hotspot/src/share/vm/libadt/dict.cpp
author xlu
Mon, 06 Apr 2009 15:47:39 -0700
changeset 2526 39a58a50be35
parent 2154 72a9b7284ccf
child 5547 f4b087cbb361
permissions -rw-r--r--
6699669: Hotspot server leaves synchronized block with monitor in bad state Summary: Remove usage of _highest_lock field in Thread so that is_lock_owned won't depend on the correct update of that field. Reviewed-by: never, dice, acorn

/*
 * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

// Dictionaries - An Abstract Data Type

#include "incls/_precompiled.incl"
#include "incls/_dict.cpp.incl"

// %%%%% includes not needed with AVM framework - Ungar

// #include "port.hpp"
//IMPLEMENTATION
// #include "dict.hpp"

#include <assert.h>

// The iostream is not needed and it gets confused for gcc by the
// define of bool.
//
// #include <iostream.h>

//------------------------------data-----------------------------------------
// String hash tables
#define MAXID 20
static byte initflag = 0;       // True after 1st initialization
static const char shft[MAXID] = {1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6};
static short xsum[MAXID];

//------------------------------bucket---------------------------------------
class bucket : public ResourceObj {
public:
  uint _cnt, _max;              // Size of bucket
  void **_keyvals;              // Array of keys and values
};

//------------------------------Dict-----------------------------------------
// The dictionary is kept has a hash table.  The hash table is a even power
// of two, for nice modulo operations.  Each bucket in the hash table points
// to a linear list of key-value pairs; each key & value is just a (void *).
// The list starts with a count.  A hash lookup finds the list head, then a
// simple linear scan finds the key.  If the table gets too full, it's
// doubled in size; the total amount of EXTRA times all hash functions are
// computed for the doubling is no more than the current size - thus the
// doubling in size costs no more than a constant factor in speed.
Dict::Dict(CmpKey initcmp, Hash inithash) : _hash(inithash), _cmp(initcmp),
  _arena(Thread::current()->resource_area()) {
  int i;

  // Precompute table of null character hashes
  if( !initflag ) {             // Not initializated yet?
    xsum[0] = (1<<shft[0])+1;   // Initialize
    for(i=1; i<MAXID; i++) {
      xsum[i] = (1<<shft[i])+1+xsum[i-1];
    }
    initflag = 1;               // Never again
  }

  _size = 16;                   // Size is a power of 2
  _cnt = 0;                     // Dictionary is empty
  _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size);
  memset(_bin,0,sizeof(bucket)*_size);
}

Dict::Dict(CmpKey initcmp, Hash inithash, Arena *arena, int size)
: _hash(inithash), _cmp(initcmp), _arena(arena) {
  int i;

  // Precompute table of null character hashes
  if( !initflag ) {             // Not initializated yet?
    xsum[0] = (1<<shft[0])+1;   // Initialize
    for(i=1; i<MAXID; i++) {
      xsum[i] = (1<<shft[i])+1+xsum[i-1];
    }
    initflag = 1;               // Never again
  }

  i=16;
  while( i < size ) i <<= 1;
  _size = i;                    // Size is a power of 2
  _cnt = 0;                     // Dictionary is empty
  _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size);
  memset(_bin,0,sizeof(bucket)*_size);
}

//------------------------------~Dict------------------------------------------
// Delete an existing dictionary.
Dict::~Dict() {
  /*
  tty->print("~Dict %d/%d: ",_cnt,_size);
  for( uint i=0; i < _size; i++) // For complete new table do
    tty->print("%d ",_bin[i]._cnt);
  tty->print("\n");*/
  /*for( uint i=0; i<_size; i++ ) {
    FREE_FAST( _bin[i]._keyvals );
    } */
}

//------------------------------Clear----------------------------------------
// Zap to empty; ready for re-use
void Dict::Clear() {
  _cnt = 0;                     // Empty contents
  for( uint i=0; i<_size; i++ )
    _bin[i]._cnt = 0;           // Empty buckets, but leave allocated
  // Leave _size & _bin alone, under the assumption that dictionary will
  // grow to this size again.
}

