge in a wood
    RegionNode *r = new (C, 3) RegionNode(3);
    Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);

    Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
    // Build the boolean node
    Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );

    // Branch either way.
    // NaN case is less traveled, which makes all the difference.
    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
    Node *opt_isnan = _gvn.transform(ifisnan);
    assert( opt_isnan->is_If(), "Expect an IfNode");
    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
    Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );

    set_control(iftrue);

    static const jlong nan_bits = CONST64(0x7ff8000000000000);
    Node *slow_result = longcon(nan_bits); // return NaN
    phi->init_req(1, _gvn.transform( slow_result ));
    r->init_req(1, iftrue);

    // Else fall through
    Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
    set_control(iffalse);

    phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
    r->init_req(2, iffalse);

    // Post merge
    set_control(_gvn.transform(r));
    record_for_igvn(r);

    Node* result = _gvn.transform(phi);
    assert(result->bottom_type()->isa_long(), "must be");
    push_pair(result);

    C->set_has_split_ifs(true); // Has chance for split-if optimization

    break;
  }

  case vmIntrinsics::_floatToIntBits: {
    Node* value = pop();

    // two paths (plus control) merge in a wood
    RegionNode *r = new (C, 3) RegionNode(3);
    Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);

    Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
    // Build the boolean node
    Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );

    // Branch either way.
    // NaN case is less traveled, which makes all the difference.
    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
    Node *opt_isnan = _gvn.transform(ifisnan);
    assert( opt_isnan->is_If(), "Expect an IfNode");
    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
    Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );

    set_control(iftrue);

    static const jint nan_bits = 0x7fc00000;
    Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
    phi->init_req(1, _gvn.transform( slow_result ));
    r->init_req(1, iftrue);

    // Else fall through
    Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
    set_control(iffalse);

    phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
    r->init_req(2, iffalse);

    // Post merge
    set_control(_gvn.transform(r));
    record_for_igvn(r);

    Node* result = _gvn.transform(phi);
    assert(result->bottom_type()->isa_int(), "must be");
    push(result);

    C->set_has_split_ifs(true); // Has chance for split-if optimization

    break;
  }

  default:
    ShouldNotReachHere();
  }

  return true;
}

#ifdef _LP64
#define XTOP ,top() /*additional argument*/
#else  //_LP64
#define XTOP        /*no additional argument*/
#endif //_LP64

//----------------------inline_unsafe_copyMemory-------------------------
bool LibraryCallKit::inline_unsafe_copyMemory() {
  if (callee()->is_static())  return false;  // caller must have the capability!
  int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
  assert(signature()->size() == nargs-1, "copy has 5 arguments");
  null_check_receiver(callee());  // check then ignore argument(0)
  if (stopped())  return true;

  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".

  Node* src_ptr = argument(1);
  Node* src_off = ConvL2X(argument(2));
  assert(argument(3)->is_top(), "2nd half of long");
  Node* dst_ptr = argument(4);
  Node* dst_off = ConvL2X(argument(5));
  assert(argument(6)->is_top(), "2nd half of long");
  Node* size    = ConvL2X(argument(7));
  assert(argument(8)->is_top(), "2nd half of long");

  assert(Unsafe_field_offset_to_byte_offset(11) == 11,
         "fieldOffset must be byte-scaled");

  Node* src = make_unsafe_address(src_ptr, src_off);
  Node* dst = make_unsafe_address(dst_ptr, dst_off);

  // Conservatively insert a memory barrier on all memory slices.
  // Do not let writes of the copy source or destination float below the copy.
  insert_mem_bar(Op_MemBarCPUOrder);

  // Call it.  Note that the length argument is not scaled.
  make_runtime_call(RC_LEAF|RC_NO_FP,
                    OptoRuntime::fast_arraycopy_Type(),
                    StubRoutines::unsafe_arraycopy(),
                    "unsafe_arraycopy",
                    TypeRawPtr::BOTTOM,
                    src, dst, size XTOP);

  // Do not let reads of the copy destination float above the copy.
  insert_mem_bar(Op_MemBarCPUOrder);

  return true;
}

//------------------------clone_coping-----------------------------------
// Helper function for inline_native_clone.
void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  assert(obj_size != NULL, "");
  Node* raw_obj = alloc_obj->in(1);
  assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");

  if (ReduceBulkZeroing) {
    // We will be completely responsible for initializing this object -
    // mark Initialize node as complete.
    AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
    // The object was just allocated - there should be no any stores!
    guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  }

  // Copy the fastest available way.
  // TODO: generate fields copies for small objects instead.
  Node* src  = obj;
  Node* dest = alloc_obj;
  Node* size = _gvn.transform(obj_size);

  // Exclude the header but include array length to copy by 8 bytes words.
  // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
                            instanceOopDesc::base_offset_in_bytes();
  // base_off:
  // 8  - 32-bit VM
  // 12 - 64-bit VM, compressed oops
  // 16 - 64-bit VM, normal oops
  if (base_off % BytesPerLong != 0) {
    assert(UseCompressedOops, "");
    if (is_array) {
      // Exclude length to copy by 8 bytes words.
      base_off += sizeof(int);
    } else {
      // Include klass to copy by 8 bytes words.
      base_off = instanceOopDesc::klass_offset_in_bytes();
    }
    assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  }
  src  = basic_plus_adr(src,  base_off);
  dest = basic_plus_adr(dest, base_off);

  // Compute the length also, if needed:
  Node* countx = size;
  countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
  countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));

  const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  bool disjoint_bases = true;
  generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
                               src, NULL, dest, NULL, countx,
                               /*dest_uninitialized*/true);

  // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  if (card_mark) {
    assert(!is_array, "");
    // Put in store barrier for any and all oops we are sticking
    // into this object.  (We could avoid this if we could prove
    // that the object type contains no oop fields at all.)
    Node* no_particular_value = NULL;
    Node* no_particular_field = NULL;
    int raw_adr_idx = Compile::AliasIdxRaw;
    post_barrier(control(),
                 memory(raw_adr_type),
                 alloc_obj,
                 no_particular_field,
                 raw_adr_idx,
                 no_particular_value,
                 T_OBJECT,
                 false);
  }

