6811960: x86 biasedlocking epoch expired rare bug
Summary: It is now guaranteed that biased_locking_enter will be passed a valid tmp_reg.
Reviewed-by: coleenp, dcubed, kvn
/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "asm/assembler.inline.hpp"
#include "compiler/disassembler.hpp"
#include "gc_interface/collectedHeap.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/cardTableModRefBS.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/os.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
#include "gc_implementation/g1/heapRegion.hpp"
#endif // INCLUDE_ALL_GCS
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#define STOP(error) stop(error)
#else
#define BLOCK_COMMENT(str) block_comment(str)
#define STOP(error) block_comment(error); stop(error)
#endif
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
#ifdef ASSERT
bool AbstractAssembler::pd_check_instruction_mark() { return true; }
#endif
static Assembler::Condition reverse[] = {
Assembler::noOverflow /* overflow = 0x0 */ ,
Assembler::overflow /* noOverflow = 0x1 */ ,
Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ ,
Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ ,
Assembler::notZero /* zero = 0x4, equal = 0x4 */ ,
Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ ,
Assembler::above /* belowEqual = 0x6 */ ,
Assembler::belowEqual /* above = 0x7 */ ,
Assembler::positive /* negative = 0x8 */ ,
Assembler::negative /* positive = 0x9 */ ,
Assembler::noParity /* parity = 0xa */ ,
Assembler::parity /* noParity = 0xb */ ,
Assembler::greaterEqual /* less = 0xc */ ,
Assembler::less /* greaterEqual = 0xd */ ,
Assembler::greater /* lessEqual = 0xe */ ,
Assembler::lessEqual /* greater = 0xf, */
};
// Implementation of MacroAssembler
// First all the versions that have distinct versions depending on 32/64 bit
// Unless the difference is trivial (1 line or so).
#ifndef _LP64
// 32bit versions
Address MacroAssembler::as_Address(AddressLiteral adr) {
return Address(adr.target(), adr.rspec());
}
Address MacroAssembler::as_Address(ArrayAddress adr) {
return Address::make_array(adr);
}
void MacroAssembler::call_VM_leaf_base(address entry_point,
int number_of_arguments) {
call(RuntimeAddress(entry_point));
increment(rsp, number_of_arguments * wordSize);
}
void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
}
void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
}
void MacroAssembler::cmpoop(Address src1, jobject obj) {
cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::cmpoop(Register src1, jobject obj) {
cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::extend_sign(Register hi, Register lo) {
// According to Intel Doc. AP-526, "Integer Divide", p.18.
if (VM_Version::is_P6() && hi == rdx && lo == rax) {
cdql();
} else {
movl(hi, lo);
sarl(hi, 31);
}
}
void MacroAssembler::jC2(Register tmp, Label& L) {
// set parity bit if FPU flag C2 is set (via rax)
save_rax(tmp);
fwait(); fnstsw_ax();
sahf();
restore_rax(tmp);
// branch
jcc(Assembler::parity, L);
}
void MacroAssembler::jnC2(Register tmp, Label& L) {
// set parity bit if FPU flag C2 is set (via rax)
save_rax(tmp);
fwait(); fnstsw_ax();
sahf();
restore_rax(tmp);
// branch
jcc(Assembler::noParity, L);
}
// 32bit can do a case table jump in one instruction but we no longer allow the base
// to be installed in the Address class
void MacroAssembler::jump(ArrayAddress entry) {
jmp(as_Address(entry));
}
// Note: y_lo will be destroyed
void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
// Long compare for Java (semantics as described in JVM spec.)
Label high, low, done;
cmpl(x_hi, y_hi);
jcc(Assembler::less, low);
jcc(Assembler::greater, high);
// x_hi is the return register
xorl(x_hi, x_hi);
cmpl(x_lo, y_lo);
jcc(Assembler::below, low);
jcc(Assembler::equal, done);
bind(high);
xorl(x_hi, x_hi);
increment(x_hi);
jmp(done);
bind(low);
xorl(x_hi, x_hi);
decrementl(x_hi);
bind(done);
}
void MacroAssembler::lea(Register dst, AddressLiteral src) {
mov_literal32(dst, (int32_t)src.target(), src.rspec());
}
void MacroAssembler::lea(Address dst, AddressLiteral adr) {
// leal(dst, as_Address(adr));
// see note in movl as to why we must use a move
mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
}
void MacroAssembler::leave() {
mov(rsp, rbp);
pop(rbp);
}
void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
// Multiplication of two Java long values stored on the stack
// as illustrated below. Result is in rdx:rax.
