7184394: add intrinsics to use AES instructions
Summary: Use new x86 AES instructions for AESCrypt.
Reviewed-by: twisti, kvn, roland
Contributed-by: tom.deneau@amd.com
/*
* Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_X86_VM_REGISTER_X86_HPP
#define CPU_X86_VM_REGISTER_X86_HPP
#include "asm/register.hpp"
#include "vm_version_x86.hpp"
class VMRegImpl;
typedef VMRegImpl* VMReg;
// Use Register as shortcut
class RegisterImpl;
typedef RegisterImpl* Register;
// The implementation of integer registers for the ia32 architecture
inline Register as_Register(int encoding) {
return (Register)(intptr_t) encoding;
}
class RegisterImpl: public AbstractRegisterImpl {
public:
enum {
#ifndef AMD64
number_of_registers = 8,
number_of_byte_registers = 4
#else
number_of_registers = 16,
number_of_byte_registers = 16
#endif // AMD64
};
// derived registers, offsets, and addresses
Register successor() const { return as_Register(encoding() + 1); }
// construction
inline friend Register as_Register(int encoding);
VMReg as_VMReg();
// accessors
int encoding() const { assert(is_valid(), "invalid register"); return (intptr_t)this; }
bool is_valid() const { return 0 <= (intptr_t)this && (intptr_t)this < number_of_registers; }
bool has_byte_register() const { return 0 <= (intptr_t)this && (intptr_t)this < number_of_byte_registers; }
const char* name() const;
};
// The integer registers of the ia32/amd64 architecture
CONSTANT_REGISTER_DECLARATION(Register, noreg, (-1));
CONSTANT_REGISTER_DECLARATION(Register, rax, (0));
CONSTANT_REGISTER_DECLARATION(Register, rcx, (1));
CONSTANT_REGISTER_DECLARATION(Register, rdx, (2));
CONSTANT_REGISTER_DECLARATION(Register, rbx, (3));
CONSTANT_REGISTER_DECLARATION(Register, rsp, (4));
CONSTANT_REGISTER_DECLARATION(Register, rbp, (5));
CONSTANT_REGISTER_DECLARATION(Register, rsi, (6));
CONSTANT_REGISTER_DECLARATION(Register, rdi, (7));
#ifdef AMD64
CONSTANT_REGISTER_DECLARATION(Register, r8, (8));
CONSTANT_REGISTER_DECLARATION(Register, r9, (9));
CONSTANT_REGISTER_DECLARATION(Register, r10, (10));
CONSTANT_REGISTER_DECLARATION(Register, r11, (11));
CONSTANT_REGISTER_DECLARATION(Register, r12, (12));
CONSTANT_REGISTER_DECLARATION(Register, r13, (13));
CONSTANT_REGISTER_DECLARATION(Register, r14, (14));
CONSTANT_REGISTER_DECLARATION(Register, r15, (15));
#endif // AMD64
// Use FloatRegister as shortcut
class FloatRegisterImpl;
typedef FloatRegisterImpl* FloatRegister;
inline FloatRegister as_FloatRegister(int encoding) {
return (FloatRegister)(intptr_t) encoding;
}
// The implementation of floating point registers for the ia32 architecture
class FloatRegisterImpl: public AbstractRegisterImpl {
public:
enum {
number_of_registers = 8
};
// construction
inline friend FloatRegister as_FloatRegister(int encoding);
VMReg as_VMReg();
// derived registers, offsets, and addresses
FloatRegister successor() const { return as_FloatRegister(encoding() + 1); }
// accessors
int encoding() const { assert(is_valid(), "invalid register"); return (intptr_t)this; }
bool is_valid() const { return 0 <= (intptr_t)this && (intptr_t)this < number_of_registers; }
const char* name() const;
};
// Use XMMRegister as shortcut
class XMMRegisterImpl;
typedef XMMRegisterImpl* XMMRegister;
// Use MMXRegister as shortcut
class MMXRegisterImpl;
typedef MMXRegisterImpl* MMXRegister;
inline XMMRegister as_XMMRegister(int encoding) {
return (XMMRegister)(intptr_t)encoding;