  // Do not let reads from the cloned object float above the arraycopy.
  insert_mem_bar(Op_MemBarCPUOrder);
}

//------------------------inline_native_clone----------------------------
// Here are the simple edge cases:
//  null receiver => normal trap
//  virtual and clone was overridden => slow path to out-of-line clone
//  not cloneable or finalizer => slow path to out-of-line Object.clone
//
// The general case has two steps, allocation and copying.
// Allocation has two cases, and uses GraphKit::new_instance or new_array.
//
// Copying also has two cases, oop arrays and everything else.
// Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
// Everything else uses the tight inline loop supplied by CopyArrayNode.
//
// These steps fold up nicely if and when the cloned object's klass
// can be sharply typed as an object array, a type array, or an instance.
//
bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  int nargs = 1;
  PhiNode* result_val;

  //set the original stack and the reexecute bit for the interpreter to reexecute
  //the bytecode that invokes Object.clone if deoptimization happens
  { PreserveReexecuteState preexecs(this);
    jvms()->set_should_reexecute(true);

    //null_check_receiver will adjust _sp (push and pop)
    Node* obj = null_check_receiver(callee());
    if (stopped())  return true;

    _sp += nargs;

    Node* obj_klass = load_object_klass(obj);
    const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
    const TypeOopPtr*   toop   = ((tklass != NULL)
                                ? tklass->as_instance_type()
                                : TypeInstPtr::NOTNULL);

    // Conservatively insert a memory barrier on all memory slices.
    // Do not let writes into the original float below the clone.
    insert_mem_bar(Op_MemBarCPUOrder);

    // paths into result_reg:
    enum {
      _slow_path = 1,     // out-of-line call to clone method (virtual or not)
      _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
      _array_path,        // plain array allocation, plus arrayof_long_arraycopy
      _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
      PATH_LIMIT
    };
    RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
    result_val             = new(C, PATH_LIMIT) PhiNode(result_reg,
                                                        TypeInstPtr::NOTNULL);
    PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
    PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
                                                        TypePtr::BOTTOM);
    record_for_igvn(result_reg);

    const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
    int raw_adr_idx = Compile::AliasIdxRaw;
    const bool raw_mem_only = true;


    Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
    if (array_ctl != NULL) {
      // It's an array.
      PreserveJVMState pjvms(this);
      set_control(array_ctl);
      Node* obj_length = load_array_length(obj);
      Node* obj_size  = NULL;
      Node* alloc_obj = new_array(obj_klass, obj_length, 0,
                                  raw_mem_only, &obj_size);

      if (!use_ReduceInitialCardMarks()) {
        // If it is an oop array, it requires very special treatment,
        // because card marking is required on each card of the array.
        Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
        if (is_obja != NULL) {
          PreserveJVMState pjvms2(this);
          set_control(is_obja);
          // Generate a direct call to the right arraycopy function(s).
          bool disjoint_bases = true;
          bool length_never_negative = true;
          generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
                             obj, intcon(0), alloc_obj, intcon(0),
                             obj_length,
                             disjoint_bases, length_never_negative);
          result_reg->init_req(_objArray_path, control());
          result_val->init_req(_objArray_path, alloc_obj);
          result_i_o ->set_req(_objArray_path, i_o());
          result_mem ->set_req(_objArray_path, reset_memory());
        }
      }
      // Otherwise, there are no card marks to worry about.
      // (We can dispense with card marks if we know the allocation
      //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
      //  causes the non-eden paths to take compensating steps to
      //  simulate a fresh allocation, so that no further
      //  card marks are required in compiled code to initialize
      //  the object.)

      if (!stopped()) {
        copy_to_clone(obj, alloc_obj, obj_size, true, false);

        // Present the results of the copy.
        result_reg->init_req(_array_path, control());
        result_val->init_req(_array_path, alloc_obj);
        result_i_o ->set_req(_array_path, i_o());
        result_mem ->set_req(_array_path, reset_memory());
      }
    }

    // We only go to the instance fast case code if we pass a number of guards.
    // The paths which do not pass are accumulated in the slow_region.
    RegionNode* slow_region = new (C, 1) RegionNode(1);
    record_for_igvn(slow_region);
    if (!stopped()) {
      // It's an instance (we did array above).  Make the slow-path tests.
      // If this is a virtual call, we generate a funny guard.  We grab
      // the vtable entry corresponding to clone() from the target object.
      // If the target method which we are calling happens to be the
      // Object clone() method, we pass the guard.  We do not need this
      // guard for non-virtual calls; the caller is known to be the native
      // Object clone().
      if (is_virtual) {
        generate_virtual_guard(obj_klass, slow_region);
      }

      // The object must be cloneable and must not have a finalizer.
      // Both of these conditions may be checked in a single test.
      // We could optimize the cloneable test further, but we don't care.
      generate_access_flags_guard(obj_klass,
                                  // Test both conditions:
                                  JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
                                  // Must be cloneable but not finalizer:
                                  JVM_ACC_IS_CLONEABLE,
                                  slow_region);
    }

    if (!stopped()) {
      // It's an instance, and it passed the slow-path tests.
      PreserveJVMState pjvms(this);
      Node* obj_size  = NULL;
      Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);

      copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());

      // Present the results of the slow call.
      result_reg->init_req(_instance_path, control());
      result_val->init_req(_instance_path, alloc_obj);
      result_i_o ->set_req(_instance_path, i_o());
      result_mem ->set_req(_instance_path, reset_memory());
    }