//
// rsp ---> [ ?? ] \ \
// .... | y_rsp_offset |
// [ y_lo ] / (in bytes) | x_rsp_offset
// [ y_hi ] | (in bytes)
// .... |
// [ x_lo ] /
// [ x_hi ]
// ....
//
// Basic idea: lo(result) = lo(x_lo * y_lo)
// hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
Label quick;
// load x_hi, y_hi and check if quick
// multiplication is possible
movl(rbx, x_hi);
movl(rcx, y_hi);
movl(rax, rbx);
orl(rbx, rcx); // rbx, = 0 <=> x_hi = 0 and y_hi = 0
jcc(Assembler::zero, quick); // if rbx, = 0 do quick multiply
// do full multiplication
// 1st step
mull(y_lo); // x_hi * y_lo
movl(rbx, rax); // save lo(x_hi * y_lo) in rbx,
// 2nd step
movl(rax, x_lo);
mull(rcx); // x_lo * y_hi
addl(rbx, rax); // add lo(x_lo * y_hi) to rbx,
// 3rd step
bind(quick); // note: rbx, = 0 if quick multiply!
movl(rax, x_lo);
mull(y_lo); // x_lo * y_lo
addl(rdx, rbx); // correct hi(x_lo * y_lo)
}
void MacroAssembler::lneg(Register hi, Register lo) {
negl(lo);
adcl(hi, 0);
negl(hi);
}
void MacroAssembler::lshl(Register hi, Register lo) {
// Java shift left long support (semantics as described in JVM spec., p.305)
// (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
// shift value is in rcx !
assert(hi != rcx, "must not use rcx");
assert(lo != rcx, "must not use rcx");
const Register s = rcx; // shift count
const int n = BitsPerWord;
Label L;
andl(s, 0x3f); // s := s & 0x3f (s < 0x40)
cmpl(s, n); // if (s < n)
jcc(Assembler::less, L); // else (s >= n)
movl(hi, lo); // x := x << n
xorl(lo, lo);
// Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
bind(L); // s (mod n) < n
shldl(hi, lo); // x := x << s
shll(lo);
}
void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
// Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
// (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
assert(hi != rcx, "must not use rcx");
assert(lo != rcx, "must not use rcx");
const Register s = rcx; // shift count
const int n = BitsPerWord;
Label L;
andl(s, 0x3f); // s := s & 0x3f (s < 0x40)
cmpl(s, n); // if (s < n)
jcc(Assembler::less, L); // else (s >= n)
movl(lo, hi); // x := x >> n
if (sign_extension) sarl(hi, 31);
else xorl(hi, hi);
// Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
bind(L); // s (mod n) < n
shrdl(lo, hi); // x := x >> s
if (sign_extension) sarl(hi);
else shrl(hi);
}
void MacroAssembler::movoop(Register dst, jobject obj) {
mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::movoop(Address dst, jobject obj) {
mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
}
void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
}
void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
// scratch register is not used,
// it is defined to match parameters of 64-bit version of this method.
