8210753: Make ThreadLocalAllocBuffer::resize() public
Reviewed-by: eosterlund, jcbeyler
/*
* Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_SHARED_THREADLOCALALLOCBUFFER_HPP
#define SHARE_VM_GC_SHARED_THREADLOCALALLOCBUFFER_HPP
#include "gc/shared/gcUtil.hpp"
#include "oops/typeArrayOop.hpp"
#include "runtime/perfData.hpp"
#include "runtime/vm_version.hpp"
class GlobalTLABStats;
// ThreadLocalAllocBuffer: a descriptor for thread-local storage used by
// the threads for allocation.
// It is thread-private at any time, but maybe multiplexed over
// time across multiple threads. The park()/unpark() pair is
// used to make it available for such multiplexing.
//
// Heap sampling is performed via the end and allocation_end
// fields.
// allocation_end contains the real end of the tlab allocation,
// whereas end can be set to an arbitrary spot in the tlab to
// trip the return and sample the allocation.
class ThreadLocalAllocBuffer: public CHeapObj<mtThread> {
friend class VMStructs;
friend class JVMCIVMStructs;
private:
HeapWord* _start; // address of TLAB
HeapWord* _top; // address after last allocation
HeapWord* _pf_top; // allocation prefetch watermark
HeapWord* _end; // allocation end (can be the sampling end point or _allocation_end)
HeapWord* _allocation_end; // end for allocations (actual TLAB end, excluding alignment_reserve)
size_t _desired_size; // desired size (including alignment_reserve)
size_t _refill_waste_limit; // hold onto tlab if free() is larger than this
size_t _allocated_before_last_gc; // total bytes allocated up until the last gc
size_t _bytes_since_last_sample_point; // bytes since last sample point.
static size_t _max_size; // maximum size of any TLAB
static int _reserve_for_allocation_prefetch; // Reserve at the end of the TLAB
static unsigned _target_refills; // expected number of refills between GCs
unsigned _number_of_refills;
unsigned _fast_refill_waste;
unsigned _slow_refill_waste;
unsigned _gc_waste;
unsigned _slow_allocations;
size_t _allocated_size;
AdaptiveWeightedAverage _allocation_fraction; // fraction of eden allocated in tlabs
void accumulate_statistics();
void initialize_statistics();
void set_start(HeapWord* start) { _start = start; }
void set_end(HeapWord* end) { _end = end; }
void set_allocation_end(HeapWord* ptr) { _allocation_end = ptr; }
void set_top(HeapWord* top) { _top = top; }
void set_pf_top(HeapWord* pf_top) { _pf_top = pf_top; }
void set_desired_size(size_t desired_size) { _desired_size = desired_size; }
void set_refill_waste_limit(size_t waste) { _refill_waste_limit = waste; }
size_t initial_refill_waste_limit() { return desired_size() / TLABRefillWasteFraction; }
static int target_refills() { return _target_refills; }
size_t initial_desired_size();
size_t remaining();
// Make parsable and release it.
void reset();
void invariants() const { assert(top() >= start() && top() <= end(), "invalid tlab"); }
void initialize(HeapWord* start, HeapWord* top, HeapWord* end);
void print_stats(const char* tag);
Thread* thread();
// statistics
int number_of_refills() const { return _number_of_refills; }
int fast_refill_waste() const { return _fast_refill_waste; }
int slow_refill_waste() const { return _slow_refill_waste; }
int gc_waste() const { return _gc_waste; }
int slow_allocations() const { return _slow_allocations; }
static GlobalTLABStats* _global_stats;
static GlobalTLABStats* global_stats() { return _global_stats; }
public:
ThreadLocalAllocBuffer() : _allocated_before_last_gc(0), _allocation_fraction(TLABAllocationWeight) {
// do nothing. tlabs must be inited by initialize() calls
}
static size_t min_size() { return align_object_size(MinTLABSize / HeapWordSize) + alignment_reserve(); }
static size_t max_size() { assert(_max_size != 0, "max_size not set up"); return _max_size; }
static size_t max_size_in_bytes() { return max_size() * BytesPerWord; }
static void set_max_size(size_t max_size) { _max_size = max_size; }
HeapWord* start() const { return _start; }
HeapWord* end() const { return _end; }
HeapWord* top() const { return _top; }
HeapWord* hard_end();
HeapWord* pf_top() const { return _pf_top; }
size_t desired_size() const { return _desired_size; }
size_t used() const { return pointer_delta(top(), start()); }
size_t used_bytes() const { return pointer_delta(top(), start(), 1); }
size_t free() const { return pointer_delta(end(), top()); }
// Don't discard tlab if remaining space is larger than this.
size_t refill_waste_limit() const { return _refill_waste_limit; }
size_t bytes_since_last_sample_point() const { return _bytes_since_last_sample_point; }
// Allocate size HeapWords. The memory is NOT initialized to zero.
inline HeapWord* allocate(size_t size);
// Reserve space at the end of TLAB
static size_t end_reserve() {
int reserve_size = typeArrayOopDesc::header_size(T_INT);
return MAX2(reserve_size, _reserve_for_allocation_prefetch);
}
static size_t alignment_reserve() { return align_object_size(end_reserve()); }
static size_t alignment_reserve_in_bytes() { return alignment_reserve() * HeapWordSize; }
// Return tlab size or remaining space in eden such that the
// space is large enough to hold obj_size and necessary fill space.