    // Generate code for the slow case.  We make a call to clone().
    set_control(_gvn.transform(slow_region));
    if (!stopped()) {
      PreserveJVMState pjvms(this);
      CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
      Node* slow_result = set_results_for_java_call(slow_call);
      // this->control() comes from set_results_for_java_call
      result_reg->init_req(_slow_path, control());
      result_val->init_req(_slow_path, slow_result);
      result_i_o ->set_req(_slow_path, i_o());
      result_mem ->set_req(_slow_path, reset_memory());
    }

    // Return the combined state.
    set_control(    _gvn.transform(result_reg) );
    set_i_o(        _gvn.transform(result_i_o) );
    set_all_memory( _gvn.transform(result_mem) );
  } //original reexecute and sp are set back here

  push(_gvn.transform(result_val));

  return true;
}


// constants for computing the copy function
enum {
  COPYFUNC_UNALIGNED = 0,
  COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
  COPYFUNC_CONJOINT = 0,
  COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
};

// Note:  The condition "disjoint" applies also for overlapping copies
// where an descending copy is permitted (i.e., dest_offset <= src_offset).
static address
select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name, bool dest_uninitialized) {
  int selector =
    (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
    (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);

#define RETURN_STUB(xxx_arraycopy) { \
  name = #xxx_arraycopy; \
  return StubRoutines::xxx_arraycopy(); }

#define RETURN_STUB_PARM(xxx_arraycopy, parm) {           \
  name = #xxx_arraycopy; \
  return StubRoutines::xxx_arraycopy(parm); }

  switch (t) {
  case T_BYTE:
  case T_BOOLEAN:
    switch (selector) {
    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
    }
  case T_CHAR:
  case T_SHORT:
    switch (selector) {
    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
    }
  case T_INT:
  case T_FLOAT:
    switch (selector) {
    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
    }
  case T_DOUBLE:
  case T_LONG:
    switch (selector) {
    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
    }
  case T_ARRAY:
  case T_OBJECT:
    switch (selector) {
    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB_PARM(oop_arraycopy, dest_uninitialized);
    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB_PARM(arrayof_oop_arraycopy, dest_uninitialized);
    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB_PARM(oop_disjoint_arraycopy, dest_uninitialized);
    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB_PARM(arrayof_oop_disjoint_arraycopy, dest_uninitialized);
    }
  default:
    ShouldNotReachHere();
    return NULL;
  }

#undef RETURN_STUB
#undef RETURN_STUB_PARM
}

//------------------------------basictype2arraycopy----------------------------
address LibraryCallKit::basictype2arraycopy(BasicType t,
                                            Node* src_offset,
                                            Node* dest_offset,
                                            bool disjoint_bases,
                                            const char* &name,
                                            bool dest_uninitialized) {
  const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;

  bool aligned = false;
  bool disjoint = disjoint_bases;

  // if the offsets are the same, we can treat the memory regions as
  // disjoint, because either the memory regions are in different arrays,
  // or they are identical (which we can treat as disjoint.)  We can also
  // treat a copy with a destination index  less that the source index
  // as disjoint since a low->high copy will work correctly in this case.
  if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
      dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
    // both indices are constants
    int s_offs = src_offset_inttype->get_con();
    int d_offs = dest_offset_inttype->get_con();
    int element_size = type2aelembytes(t);
    aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
              ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
    if (s_offs >= d_offs)  disjoint = true;
  } else if (src_offset == dest_offset && src_offset != NULL) {
    // This can occur if the offsets are identical non-constants.
    disjoint = true;
  }

  return select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
}


//------------------------------inline_arraycopy-----------------------
bool LibraryCallKit::inline_arraycopy() {
  // Restore the stack and pop off the arguments.
  int nargs = 5;  // 2 oops, 3 ints, no size_t or long
  assert(callee()->signature()->size() == nargs, "copy has 5 arguments");

  Node *src         = argument(0);
  Node *src_offset  = argument(1);
  Node *dest        = argument(2);
  Node *dest_offset = argument(3);
  Node *length      = argument(4);

  // Compile time checks.  If any of these checks cannot be verified at compile time,
  // we do not make a fast path for this call.  Instead, we let the call remain as it
  // is.  The checks we choose to mandate at compile time are:
  //
  // (1) src and dest are arrays.
  const Type* src_type = src->Value(&_gvn);
  const Type* dest_type = dest->Value(&_gvn);
  const TypeAryPtr* top_src = src_type->isa_aryptr();
  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  if (top_src  == NULL || top_src->klass()  == NULL ||
      top_dest == NULL || top_dest->klass() == NULL) {
    // Conservatively insert a memory barrier on all memory slices.
    // Do not let writes into the source float below the arraycopy.
    insert_mem_bar(Op_MemBarCPUOrder);

    // Call StubRoutines::generic_arraycopy stub.
    generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
                       src, src_offset, dest, dest_offset, length);

    // Do not let reads from the destination float above the arraycopy.
    // Since we cannot type the arrays, we don't know which slices
    // might be affected.  We could restrict this barrier only to those
    // memory slices which pertain to array elements--but don't bother.
    if (!InsertMemBarAfterArraycopy)
      // (If InsertMemBarAfterArraycopy, there is already one in place.)
      insert_mem_bar(Op_MemBarCPUOrder);
    return true;
  }

  // (2) src and dest arrays must have elements of the same BasicType
  // Figure out the size and type of the elements we will be copying.
  BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;

  if (src_elem != dest_elem || dest_elem == T_VOID) {
    // The component types are not the same or are not recognized.  Punt.
    // (But, avoid the native method wrapper to JVM_ArrayCopy.)
    generate_slow_arraycopy(TypePtr::BOTTOM,
                            src, src_offset, dest, dest_offset, length,
                            /*dest_uninitialized*/false);
    return true;
  }

  //---------------------------------------------------------------------------
  // We will make a fast path for this call to arraycopy.