if (src.is_lval()) {
mov_literal32(dst, (intptr_t)src.target(), src.rspec());
} else {
movl(dst, as_Address(src));
}
}
void MacroAssembler::movptr(ArrayAddress dst, Register src) {
movl(as_Address(dst), src);
}
void MacroAssembler::movptr(Register dst, ArrayAddress src) {
movl(dst, as_Address(src));
}
// src should NEVER be a real pointer. Use AddressLiteral for true pointers
void MacroAssembler::movptr(Address dst, intptr_t src) {
movl(dst, src);
}
void MacroAssembler::pop_callee_saved_registers() {
pop(rcx);
pop(rdx);
pop(rdi);
pop(rsi);
}
void MacroAssembler::pop_fTOS() {
fld_d(Address(rsp, 0));
addl(rsp, 2 * wordSize);
}
void MacroAssembler::push_callee_saved_registers() {
push(rsi);
push(rdi);
push(rdx);
push(rcx);
}
void MacroAssembler::push_fTOS() {
subl(rsp, 2 * wordSize);
fstp_d(Address(rsp, 0));
}
void MacroAssembler::pushoop(jobject obj) {
push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::pushklass(Metadata* obj) {
push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
}
void MacroAssembler::pushptr(AddressLiteral src) {
if (src.is_lval()) {
push_literal32((int32_t)src.target(), src.rspec());
} else {
pushl(as_Address(src));
}
}
void MacroAssembler::set_word_if_not_zero(Register dst) {
xorl(dst, dst);
set_byte_if_not_zero(dst);
}
static void pass_arg0(MacroAssembler* masm, Register arg) {
masm->push(arg);
}
static void pass_arg1(MacroAssembler* masm, Register arg) {
masm->push(arg);
}
static void pass_arg2(MacroAssembler* masm, Register arg) {
masm->push(arg);
}
static void pass_arg3(MacroAssembler* masm, Register arg) {
masm->push(arg);
}
#ifndef PRODUCT
extern "C" void findpc(intptr_t x);
#endif
void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
// In order to get locks to work, we need to fake a in_VM state
JavaThread* thread = JavaThread::current();
JavaThreadState saved_state = thread->thread_state();
thread->set_thread_state(_thread_in_vm);
if (ShowMessageBoxOnError) {
JavaThread* thread = JavaThread::current();
JavaThreadState saved_state = thread->thread_state();
thread->set_thread_state(_thread_in_vm);
if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
ttyLocker ttyl;
BytecodeCounter::print();
}
// To see where a verify_oop failed, get $ebx+40/X for this frame.
// This is the value of eip which points to where verify_oop will return.
if (os::message_box(msg, "Execution stopped, print registers?")) {
print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
BREAKPOINT;
}
} else {
ttyLocker ttyl;
::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
}
// Don't assert holding the ttyLock
assert(false, err_msg("DEBUG MESSAGE: %s", msg));
ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
}
void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
ttyLocker ttyl;
FlagSetting fs(Debugging, true);
tty->print_cr("eip = 0x%08x", eip);
#ifndef PRODUCT
if ((WizardMode || Verbose) && PrintMiscellaneous) {
tty->cr();
findpc(eip);
tty->cr();
}
#endif
#define PRINT_REG(rax) \
{ tty->print("%s = ", #rax); os::print_location(tty, rax); }
PRINT_REG(rax);
PRINT_REG(rbx);
PRINT_REG(rcx);
PRINT_REG(rdx);
PRINT_REG(rdi);
PRINT_REG(rsi);
PRINT_REG(rbp);
PRINT_REG(rsp);
#undef PRINT_REG
// Print some words near top of staack.
int* dump_sp = (int*) rsp;
for (int col1 = 0; col1 < 8; col1++) {
tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
os::print_location(tty, *dump_sp++);
}
for (int row = 0; row < 16; row++) {
tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
for (int col = 0; col < 8; col++) {
tty->print(" 0x%08x", *dump_sp++);
}
tty->cr();
}
// Print some instructions around pc:
Disassembler::decode((address)eip-64, (address)eip);
tty->print_cr("--------");
Disassembler::decode((address)eip, (address)eip+32);
}
void MacroAssembler::stop(const char* msg) {
ExternalAddress message((address)msg);
// push address of message
pushptr(message.addr());
{ Label L; call(L, relocInfo::none); bind(L); } // push eip
pusha(); // push registers
call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
hlt();
}
void MacroAssembler::warn(const char* msg) {
push_CPU_state();
ExternalAddress message((address) msg);
// push address of message
pushptr(message.addr());
call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
addl(rsp, wordSize); // discard argument
pop_CPU_state();
}
void MacroAssembler::print_state() {
{ Label L; call(L, relocInfo::none); bind(L); } // push eip
pusha(); // push registers
push_CPU_state();
call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
pop_CPU_state();
popa();
addl(rsp, wordSize);
}
#else // _LP64
// 64 bit versions
Address MacroAssembler::as_Address(AddressLiteral adr) {
// amd64 always does this as a pc-rel
// we can be absolute or disp based on the instruction type
// jmp/call are displacements others are absolute
assert(!adr.is_lval(), "must be rval");
assert(reachable(adr), "must be");
return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
}
Address MacroAssembler::as_Address(ArrayAddress adr) {
AddressLiteral base = adr.base();
lea(rscratch1, base);
Address index = adr.index();
assert(index._disp == 0, "must not have disp"); // maybe it can?