}
inline MMXRegister as_MMXRegister(int encoding) {
return (MMXRegister)(intptr_t)encoding;
}
// The implementation of XMM registers for the IA32 architecture
class XMMRegisterImpl: public AbstractRegisterImpl {
public:
enum {
#ifndef AMD64
number_of_registers = 8
#else
number_of_registers = 16
#endif // AMD64
};
// construction
friend XMMRegister as_XMMRegister(int encoding);
VMReg as_VMReg();
// derived registers, offsets, and addresses
XMMRegister successor() const { return as_XMMRegister(encoding() + 1); }
// accessors
int encoding() const { assert(is_valid(), err_msg("invalid register (%d)", (int)(intptr_t)this )); return (intptr_t)this; }
bool is_valid() const { return 0 <= (intptr_t)this && (intptr_t)this < number_of_registers; }
const char* name() const;
};
// The XMM registers, for P3 and up chips
CONSTANT_REGISTER_DECLARATION(XMMRegister, xnoreg , (-1));
CONSTANT_REGISTER_DECLARATION(XMMRegister, xmm0 , ( 0));
CONSTANT_REGISTER_DECLARATION(XMMRegister, xmm1 , ( 1));
CONSTANT_REGISTER_DECLARATION(XMMRegister, xmm2 , ( 2));
CONSTANT_REGISTER_DECLARATION(XMMRegister, xmm3 , ( 3));
CONSTANT_REGISTER_DECLARATION(XMMRegister, xmm4 , ( 4));
CONSTANT_REGISTER_DECLARATION(XMMRegister, xmm5 , ( 5));
CONSTANT_REGISTER_DECLARATION(XMMRegister, xmm6 , ( 6));
CONSTANT_REGISTER_DECLARATION(XMMRegister, xmm7 , ( 7));
#ifdef AMD64
CONSTANT_REGISTER_DECLARATION(XMMRegister, xmm8, (8));
CONSTANT_REGISTER_DECLARATION(XMMRegister, xmm9, (9));
CONSTANT_REGISTER_DECLARATION(XMMRegister, xmm10, (10));
CONSTANT_REGISTER_DECLARATION(XMMRegister, xmm11, (11));
CONSTANT_REGISTER_DECLARATION(XMMRegister, xmm12, (12));
CONSTANT_REGISTER_DECLARATION(XMMRegister, xmm13, (13));
CONSTANT_REGISTER_DECLARATION(XMMRegister, xmm14, (14));
CONSTANT_REGISTER_DECLARATION(XMMRegister, xmm15, (15));
#endif // AMD64
// Only used by the 32bit stubGenerator. These can't be described by vmreg and hence
// can't be described in oopMaps and therefore can't be used by the compilers (at least
// were deopt might wan't to see them).
// The MMX registers, for P3 and up chips
CONSTANT_REGISTER_DECLARATION(MMXRegister, mnoreg , (-1));
CONSTANT_REGISTER_DECLARATION(MMXRegister, mmx0 , ( 0));
CONSTANT_REGISTER_DECLARATION(MMXRegister, mmx1 , ( 1));
CONSTANT_REGISTER_DECLARATION(MMXRegister, mmx2 , ( 2));
CONSTANT_REGISTER_DECLARATION(MMXRegister, mmx3 , ( 3));
CONSTANT_REGISTER_DECLARATION(MMXRegister, mmx4 , ( 4));
CONSTANT_REGISTER_DECLARATION(MMXRegister, mmx5 , ( 5));
CONSTANT_REGISTER_DECLARATION(MMXRegister, mmx6 , ( 6));
CONSTANT_REGISTER_DECLARATION(MMXRegister, mmx7 , ( 7));
// Need to know the total number of registers of all sorts for SharedInfo.
// Define a class that exports it.
class ConcreteRegisterImpl : public AbstractRegisterImpl {
public:
enum {
// A big enough number for C2: all the registers plus flags
// This number must be large enough to cover REG_COUNT (defined by c2) registers.
// There is no requirement that any ordering here matches any ordering c2 gives
// it's optoregs.
number_of_registers = RegisterImpl::number_of_registers +
#ifdef AMD64
RegisterImpl::number_of_registers + // "H" half of a 64bit register
#endif // AMD64
2 * FloatRegisterImpl::number_of_registers +
8 * XMMRegisterImpl::number_of_registers +
1 // eflags
};
static const int max_gpr;
static const int max_fpr;
static const int max_xmm;
};
#endif // CPU_X86_VM_REGISTER_X86_HPP