  // We have the following tests left to perform:
  //
  // (3) src and dest must not be null.
  // (4) src_offset must not be negative.
  // (5) dest_offset must not be negative.
  // (6) length must not be negative.
  // (7) src_offset + length must not exceed length of src.
  // (8) dest_offset + length must not exceed length of dest.
  // (9) each element of an oop array must be assignable

  RegionNode* slow_region = new (C, 1) RegionNode(1);
  record_for_igvn(slow_region);

  // (3) operands must not be null
  // We currently perform our null checks with the do_null_check routine.
  // This means that the null exceptions will be reported in the caller
  // rather than (correctly) reported inside of the native arraycopy call.
  // This should be corrected, given time.  We do our null check with the
  // stack pointer restored.
  _sp += nargs;
  src  = do_null_check(src,  T_ARRAY);
  dest = do_null_check(dest, T_ARRAY);
  _sp -= nargs;

  // (4) src_offset must not be negative.
  generate_negative_guard(src_offset, slow_region);

  // (5) dest_offset must not be negative.
  generate_negative_guard(dest_offset, slow_region);

  // (6) length must not be negative (moved to generate_arraycopy()).
  // generate_negative_guard(length, slow_region);

  // (7) src_offset + length must not exceed length of src.
  generate_limit_guard(src_offset, length,
                       load_array_length(src),
                       slow_region);

  // (8) dest_offset + length must not exceed length of dest.
  generate_limit_guard(dest_offset, length,
                       load_array_length(dest),
                       slow_region);

  // (9) each element of an oop array must be assignable
  // The generate_arraycopy subroutine checks this.

  // This is where the memory effects are placed:
  const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  generate_arraycopy(adr_type, dest_elem,
                     src, src_offset, dest, dest_offset, length,
                     false, false, slow_region);

  return true;
}

//-----------------------------generate_arraycopy----------------------
// Generate an optimized call to arraycopy.
// Caller must guard against non-arrays.
// Caller must determine a common array basic-type for both arrays.
// Caller must validate offsets against array bounds.
// The slow_region has already collected guard failure paths
// (such as out of bounds length or non-conformable array types).
// The generated code has this shape, in general:
//
//     if (length == 0)  return   // via zero_path
//     slowval = -1
//     if (types unknown) {
//       slowval = call generic copy loop
//       if (slowval == 0)  return  // via checked_path
//     } else if (indexes in bounds) {
//       if ((is object array) && !(array type check)) {
//         slowval = call checked copy loop
//         if (slowval == 0)  return  // via checked_path
//       } else {
//         call bulk copy loop
//         return  // via fast_path
//       }
//     }
//     // adjust params for remaining work:
//     if (slowval != -1) {
//       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
//     }
//   slow_region:
//     call slow arraycopy(src, src_offset, dest, dest_offset, length)
//     return  // via slow_call_path
//
// This routine is used from several intrinsics:  System.arraycopy,
// Object.clone (the array subcase), and Arrays.copyOf[Range].
//
void
LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
                                   BasicType basic_elem_type,
                                   Node* src,  Node* src_offset,
                                   Node* dest, Node* dest_offset,
                                   Node* copy_length,
                                   bool disjoint_bases,
                                   bool length_never_negative,
                                   RegionNode* slow_region) {

  if (slow_region == NULL) {
    slow_region = new(C,1) RegionNode(1);
    record_for_igvn(slow_region);
  }

  Node* original_dest      = dest;
  AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  bool  dest_uninitialized = false;

  // See if this is the initialization of a newly-allocated array.
  // If so, we will take responsibility here for initializing it to zero.
  // (Note:  Because tightly_coupled_allocation performs checks on the
  // out-edges of the dest, we need to avoid making derived pointers
  // from it until we have checked its uses.)
  if (ReduceBulkZeroing
      && !ZeroTLAB              // pointless if already zeroed
      && basic_elem_type != T_CONFLICT // avoid corner case
      && !_gvn.eqv_uncast(src, dest)
      && ((alloc = tightly_coupled_allocation(dest, slow_region))
          != NULL)
      && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
      && alloc->maybe_set_complete(&_gvn)) {
    // "You break it, you buy it."
    InitializeNode* init = alloc->initialization();
    assert(init->is_complete(), "we just did this");
    assert(dest->is_CheckCastPP(), "sanity");
    assert(dest->in(0)->in(0) == init, "dest pinned");
    adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
    // From this point on, every exit path is responsible for
    // initializing any non-copied parts of the object to zero.
    // Also, if this flag is set we make sure that arraycopy interacts properly
    // with G1, eliding pre-barriers. See CR 6627983.
    dest_uninitialized = true;
  } else {
    // No zeroing elimination here.
    alloc             = NULL;
    //original_dest   = dest;
    //dest_uninitialized = false;
  }

  // Results are placed here:
  enum { fast_path        = 1,  // normal void-returning assembly stub
         checked_path     = 2,  // special assembly stub with cleanup
         slow_call_path   = 3,  // something went wrong; call the VM
         zero_path        = 4,  // bypass when length of copy is zero
         bcopy_path       = 5,  // copy primitive array by 64-bit blocks
         PATH_LIMIT       = 6
  };
  RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
  PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
  record_for_igvn(result_region);
  _gvn.set_type_bottom(result_i_o);
  _gvn.set_type_bottom(result_memory);
  assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");

  // The slow_control path:
  Node* slow_control;
  Node* slow_i_o = i_o();
  Node* slow_mem = memory(adr_type);
  debug_only(slow_control = (Node*) badAddress);

  // Checked control path:
  Node* checked_control = top();
  Node* checked_mem     = NULL;
  Node* checked_i_o     = NULL;
  Node* checked_value   = NULL;

  if (basic_elem_type == T_CONFLICT) {
    assert(!dest_uninitialized, "");
    Node* cv = generate_generic_arraycopy(adr_type,
                                          src, src_offset, dest, dest_offset,
                                          copy_length, dest_uninitialized);
    if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
    checked_control = control();
    checked_i_o     = i_o();
    checked_mem     = memory(adr_type);
    checked_value   = cv;
    set_control(top());         // no fast path
  }

  Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  if (not_pos != NULL) {
    PreserveJVMState pjvms(this);
    set_control(not_pos);

    // (6) length must not be negative.
    if (!length_never_negative) {
      generate_negative_guard(copy_length, slow_region);
    }

    // copy_length is 0.
    if (!stopped() && dest_uninitialized) {
      Node* dest_length = alloc->in(AllocateNode::ALength);
      if (_gvn.eqv_uncast(copy_length, dest_length)
          || _gvn.find_int_con(dest_length, 1) <= 0) {
        // There is no zeroing to do. No need for a secondary raw memory barrier.
      } else {
        // Clear the whole thing since there are no source elements to copy.
        generate_clear_array(adr_type, dest, basic_elem_type,
                             intcon(0), NULL,
                             alloc->in(AllocateNode::AllocSize));
        // Use a secondary InitializeNode as raw memory barrier.
        // Currently it is needed only on this path since other
        // paths have stub or runtime calls as raw memory barriers.
        InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
                                                       Compile::AliasIdxRaw,
                                                       top())->as_Initialize();
        init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
      }
    }

    // Present the results of the fast call.
    result_region->init_req(zero_path, control());
    result_i_o   ->init_req(zero_path, i_o());
    result_memory->init_req(zero_path, memory(adr_type));
  }

  if (!stopped() && dest_uninitialized) {
    // We have to initialize the *uncopied* part of the array to zero.
    // The copy destination is the slice dest[off..off+len].  The other slices
    // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
    Node* dest_size   = alloc->in(AllocateNode::AllocSize);
    Node* dest_length = alloc->in(AllocateNode::ALength);
    Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
                                                          copy_length) );

    // If there is a head section that needs zeroing, do it now.
    if (find_int_con(dest_offset, -1) != 0) {
      generate_clear_array(adr_type, dest, basic_elem_type,
                           intcon(0), dest_offset,
                           NULL);
    }

    // Next, perform a dynamic check on the tail length.
    // It is often zero, and we can win big if we prove this.
    // There are two wins:  Avoid generating the ClearArray
    // with its attendant messy index arithmetic, and upgrade
    // the copy to a more hardware-friendly word size of 64 bits.
    Node* tail_ctl = NULL;
    if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
      Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
      Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
      tail_ctl = generate_slow_guard(bol_lt, NULL);
      assert(tail_ctl != NULL || !stopped(), "must be an outcome");
    }

    // At this point, let's assume there is no tail.
    if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
      // There is no tail.  Try an upgrade to a 64-bit copy.
      bool didit = false;
      { PreserveJVMState pjvms(this);
        didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
                                         src, src_offset, dest, dest_offset,
                                         dest_size, dest_uninitialized);
        if (didit) {
          // Present the results of the block-copying fast call.
          result_region->init_req(bcopy_path, control());
          result_i_o   ->init_req(bcopy_path, i_o());
          result_memory->init_req(bcopy_path, memory(adr_type));
        }
      }
      if (didit)
        set_control(top());     // no regular fast path
    }

    // Clear the tail, if any.
    if (tail_ctl != NULL) {
      Node* notail_ctl = stopped() ? NULL : control();
      set_control(tail_ctl);
      if (notail_ctl == NULL) {
        generate_clear_array(adr_type, dest, basic_elem_type,
                             dest_tail, NULL,
                             dest_size);
      } else {
        // Make a local merge.
        Node* done_ctl = new(C,3) RegionNode(3);
        Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
        done_ctl->init_req(1, notail_ctl);
        done_mem->init_req(1, memory(adr_type));
        generate_clear_array(adr_type, dest, basic_elem_type,
                             dest_tail, NULL,
                             dest_size);
        done_ctl->init_req(2, control());
        done_mem->init_req(2, memory(adr_type));
        set_control( _gvn.transform(done_ctl) );
        set_memory(  _gvn.transform(done_mem), adr_type );
      }
    }
  }

  BasicType copy_type = basic_elem_type;
  assert(basic_elem_type != T_ARRAY, "caller must fix this");
  if (!stopped() && copy_type == T_OBJECT) {
    // If src and dest have compatible element types, we can copy bits.
    // Types S[] and D[] are compatible if D is a supertype of S.
    //
    // If they are not, we will use checked_oop_disjoint_arraycopy,
    // which performs a fast optimistic per-oop check, and backs off
    // further to JVM_ArrayCopy on the first per-oop check that fails.
    // (Actually, we don't move raw bits only; the GC requires card marks.)

    // Get the klassOop for both src and dest
    Node* src_klass  = load_object_klass(src);
    Node* dest_klass = load_object_klass(dest);

    // Generate the subtype check.
    // This might fold up statically, or then again it might not.
    //
    // Non-static example:  Copying List<String>.elements to a new String[].
    // The backing store for a List<String> is always an Object[],
    // but its elements are always type String, if the generic types
    // are correct at the source level.
    //
    // Test S[] against D[], not S against D, because (probably)
    // the secondary supertype cache is less busy for S[] than S.
    // This usually only matters when D is an interface.
    Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
    // Plug failing path into checked_oop_disjoint_arraycopy
    if (not_subtype_ctrl != top()) {
      PreserveJVMState pjvms(this);
      set_control(not_subtype_ctrl);
      // (At this point we can assume disjoint_bases, since types differ.)
      int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
      Node* p1 = basic_plus_adr(dest_klass, ek_offset);
      Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
      Node* dest_elem_klass = _gvn.transform(n1);
      Node* cv = generate_checkcast_arraycopy(adr_type,
                                              dest_elem_klass,
                                              src, src_offset, dest, dest_offset,
                                              ConvI2X(copy_length), dest_uninitialized);
      if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
      checked_control = control();
      checked_i_o     = i_o();
      checked_mem     = memory(adr_type);
      checked_value   = cv;
    }
    // At this point we know we do not need type checks on oop stores.