Address array(rscratch1, index._index, index._scale, index._disp);
return array;
}
void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
Label L, E;
#ifdef _WIN64
// Windows always allocates space for it's register args
assert(num_args <= 4, "only register arguments supported");
subq(rsp, frame::arg_reg_save_area_bytes);
#endif
// Align stack if necessary
testl(rsp, 15);
jcc(Assembler::zero, L);
subq(rsp, 8);
{
call(RuntimeAddress(entry_point));
}
addq(rsp, 8);
jmp(E);
bind(L);
{
call(RuntimeAddress(entry_point));
}
bind(E);
#ifdef _WIN64
// restore stack pointer
addq(rsp, frame::arg_reg_save_area_bytes);
#endif
}
void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
assert(!src2.is_lval(), "should use cmpptr");
if (reachable(src2)) {
cmpq(src1, as_Address(src2));
} else {
lea(rscratch1, src2);
Assembler::cmpq(src1, Address(rscratch1, 0));
}
}
int MacroAssembler::corrected_idivq(Register reg) {
// Full implementation of Java ldiv and lrem; checks for special
// case as described in JVM spec., p.243 & p.271. The function
// returns the (pc) offset of the idivl instruction - may be needed
// for implicit exceptions.
//
// normal case special case
//
// input : rax: dividend min_long
// reg: divisor (may not be eax/edx) -1
//
// output: rax: quotient (= rax idiv reg) min_long
// rdx: remainder (= rax irem reg) 0
assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
static const int64_t min_long = 0x8000000000000000;
Label normal_case, special_case;
// check for special case
cmp64(rax, ExternalAddress((address) &min_long));
jcc(Assembler::notEqual, normal_case);
xorl(rdx, rdx); // prepare rdx for possible special case (where
// remainder = 0)
cmpq(reg, -1);
jcc(Assembler::equal, special_case);
// handle normal case
bind(normal_case);
cdqq();
int idivq_offset = offset();
idivq(reg);
// normal and special case exit
bind(special_case);
return idivq_offset;
}
void MacroAssembler::decrementq(Register reg, int value) {
if (value == min_jint) { subq(reg, value); return; }
if (value < 0) { incrementq(reg, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { decq(reg) ; return; }
/* else */ { subq(reg, value) ; return; }
}
void MacroAssembler::decrementq(Address dst, int value) {
if (value == min_jint) { subq(dst, value); return; }
if (value < 0) { incrementq(dst, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { decq(dst) ; return; }
/* else */ { subq(dst, value) ; return; }
}
void MacroAssembler::incrementq(AddressLiteral dst) {
if (reachable(dst)) {
incrementq(as_Address(dst));
} else {
lea(rscratch1, dst);
incrementq(Address(rscratch1, 0));
}
}
void MacroAssembler::incrementq(Register reg, int value) {
if (value == min_jint) { addq(reg, value); return; }
if (value < 0) { decrementq(reg, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { incq(reg) ; return; }
/* else */ { addq(reg, value) ; return; }
}
void MacroAssembler::incrementq(Address dst, int value) {
if (value == min_jint) { addq(dst, value); return; }
if (value < 0) { decrementq(dst, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { incq(dst) ; return; }
/* else */ { addq(dst, value) ; return; }
}
// 32bit can do a case table jump in one instruction but we no longer allow the base
// to be installed in the Address class
void MacroAssembler::jump(ArrayAddress entry) {
lea(rscratch1, entry.base());
Address dispatch = entry.index();
assert(dispatch._base == noreg, "must be");
dispatch._base = rscratch1;
jmp(dispatch);
}
void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
ShouldNotReachHere(); // 64bit doesn't use two regs
cmpq(x_lo, y_lo);
}
void MacroAssembler::lea(Register dst, AddressLiteral src) {
mov_literal64(dst, (intptr_t)src.target(), src.rspec());
}
void MacroAssembler::lea(Address dst, AddressLiteral adr) {
mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
movptr(dst, rscratch1);
}
void MacroAssembler::leave() {
// %%% is this really better? Why not on 32bit too?