// Otherwise return 0;
inline size_t compute_size(size_t obj_size);
// Compute the minimal needed tlab size for the given object size.
static inline size_t compute_min_size(size_t obj_size);
// Record slow allocation
inline void record_slow_allocation(size_t obj_size);
// Initialization at startup
static void startup_initialization();
// Make an in-use tlab parsable, optionally retiring and/or zapping it.
void make_parsable(bool retire, bool zap = true);
// Retire in-use tlab before allocation of a new tlab
void clear_before_allocation();
// Resize based on amount of allocation, etc.
void resize();
// Accumulate statistics across all tlabs before gc
static void accumulate_statistics_before_gc();
void fill(HeapWord* start, HeapWord* top, size_t new_size);
void initialize();
void set_back_allocation_end();
void set_sample_end();
static size_t refill_waste_limit_increment() { return TLABWasteIncrement; }
template <typename T> void addresses_do(T f) {
f(&_start);
f(&_top);
f(&_pf_top);
f(&_end);
f(&_allocation_end);
}
// Code generation support
static ByteSize start_offset() { return byte_offset_of(ThreadLocalAllocBuffer, _start); }
static ByteSize end_offset() { return byte_offset_of(ThreadLocalAllocBuffer, _end); }
static ByteSize top_offset() { return byte_offset_of(ThreadLocalAllocBuffer, _top); }
static ByteSize pf_top_offset() { return byte_offset_of(ThreadLocalAllocBuffer, _pf_top); }
void verify();
};
class GlobalTLABStats: public CHeapObj<mtThread> {
private:
// Accumulate perfdata in private variables because
// PerfData should be write-only for security reasons
// (see perfData.hpp)
unsigned _allocating_threads;
unsigned _total_refills;
unsigned _max_refills;
size_t _total_allocation;
size_t _total_gc_waste;
size_t _max_gc_waste;
size_t _total_slow_refill_waste;
size_t _max_slow_refill_waste;
size_t _total_fast_refill_waste;
size_t _max_fast_refill_waste;
unsigned _total_slow_allocations;
unsigned _max_slow_allocations;
PerfVariable* _perf_allocating_threads;
PerfVariable* _perf_total_refills;
PerfVariable* _perf_max_refills;
PerfVariable* _perf_allocation;
PerfVariable* _perf_gc_waste;
PerfVariable* _perf_max_gc_waste;
PerfVariable* _perf_slow_refill_waste;
PerfVariable* _perf_max_slow_refill_waste;
PerfVariable* _perf_fast_refill_waste;
PerfVariable* _perf_max_fast_refill_waste;
PerfVariable* _perf_slow_allocations;
PerfVariable* _perf_max_slow_allocations;
AdaptiveWeightedAverage _allocating_threads_avg;
public:
GlobalTLABStats();
// Initialize all counters
void initialize();
// Write all perf counters to the perf_counters
void publish();
void print();
// Accessors
unsigned allocating_threads_avg() {
return MAX2((unsigned)(_allocating_threads_avg.average() + 0.5), 1U);
}
size_t allocation() {
return _total_allocation;
}
// Update methods
void update_allocating_threads() {
_allocating_threads++;
}
void update_number_of_refills(unsigned value) {
_total_refills += value;
_max_refills = MAX2(_max_refills, value);
}
void update_allocation(size_t value) {
_total_allocation += value;
}
void update_gc_waste(size_t value) {
_total_gc_waste += value;
_max_gc_waste = MAX2(_max_gc_waste, value);
}
void update_fast_refill_waste(size_t value) {
_total_fast_refill_waste += value;
_max_fast_refill_waste = MAX2(_max_fast_refill_waste, value);
}
void update_slow_refill_waste(size_t value) {
_total_slow_refill_waste += value;
_max_slow_refill_waste = MAX2(_max_slow_refill_waste, value);
}
void update_slow_allocations(unsigned value) {
_total_slow_allocations += value;
_max_slow_allocations = MAX2(_max_slow_allocations, value);
}
};
#endif // SHARE_VM_GC_SHARED_THREADLOCALALLOCBUFFER_HPP