    // Let's see if we need card marks:
    if (alloc != NULL && use_ReduceInitialCardMarks()) {
      // If we do not need card marks, copy using the jint or jlong stub.
      copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
      assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
             "sizes agree");
    }
  }

  if (!stopped()) {
    // Generate the fast path, if possible.
    PreserveJVMState pjvms(this);
    generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
                                 src, src_offset, dest, dest_offset,
                                 ConvI2X(copy_length), dest_uninitialized);

    // Present the results of the fast call.
    result_region->init_req(fast_path, control());
    result_i_o   ->init_req(fast_path, i_o());
    result_memory->init_req(fast_path, memory(adr_type));
  }

  // Here are all the slow paths up to this point, in one bundle:
  slow_control = top();
  if (slow_region != NULL)
    slow_control = _gvn.transform(slow_region);
  debug_only(slow_region = (RegionNode*)badAddress);

  set_control(checked_control);
  if (!stopped()) {
    // Clean up after the checked call.
    // The returned value is either 0 or -1^K,
    // where K = number of partially transferred array elements.
    Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
    Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
    IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);

    // If it is 0, we are done, so transfer to the end.
    Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
    result_region->init_req(checked_path, checks_done);
    result_i_o   ->init_req(checked_path, checked_i_o);
    result_memory->init_req(checked_path, checked_mem);

    // If it is not zero, merge into the slow call.
    set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
    RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
    PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
    PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
    record_for_igvn(slow_reg2);
    slow_reg2  ->init_req(1, slow_control);
    slow_i_o2  ->init_req(1, slow_i_o);
    slow_mem2  ->init_req(1, slow_mem);
    slow_reg2  ->init_req(2, control());
    slow_i_o2  ->init_req(2, checked_i_o);
    slow_mem2  ->init_req(2, checked_mem);

    slow_control = _gvn.transform(slow_reg2);
    slow_i_o     = _gvn.transform(slow_i_o2);
    slow_mem     = _gvn.transform(slow_mem2);

    if (alloc != NULL) {
      // We'll restart from the very beginning, after zeroing the whole thing.
      // This can cause double writes, but that's OK since dest is brand new.
      // So we ignore the low 31 bits of the value returned from the stub.
    } else {
      // We must continue the copy exactly where it failed, or else
      // another thread might see the wrong number of writes to dest.
      Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
      Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
      slow_offset->init_req(1, intcon(0));
      slow_offset->init_req(2, checked_offset);
      slow_offset  = _gvn.transform(slow_offset);

      // Adjust the arguments by the conditionally incoming offset.
      Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
      Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
      Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );

      // Tweak the node variables to adjust the code produced below:
      src_offset  = src_off_plus;
      dest_offset = dest_off_plus;
      copy_length = length_minus;
    }
  }

  set_control(slow_control);
  if (!stopped()) {
    // Generate the slow path, if needed.
    PreserveJVMState pjvms(this);   // replace_in_map may trash the map

    set_memory(slow_mem, adr_type);
    set_i_o(slow_i_o);

    if (dest_uninitialized) {
      generate_clear_array(adr_type, dest, basic_elem_type,
                           intcon(0), NULL,
                           alloc->in(AllocateNode::AllocSize));
    }

    generate_slow_arraycopy(adr_type,
                            src, src_offset, dest, dest_offset,
                            copy_length, /*dest_uninitialized*/false);

    result_region->init_req(slow_call_path, control());
    result_i_o   ->init_req(slow_call_path, i_o());
    result_memory->init_req(slow_call_path, memory(adr_type));
  }

  // Remove unused edges.
  for (uint i = 1; i < result_region->req(); i++) {
    if (result_region->in(i) == NULL)
      result_region->init_req(i, top());
  }

  // Finished; return the combined state.
  set_control( _gvn.transform(result_region) );
  set_i_o(     _gvn.transform(result_i_o)    );
  set_memory(  _gvn.transform(result_memory), adr_type );

  // The memory edges above are precise in order to model effects around
  // array copies accurately to allow value numbering of field loads around
  // arraycopy.  Such field loads, both before and after, are common in Java
  // collections and similar classes involving header/array data structures.
  //
  // But with low number of register or when some registers are used or killed
  // by arraycopy calls it causes registers spilling on stack. See 6544710.
  // The next memory barrier is added to avoid it. If the arraycopy can be
  // optimized away (which it can, sometimes) then we can manually remove
  // the membar also.
  //
  // Do not let reads from the cloned object float above the arraycopy.
  if (InsertMemBarAfterArraycopy || alloc != NULL)
    insert_mem_bar(Op_MemBarCPUOrder);
}


// Helper function which determines if an arraycopy immediately follows
// an allocation, with no intervening tests or other escapes for the object.
AllocateArrayNode*
LibraryCallKit::tightly_coupled_allocation(Node* ptr,
                                           RegionNode* slow_region) {
  if (stopped())             return NULL;  // no fast path
  if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around

  AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  if (alloc == NULL)  return NULL;

  Node* rawmem = memory(Compile::AliasIdxRaw);
  // Is the allocation's memory state untouched?
  if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
    // Bail out if there have been raw-memory effects since the allocation.
    // (Example:  There might have been a call or safepoint.)
    return NULL;
  }
  rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
    return NULL;
  }

  // There must be no unexpected observers of this allocation.
  for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
    Node* obs = ptr->fast_out(i);
    if (obs != this->map()) {
      return NULL;
    }
  }

  // This arraycopy must unconditionally follow the allocation of the ptr.
  Node* alloc_ctl = ptr->in(0);
  assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");