emit_int8((unsigned char)0xC9); // LEAVE
}
void MacroAssembler::lneg(Register hi, Register lo) {
ShouldNotReachHere(); // 64bit doesn't use two regs
negq(lo);
}
void MacroAssembler::movoop(Register dst, jobject obj) {
mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::movoop(Address dst, jobject obj) {
mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
movq(dst, rscratch1);
}
void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
}
void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
movq(dst, rscratch1);
}
void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
if (src.is_lval()) {
mov_literal64(dst, (intptr_t)src.target(), src.rspec());
} else {
if (reachable(src)) {
movq(dst, as_Address(src));
} else {
lea(scratch, src);
movq(dst, Address(scratch, 0));
}
}
}
void MacroAssembler::movptr(ArrayAddress dst, Register src) {
movq(as_Address(dst), src);
}
void MacroAssembler::movptr(Register dst, ArrayAddress src) {
movq(dst, as_Address(src));
}
// src should NEVER be a real pointer. Use AddressLiteral for true pointers
void MacroAssembler::movptr(Address dst, intptr_t src) {
mov64(rscratch1, src);
movq(dst, rscratch1);
}
// These are mostly for initializing NULL
void MacroAssembler::movptr(Address dst, int32_t src) {
movslq(dst, src);
}
void MacroAssembler::movptr(Register dst, int32_t src) {
mov64(dst, (intptr_t)src);
}
void MacroAssembler::pushoop(jobject obj) {
movoop(rscratch1, obj);
push(rscratch1);
}
void MacroAssembler::pushklass(Metadata* obj) {
mov_metadata(rscratch1, obj);
push(rscratch1);
}
void MacroAssembler::pushptr(AddressLiteral src) {
lea(rscratch1, src);
if (src.is_lval()) {
push(rscratch1);
} else {
pushq(Address(rscratch1, 0));
}
}
void MacroAssembler::reset_last_Java_frame(bool clear_fp,
bool clear_pc) {
// we must set sp to zero to clear frame
movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
// must clear fp, so that compiled frames are not confused; it is
// possible that we need it only for debugging
if (clear_fp) {
movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
}
if (clear_pc) {
movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
}
}
void MacroAssembler::set_last_Java_frame(Register last_java_sp,
Register last_java_fp,
address last_java_pc) {
// determine last_java_sp register
if (!last_java_sp->is_valid()) {
last_java_sp = rsp;
}
// last_java_fp is optional
if (last_java_fp->is_valid()) {
movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
last_java_fp);
}
// last_java_pc is optional
if (last_java_pc != NULL) {
Address java_pc(r15_thread,
JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
lea(rscratch1, InternalAddress(last_java_pc));
movptr(java_pc, rscratch1);
}
movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
}
static void pass_arg0(MacroAssembler* masm, Register arg) {
if (c_rarg0 != arg ) {
masm->mov(c_rarg0, arg);
}
}
static void pass_arg1(MacroAssembler* masm, Register arg) {
if (c_rarg1 != arg ) {
masm->mov(c_rarg1, arg);
}
}
static void pass_arg2(MacroAssembler* masm, Register arg) {
if (c_rarg2 != arg ) {
masm->mov(c_rarg2, arg);
}
}
static void pass_arg3(MacroAssembler* masm, Register arg) {
if (c_rarg3 != arg ) {
masm->mov(c_rarg3, arg);
}
}
void MacroAssembler::stop(const char* msg) {
address rip = pc();
pusha(); // get regs on stack
lea(c_rarg0, ExternalAddress((address) msg));
lea(c_rarg1, InternalAddress(rip));
movq(c_rarg2, rsp); // pass pointer to regs array
andq(rsp, -16); // align stack as required by ABI
call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
hlt();
}
void MacroAssembler::warn(const char* msg) {
push(rbp);
movq(rbp, rsp);
andq(rsp, -16); // align stack as required by push_CPU_state and call
push_CPU_state(); // keeps alignment at 16 bytes