//------------------------------doubhash---------------------------------------
// Double hash table size.  If can't do so, just suffer.  If can, then run
// thru old hash table, moving things to new table.  Note that since hash
// table doubled, exactly 1 new bit is exposed in the mask - so everything
// in the old table ends up on 1 of two lists in the new table; a hi and a
// lo list depending on the value of the bit.
void Dict::doubhash(void) {
  uint oldsize = _size;
  _size <<= 1;                  // Double in size
  _bin = (bucket*)_arena->Arealloc( _bin, sizeof(bucket)*oldsize, sizeof(bucket)*_size );
  memset( &_bin[oldsize], 0, oldsize*sizeof(bucket) );
  // Rehash things to spread into new table
  for( uint i=0; i < oldsize; i++) { // For complete OLD table do
    bucket *b = &_bin[i];       // Handy shortcut for _bin[i]
    if( !b->_keyvals ) continue;        // Skip empties fast

    bucket *nb = &_bin[i+oldsize];  // New bucket shortcut
    uint j = b->_max;               // Trim new bucket to nearest power of 2
    while( j > b->_cnt ) j >>= 1;   // above old bucket _cnt
    if( !j ) j = 1;             // Handle zero-sized buckets
    nb->_max = j<<1;
    // Allocate worst case space for key-value pairs
    nb->_keyvals = (void**)_arena->Amalloc_4( sizeof(void *)*nb->_max*2 );
    uint nbcnt = 0;

    for( j=0; j<b->_cnt; j++ ) {  // Rehash all keys in this bucket
      void *key = b->_keyvals[j+j];
      if( (_hash( key ) & (_size-1)) != i ) { // Moving to hi bucket?
        nb->_keyvals[nbcnt+nbcnt] = key;
        nb->_keyvals[nbcnt+nbcnt+1] = b->_keyvals[j+j+1];
        nb->_cnt = nbcnt = nbcnt+1;
        b->_cnt--;              // Remove key/value from lo bucket
        b->_keyvals[j+j  ] = b->_keyvals[b->_cnt+b->_cnt  ];
        b->_keyvals[j+j+1] = b->_keyvals[b->_cnt+b->_cnt+1];
        j--;                    // Hash compacted element also
      }
    } // End of for all key-value pairs in bucket
  } // End of for all buckets


}

//------------------------------Dict-----------------------------------------
// Deep copy a dictionary.
Dict::Dict( const Dict &d ) : _size(d._size), _cnt(d._cnt), _hash(d._hash),_cmp(d._cmp), _arena(d._arena) {
  _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size);
  memcpy( _bin, d._bin, sizeof(bucket)*_size );
  for( uint i=0; i<_size; i++ ) {
    if( !_bin[i]._keyvals ) continue;
    _bin[i]._keyvals=(void**)_arena->Amalloc_4( sizeof(void *)*_bin[i]._max*2);
    memcpy( _bin[i]._keyvals, d._bin[i]._keyvals,_bin[i]._cnt*2*sizeof(void*));
  }
}

//------------------------------Dict-----------------------------------------
// Deep copy a dictionary.
Dict &Dict::operator =( const Dict &d ) {
  if( _size < d._size ) {       // If must have more buckets
    _arena = d._arena;
    _bin = (bucket*)_arena->Arealloc( _bin, sizeof(bucket)*_size, sizeof(bucket)*d._size );
    memset( &_bin[_size], 0, (d._size-_size)*sizeof(bucket) );
    _size = d._size;
  }
  uint i;
  for( i=0; i<_size; i++ ) // All buckets are empty
    _bin[i]._cnt = 0;           // But leave bucket allocations alone
  _cnt = d._cnt;
  *(Hash*)(&_hash) = d._hash;
  *(CmpKey*)(&_cmp) = d._cmp;
  for( i=0; i<_size; i++ ) {
    bucket *b = &d._bin[i];     // Shortcut to source bucket
    for( uint j=0; j<b->_cnt; j++ )
      Insert( b->_keyvals[j+j], b->_keyvals[j+j+1] );
  }
  return *this;
}