  Node* ctl = control();
  while (ctl != alloc_ctl) {
    // There may be guards which feed into the slow_region.
    // Any other control flow means that we might not get a chance
    // to finish initializing the allocated object.
    if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
      IfNode* iff = ctl->in(0)->as_If();
      Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
      assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
      if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
        ctl = iff->in(0);       // This test feeds the known slow_region.
        continue;
      }
      // One more try:  Various low-level checks bottom out in
      // uncommon traps.  If the debug-info of the trap omits
      // any reference to the allocation, as we've already
      // observed, then there can be no objection to the trap.
      bool found_trap = false;
      for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
        Node* obs = not_ctl->fast_out(j);
        if (obs->in(0) == not_ctl && obs->is_Call() &&
            (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
          found_trap = true; break;
        }
      }
      if (found_trap) {
        ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
        continue;
      }
    }
    return NULL;
  }

  // If we get this far, we have an allocation which immediately
  // precedes the arraycopy, and we can take over zeroing the new object.
  // The arraycopy will finish the initialization, and provide
  // a new control state to which we will anchor the destination pointer.

  return alloc;
}

// Helper for initialization of arrays, creating a ClearArray.
// It writes zero bits in [start..end), within the body of an array object.
// The memory effects are all chained onto the 'adr_type' alias category.
//
// Since the object is otherwise uninitialized, we are free
// to put a little "slop" around the edges of the cleared area,
// as long as it does not go back into the array's header,
// or beyond the array end within the heap.
//
// The lower edge can be rounded down to the nearest jint and the
// upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
//
// Arguments:
//   adr_type           memory slice where writes are generated
//   dest               oop of the destination array
//   basic_elem_type    element type of the destination
//   slice_idx          array index of first element to store
//   slice_len          number of elements to store (or NULL)
//   dest_size          total size in bytes of the array object
//
// Exactly one of slice_len or dest_size must be non-NULL.
// If dest_size is non-NULL, zeroing extends to the end of the object.
// If slice_len is non-NULL, the slice_idx value must be a constant.
void
LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
                                     Node* dest,
                                     BasicType basic_elem_type,
                                     Node* slice_idx,
                                     Node* slice_len,
                                     Node* dest_size) {
  // one or the other but not both of slice_len and dest_size:
  assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  if (slice_len == NULL)  slice_len = top();
  if (dest_size == NULL)  dest_size = top();

  // operate on this memory slice:
  Node* mem = memory(adr_type); // memory slice to operate on

  // scaling and rounding of indexes:
  int scale = exact_log2(type2aelembytes(basic_elem_type));
  int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  int bump_bit  = (-1 << scale) & BytesPerInt;

  // determine constant starts and ends
  const intptr_t BIG_NEG = -128;
  assert(BIG_NEG + 2*abase < 0, "neg enough");
  intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  if (slice_len_con == 0) {
    return;                     // nothing to do here
  }
  intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  if (slice_idx_con >= 0 && slice_len_con >= 0) {
    assert(end_con < 0, "not two cons");
    end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
                       BytesPerLong);
  }

  if (start_con >= 0 && end_con >= 0) {
    // Constant start and end.  Simple.
    mem = ClearArrayNode::clear_memory(control(), mem, dest,
                                       start_con, end_con, &_gvn);
  } else if (start_con >= 0 && dest_size != top()) {
    // Constant start, pre-rounded end after the tail of the array.
    Node* end = dest_size;
    mem = ClearArrayNode::clear_memory(control(), mem, dest,
                                       start_con, end, &_gvn);
  } else if (start_con >= 0 && slice_len != top()) {
    // Constant start, non-constant end.  End needs rounding up.
    // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
    intptr_t end_base  = abase + (slice_idx_con << scale);
    int      end_round = (-1 << scale) & (BytesPerLong  - 1);
    Node*    end       = ConvI2X(slice_len);
    if (scale != 0)
      end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
    end_base += end_round;
    end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
    end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
    mem = ClearArrayNode::clear_memory(control(), mem, dest,
                                       start_con, end, &_gvn);
  } else if (start_con < 0 && dest_size != top()) {
    // Non-constant start, pre-rounded end after the tail of the array.
    // This is almost certainly a "round-to-end" operation.
    Node* start = slice_idx;
    start = ConvI2X(start);
    if (scale != 0)
      start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
    start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
    if ((bump_bit | clear_low) != 0) {
      int to_clear = (bump_bit | clear_low);
      // Align up mod 8, then store a jint zero unconditionally
      // just before the mod-8 boundary.
      if (((abase + bump_bit) & ~to_clear) - bump_bit
          < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
        bump_bit = 0;
        assert((abase & to_clear) == 0, "array base must be long-aligned");
      } else {
        // Bump 'start' up to (or past) the next jint boundary:
        start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
        assert((abase & clear_low) == 0, "array base must be int-aligned");
      }
      // Round bumped 'start' down to jlong boundary in body of array.
      start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
      if (bump_bit != 0) {
        // Store a zero to the immediately preceding jint:
        Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
        Node* p1 = basic_plus_adr(dest, x1);
        mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
        mem = _gvn.transform(mem);
      }
    }
    Node* end = dest_size; // pre-rounded
    mem = ClearArrayNode::clear_memory(control(), mem, dest,
                                       start, end, &_gvn);
  } else {
    // Non-constant start, unrounded non-constant end.
    // (Nobody zeroes a random midsection of an array using this routine.)
    ShouldNotReachHere();       // fix caller
  }

  // Done.
  set_memory(mem, adr_type);
}


bool
LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
                                         BasicType basic_elem_type,
                                         AllocateNode* alloc,
                                         Node* src,  Node* src_offset,
                                         Node* dest, Node* dest_offset,
                                         Node* dest_size, bool dest_uninitialized) {
  // See if there is an advantage from block transfer.
  int scale = exact_log2(type2aelembytes(basic_elem_type));
  if (scale >= LogBytesPerLong)
    return false;               // it is already a block transfer