lea(c_rarg0, ExternalAddress((address) msg));
call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
pop_CPU_state();
mov(rsp, rbp);
pop(rbp);
}
void MacroAssembler::print_state() {
address rip = pc();
pusha(); // get regs on stack
push(rbp);
movq(rbp, rsp);
andq(rsp, -16); // align stack as required by push_CPU_state and call
push_CPU_state(); // keeps alignment at 16 bytes
lea(c_rarg0, InternalAddress(rip));
lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
pop_CPU_state();
mov(rsp, rbp);
pop(rbp);
popa();
}
#ifndef PRODUCT
extern "C" void findpc(intptr_t x);
#endif
void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
// In order to get locks to work, we need to fake a in_VM state
if (ShowMessageBoxOnError) {
JavaThread* thread = JavaThread::current();
JavaThreadState saved_state = thread->thread_state();
thread->set_thread_state(_thread_in_vm);
#ifndef PRODUCT
if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
ttyLocker ttyl;
BytecodeCounter::print();
}
#endif
// To see where a verify_oop failed, get $ebx+40/X for this frame.
// XXX correct this offset for amd64
// This is the value of eip which points to where verify_oop will return.
if (os::message_box(msg, "Execution stopped, print registers?")) {
print_state64(pc, regs);
BREAKPOINT;
assert(false, "start up GDB");
}
ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
} else {
ttyLocker ttyl;
::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
msg);
assert(false, err_msg("DEBUG MESSAGE: %s", msg));
}
}
void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
ttyLocker ttyl;
FlagSetting fs(Debugging, true);
tty->print_cr("rip = 0x%016lx", pc);
#ifndef PRODUCT
tty->cr();
findpc(pc);
tty->cr();
#endif
#define PRINT_REG(rax, value) \
{ tty->print("%s = ", #rax); os::print_location(tty, value); }
PRINT_REG(rax, regs[15]);
PRINT_REG(rbx, regs[12]);
PRINT_REG(rcx, regs[14]);
PRINT_REG(rdx, regs[13]);
PRINT_REG(rdi, regs[8]);
PRINT_REG(rsi, regs[9]);
PRINT_REG(rbp, regs[10]);
PRINT_REG(rsp, regs[11]);
PRINT_REG(r8 , regs[7]);
PRINT_REG(r9 , regs[6]);
PRINT_REG(r10, regs[5]);
PRINT_REG(r11, regs[4]);
PRINT_REG(r12, regs[3]);
PRINT_REG(r13, regs[2]);
PRINT_REG(r14, regs[1]);
PRINT_REG(r15, regs[0]);
#undef PRINT_REG
// Print some words near top of staack.
int64_t* rsp = (int64_t*) regs[11];
int64_t* dump_sp = rsp;
for (int col1 = 0; col1 < 8; col1++) {
tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
os::print_location(tty, *dump_sp++);
}
for (int row = 0; row < 25; row++) {
tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
for (int col = 0; col < 4; col++) {
tty->print(" 0x%016lx", *dump_sp++);
}
tty->cr();
}
// Print some instructions around pc:
Disassembler::decode((address)pc-64, (address)pc);
tty->print_cr("--------");
Disassembler::decode((address)pc, (address)pc+32);
}
#endif // _LP64
// Now versions that are common to 32/64 bit
void MacroAssembler::addptr(Register dst, int32_t imm32) {
LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
}
void MacroAssembler::addptr(Register dst, Register src) {
LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
}
void MacroAssembler::addptr(Address dst, Register src) {
LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
}
void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::addsd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::addsd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
addss(dst, as_Address(src));
} else {
lea(rscratch1, src);
addss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::align(int modulus) {
if (offset() % modulus != 0) {
nop(modulus - (offset() % modulus));
}
}
void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
// Used in sign-masking with aligned address.
assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
if (reachable(src)) {
Assembler::andpd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::andpd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
// Used in sign-masking with aligned address.
assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
if (reachable(src)) {
Assembler::andps(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::andps(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::andptr(Register dst, int32_t imm32) {
LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
}
void MacroAssembler::atomic_incl(Address counter_addr) {
if (os::is_MP())
lock();
incrementl(counter_addr);
}
void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
if (reachable(counter_addr)) {
atomic_incl(as_Address(counter_addr));
} else {
lea(scr, counter_addr);
atomic_incl(Address(scr, 0));
}
}
#ifdef _LP64
void MacroAssembler::atomic_incq(Address counter_addr) {
if (os::is_MP())
lock();
incrementq(counter_addr);
}
void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
if (reachable(counter_addr)) {
atomic_incq(as_Address(counter_addr));
} else {
lea(scr, counter_addr);
atomic_incq(Address(scr, 0));
}
}
#endif
// Writes to stack successive pages until offset reached to check for
// stack overflow + shadow pages. This clobbers tmp.
void MacroAssembler::bang_stack_size(Register size, Register tmp) {
movptr(tmp, rsp);
// Bang stack for total size given plus shadow page size.
// Bang one page at a time because large size can bang beyond yellow and
// red zones.
Label loop;
bind(loop);
movl(Address(tmp, (-os::vm_page_size())), size );
subptr(tmp, os::vm_page_size());
subl(size, os::vm_page_size());
jcc(Assembler::greater, loop);
// Bang down shadow pages too.
// At this point, (tmp-0) is the last address touched, so don't
// touch it again. (It was touched as (tmp-pagesize) but then tmp
// was post-decremented.) Skip this address by starting at i=1, and
// touch a few more pages below. N.B. It is important to touch all
// the way down to and including i=StackShadowPages.
for (int i = 1; i < StackShadowPages; i++) {
// this could be any sized move but this is can be a debugging crumb
// so the bigger the better.
movptr(Address(tmp, (-i*os::vm_page_size())), size );
}
}
int MacroAssembler::biased_locking_enter(Register lock_reg,
Register obj_reg,
Register swap_reg,
Register tmp_reg,
bool swap_reg_contains_mark,
Label& done,
Label* slow_case,
BiasedLockingCounters* counters) {
assert(UseBiasedLocking, "why call this otherwise?");
assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
assert(tmp_reg != noreg, "tmp_reg must be supplied");
assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes());
Address saved_mark_addr(lock_reg, 0);
if (PrintBiasedLockingStatistics && counters == NULL) {
counters = BiasedLocking::counters();
}
// Biased locking
// See whether the lock is currently biased toward our thread and
// whether the epoch is still valid
// Note that the runtime guarantees sufficient alignment of JavaThread
// pointers to allow age to be placed into low bits
// First check to see whether biasing is even enabled for this object
Label cas_label;
int null_check_offset = -1;
if (!swap_reg_contains_mark) {
null_check_offset = offset();
movptr(swap_reg, mark_addr);
}
movptr(tmp_reg, swap_reg);
andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
jcc(Assembler::notEqual, cas_label);
// The bias pattern is present in the object's header. Need to check
// whether the bias owner and the epoch are both still current.
#ifndef _LP64
// Note that because there is no current thread register on x86_32 we
// need to store off the mark word we read out of the object to
// avoid reloading it and needing to recheck invariants below. This
// store is unfortunate but it makes the overall code shorter and
// simpler.
movptr(saved_mark_addr, swap_reg);
#endif
if (swap_reg_contains_mark) {
null_check_offset = offset();
}
load_prototype_header(tmp_reg, obj_reg);
#ifdef _LP64
orptr(tmp_reg, r15_thread);
xorptr(tmp_reg, swap_reg);
Register header_reg = tmp_reg;
#else
xorptr(tmp_reg, swap_reg);
get_thread(swap_reg);
xorptr(swap_reg, tmp_reg);
Register header_reg = swap_reg;
#endif
andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
if (counters != NULL) {
cond_inc32(Assembler::zero,
ExternalAddress((address) counters->biased_lock_entry_count_addr()));
}
jcc(Assembler::equal, done);
Label try_revoke_bias;
Label try_rebias;
// At this point we know that the header has the bias pattern and
// that we are not the bias owner in the current epoch. We need to
// figure out more details about the state of the header in order to
// know what operations can be legally performed on the object's
// header.