//------------------------------Insert----------------------------------------
// Insert or replace a key/value pair in the given dictionary.  If the
// dictionary is too full, it's size is doubled.  The prior value being
// replaced is returned (NULL if this is a 1st insertion of that key).  If
// an old value is found, it's swapped with the prior key-value pair on the
// list.  This moves a commonly searched-for value towards the list head.
void *Dict::Insert(void *key, void *val, bool replace) {
  uint hash = _hash( key );     // Get hash key
  uint i = hash & (_size-1);    // Get hash key, corrected for size
  bucket *b = &_bin[i];         // Handy shortcut
  for( uint j=0; j<b->_cnt; j++ ) {
    if( !_cmp(key,b->_keyvals[j+j]) ) {
      if (!replace) {
        return b->_keyvals[j+j+1];
      } else {
        void *prior = b->_keyvals[j+j+1];
        b->_keyvals[j+j  ] = key;       // Insert current key-value
        b->_keyvals[j+j+1] = val;
        return prior;           // Return prior
      }
    }
  }
  if( ++_cnt > _size ) {        // Hash table is full
    doubhash();                 // Grow whole table if too full
    i = hash & (_size-1);       // Rehash
    b = &_bin[i];               // Handy shortcut
  }
  if( b->_cnt == b->_max ) {    // Must grow bucket?
    if( !b->_keyvals ) {
      b->_max = 2;              // Initial bucket size
      b->_keyvals = (void**)_arena->Amalloc_4(sizeof(void*) * b->_max * 2);
    } else {
      b->_keyvals = (void**)_arena->Arealloc(b->_keyvals, sizeof(void*) * b->_max * 2, sizeof(void*) * b->_max * 4);
      b->_max <<= 1;            // Double bucket
    }
  }
  b->_keyvals[b->_cnt+b->_cnt  ] = key;
  b->_keyvals[b->_cnt+b->_cnt+1] = val;
  b->_cnt++;
  return NULL;                  // Nothing found prior
}

//------------------------------Delete---------------------------------------
// Find & remove a value from dictionary. Return old value.
void *Dict::Delete(void *key) {
  uint i = _hash( key ) & (_size-1);    // Get hash key, corrected for size
  bucket *b = &_bin[i];         // Handy shortcut
  for( uint j=0; j<b->_cnt; j++ )
    if( !_cmp(key,b->_keyvals[j+j]) ) {
      void *prior = b->_keyvals[j+j+1];
      b->_cnt--;                // Remove key/value from lo bucket
      b->_keyvals[j+j  ] = b->_keyvals[b->_cnt+b->_cnt  ];
      b->_keyvals[j+j+1] = b->_keyvals[b->_cnt+b->_cnt+1];
      _cnt--;                   // One less thing in table
      return prior;
    }
  return NULL;
}

//------------------------------FindDict-------------------------------------
// Find a key-value pair in the given dictionary.  If not found, return NULL.
// If found, move key-value pair towards head of list.
void *Dict::operator [](const void *key) const {
  uint i = _hash( key ) & (_size-1);    // Get hash key, corrected for size
  bucket *b = &_bin[i];         // Handy shortcut
  for( uint j=0; j<b->_cnt; j++ )
    if( !_cmp(key,b->_keyvals[j+j]) )
      return b->_keyvals[j+j+1];
  return NULL;
}