  // Look at the alignment of the starting offsets.
  int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  const intptr_t BIG_NEG = -128;
  assert(BIG_NEG + 2*abase < 0, "neg enough");

  intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
  intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
  if (src_off < 0 || dest_off < 0)
    // At present, we can only understand constants.
    return false;

  if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
    // Non-aligned; too bad.
    // One more chance:  Pick off an initial 32-bit word.
    // This is a common case, since abase can be odd mod 8.
    if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
        ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
      Node* sptr = basic_plus_adr(src,  src_off);
      Node* dptr = basic_plus_adr(dest, dest_off);
      Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
      store_to_memory(control(), dptr, sval, T_INT, adr_type);
      src_off += BytesPerInt;
      dest_off += BytesPerInt;
    } else {
      return false;
    }
  }
  assert(src_off % BytesPerLong == 0, "");
  assert(dest_off % BytesPerLong == 0, "");

  // Do this copy by giant steps.
  Node* sptr  = basic_plus_adr(src,  src_off);
  Node* dptr  = basic_plus_adr(dest, dest_off);
  Node* countx = dest_size;
  countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
  countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );

  bool disjoint_bases = true;   // since alloc != NULL
  generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
                               sptr, NULL, dptr, NULL, countx, dest_uninitialized);

  return true;
}


// Helper function; generates code for the slow case.
// We make a call to a runtime method which emulates the native method,
// but without the native wrapper overhead.
void
LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
                                        Node* src,  Node* src_offset,
                                        Node* dest, Node* dest_offset,
                                        Node* copy_length, bool dest_uninitialized) {
  assert(!dest_uninitialized, "Invariant");
  Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
                                 OptoRuntime::slow_arraycopy_Type(),
                                 OptoRuntime::slow_arraycopy_Java(),
                                 "slow_arraycopy", adr_type,
                                 src, src_offset, dest, dest_offset,
                                 copy_length);

  // Handle exceptions thrown by this fellow:
  make_slow_call_ex(call, env()->Throwable_klass(), false);
}

// Helper function; generates code for cases requiring runtime checks.
Node*
LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
                                             Node* dest_elem_klass,
                                             Node* src,  Node* src_offset,
                                             Node* dest, Node* dest_offset,
                                             Node* copy_length, bool dest_uninitialized) {
  if (stopped())  return NULL;

  address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
    return NULL;
  }

  // Pick out the parameters required to perform a store-check
  // for the target array.  This is an optimistic check.  It will
  // look in each non-null element's class, at the desired klass's
  // super_check_offset, for the desired klass.
  int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
  Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  Node* n3 = new(C, 3) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
  Node* check_offset = ConvI2X(_gvn.transform(n3));
  Node* check_value  = dest_elem_klass;

  Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);

  // (We know the arrays are never conjoint, because their types differ.)
  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
                                 OptoRuntime::checkcast_arraycopy_Type(),
                                 copyfunc_addr, "checkcast_arraycopy", adr_type,
                                 // five arguments, of which two are
                                 // intptr_t (jlong in LP64)
                                 src_start, dest_start,
                                 copy_length XTOP,
                                 check_offset XTOP,
                                 check_value);

  return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
}


// Helper function; generates code for cases requiring runtime checks.
Node*
LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
                                           Node* src,  Node* src_offset,
                                           Node* dest, Node* dest_offset,
                                           Node* copy_length, bool dest_uninitialized) {
  assert(!dest_uninitialized, "Invariant");
  if (stopped())  return NULL;
  address copyfunc_addr = StubRoutines::generic_arraycopy();
  if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
    return NULL;
  }

  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
                    OptoRuntime::generic_arraycopy_Type(),
                    copyfunc_addr, "generic_arraycopy", adr_type,
                    src, src_offset, dest, dest_offset, copy_length);

  return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
}

// Helper function; generates the fast out-of-line call to an arraycopy stub.
void
LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
                                             BasicType basic_elem_type,
                                             bool disjoint_bases,
                                             Node* src,  Node* src_offset,
                                             Node* dest, Node* dest_offset,
                                             Node* copy_length, bool dest_uninitialized) {
  if (stopped())  return;               // nothing to do

  Node* src_start  = src;
  Node* dest_start = dest;
  if (src_offset != NULL || dest_offset != NULL) {
    assert(src_offset != NULL && dest_offset != NULL, "");
    src_start  = array_element_address(src,  src_offset,  basic_elem_type);
    dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  }

  // Figure out which arraycopy runtime method to call.
  const char* copyfunc_name = "arraycopy";
  address     copyfunc_addr =
      basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
                          disjoint_bases, copyfunc_name, dest_uninitialized);

  // Call it.  Note that the count_ix value is not scaled to a byte-size.
  make_runtime_call(RC_LEAF|RC_NO_FP,
                    OptoRuntime::fast_arraycopy_Type(),
                    copyfunc_addr, copyfunc_name, adr_type,
                    src_start, dest_start, copy_length XTOP);
}

//----------------------------inline_reference_get----------------------------

bool LibraryCallKit::inline_reference_get() {
  const int nargs = 1; // self

  guarantee(java_lang_ref_Reference::referent_offset > 0,
            "should have already been set");

  int referent_offset = java_lang_ref_Reference::referent_offset;

  // Restore the stack and pop off the argument
  _sp += nargs;
  Node *reference_obj = pop();

  // Null check on self without removing any arguments.
  _sp += nargs;
  reference_obj = do_null_check(reference_obj, T_OBJECT);
  _sp -= nargs;;

  if (stopped()) return true;

  Node *adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);

  ciInstanceKlass* klass = env()->Object_klass();
  const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);

  Node* no_ctrl = NULL;
  Node *result = make_load(no_ctrl, adr, object_type, T_OBJECT);

  // Use the pre-barrier to record the value in the referent field
  pre_barrier(false /* do_load */,
              control(),
              NULL /* obj */, NULL /* adr */, -1 /* alias_idx */, NULL /* val */, NULL /* val_type */,
              result /* pre_val */,
              T_OBJECT);

  push(result);
  return true;
}