//------------------------------CmpDict--------------------------------------
// CmpDict compares two dictionaries; they must have the same keys (their
// keys must match using CmpKey) and they must have the same values (pointer
// comparison).  If so 1 is returned, if not 0 is returned.
int32 Dict::operator ==(const Dict &d2) const {
  if( _cnt != d2._cnt ) return 0;
  if( _hash != d2._hash ) return 0;
  if( _cmp != d2._cmp ) return 0;
  for( uint i=0; i < _size; i++) {      // For complete hash table do
    bucket *b = &_bin[i];       // Handy shortcut
    if( b->_cnt != d2._bin[i]._cnt ) return 0;
    if( memcmp(b->_keyvals, d2._bin[i]._keyvals, b->_cnt*2*sizeof(void*) ) )
      return 0;                 // Key-value pairs must match
  }
  return 1;                     // All match, is OK
}

//------------------------------print------------------------------------------
// Handier print routine
void Dict::print() {
  DictI i(this); // Moved definition in iterator here because of g++.
  tty->print("Dict@0x%lx[%d] = {", this, _cnt);
  for( ; i.test(); ++i ) {
    tty->print("(0x%lx,0x%lx),", i._key, i._value);
  }
  tty->print_cr("}");
}

//------------------------------Hashing Functions----------------------------
// Convert string to hash key.  This algorithm implements a universal hash
// function with the multipliers frozen (ok, so it's not universal).  The
// multipliers (and allowable characters) are all odd, so the resultant sum
// is odd - guaranteed not divisible by any power of two, so the hash tables
// can be any power of two with good results.  Also, I choose multipliers
// that have only 2 bits set (the low is always set to be odd) so
// multiplication requires only shifts and adds.  Characters are required to
// be in the range 0-127 (I double & add 1 to force oddness).  Keys are
// limited to MAXID characters in length.  Experimental evidence on 150K of
// C text shows excellent spreading of values for any size hash table.
int hashstr(const void *t) {
  register char c, k = 0;
  register int32 sum = 0;
  register const char *s = (const char *)t;

  while( ((c = *s++) != '\0') && (k < MAXID-1) ) { // Get characters till null or MAXID-1
    c = (c<<1)+1;               // Characters are always odd!
    sum += c + (c<<shft[k++]);  // Universal hash function
  }
  return (int)((sum+xsum[k]) >> 1); // Hash key, un-modulo'd table size
}

//------------------------------hashptr--------------------------------------
// Slimey cheap hash function; no guaranteed performance.  Better than the
// default for pointers, especially on MS-DOS machines.
int hashptr(const void *key) {
#ifdef __TURBOC__
    return ((intptr_t)key >> 16);
#else  // __TURBOC__
    return ((intptr_t)key >> 2);
#endif
}

// Slimey cheap hash function; no guaranteed performance.
int hashkey(const void *key) {
  return (intptr_t)key;
}

//------------------------------Key Comparator Functions---------------------
int32 cmpstr(const void *k1, const void *k2) {
  return strcmp((const char *)k1,(const char *)k2);
}

// Cheap key comparator.
int32 cmpkey(const void *key1, const void *key2) {
  if (key1 == key2) return 0;
  intptr_t delta = (intptr_t)key1 - (intptr_t)key2;
  if (delta > 0) return 1;
  return -1;
}

//=============================================================================
//------------------------------reset------------------------------------------
// Create an iterator and initialize the first variables.
void DictI::reset( const Dict *dict ) {
  _d = dict;                    // The dictionary
  _i = (uint)-1;                // Before the first bin
  _j = 0;                       // Nothing left in the current bin
  ++(*this);                    // Step to first real value
}

//------------------------------next-------------------------------------------
// Find the next key-value pair in the dictionary, or return a NULL key and
// value.
void DictI::operator ++(void) {
  if( _j-- ) {                  // Still working in current bin?
    _key   = _d->_bin[_i]._keyvals[_j+_j];
    _value = _d->_bin[_i]._keyvals[_j+_j+1];
    return;
  }

  while( ++_i < _d->_size ) {   // Else scan for non-zero bucket
    _j = _d->_bin[_i]._cnt;
    if( !_j ) continue;
    _j--;
    _key   = _d->_bin[_i]._keyvals[_j+_j];
    _value = _d->_bin[_i]._keyvals[_j+_j+1];
    return;
  }
  _key = _value = NULL;
}