// If the low three bits in the xor result aren't clear, that means
// the prototype header is no longer biased and we have to revoke
// the bias on this object.
testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
jccb(Assembler::notZero, try_revoke_bias);
// Biasing is still enabled for this data type. See whether the
// epoch of the current bias is still valid, meaning that the epoch
// bits of the mark word are equal to the epoch bits of the
// prototype header. (Note that the prototype header's epoch bits
// only change at a safepoint.) If not, attempt to rebias the object
// toward the current thread. Note that we must be absolutely sure
// that the current epoch is invalid in order to do this because
// otherwise the manipulations it performs on the mark word are
// illegal.
testptr(header_reg, markOopDesc::epoch_mask_in_place);
jccb(Assembler::notZero, try_rebias);
// The epoch of the current bias is still valid but we know nothing
// about the owner; it might be set or it might be clear. Try to
// acquire the bias of the object using an atomic operation. If this
// fails we will go in to the runtime to revoke the object's bias.
// Note that we first construct the presumed unbiased header so we
// don't accidentally blow away another thread's valid bias.
NOT_LP64( movptr(swap_reg, saved_mark_addr); )
andptr(swap_reg,
markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
#ifdef _LP64
movptr(tmp_reg, swap_reg);
orptr(tmp_reg, r15_thread);
#else
get_thread(tmp_reg);
orptr(tmp_reg, swap_reg);
#endif
if (os::is_MP()) {
lock();
}
cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
// If the biasing toward our thread failed, this means that
// another thread succeeded in biasing it toward itself and we
// need to revoke that bias. The revocation will occur in the
// interpreter runtime in the slow case.
if (counters != NULL) {
cond_inc32(Assembler::zero,
ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
}
if (slow_case != NULL) {
jcc(Assembler::notZero, *slow_case);
}
jmp(done);
bind(try_rebias);
// At this point we know the epoch has expired, meaning that the
// current "bias owner", if any, is actually invalid. Under these
// circumstances _only_, we are allowed to use the current header's
// value as the comparison value when doing the cas to acquire the
// bias in the current epoch. In other words, we allow transfer of
// the bias from one thread to another directly in this situation.
//
// FIXME: due to a lack of registers we currently blow away the age
// bits in this situation. Should attempt to preserve them.
load_prototype_header(tmp_reg, obj_reg);
#ifdef _LP64
orptr(tmp_reg, r15_thread);
#else
get_thread(swap_reg);
orptr(tmp_reg, swap_reg);
movptr(swap_reg, saved_mark_addr);
#endif
if (os::is_MP()) {
lock();
}
cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
// If the biasing toward our thread failed, then another thread
// succeeded in biasing it toward itself and we need to revoke that
// bias. The revocation will occur in the runtime in the slow case.
if (counters != NULL) {
cond_inc32(Assembler::zero,
ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
}
if (slow_case != NULL) {
jcc(Assembler::notZero, *slow_case);
}
jmp(done);
bind(try_revoke_bias);
// The prototype mark in the klass doesn't have the bias bit set any
// more, indicating that objects of this data type are not supposed
// to be biased any more. We are going to try to reset the mark of
// this object to the prototype value and fall through to the
// CAS-based locking scheme. Note that if our CAS fails, it means
// that another thread raced us for the privilege of revoking the
// bias of this particular object, so it's okay to continue in the
// normal locking code.
//
// FIXME: due to a lack of registers we currently blow away the age
// bits in this situation. Should attempt to preserve them.
NOT_LP64( movptr(swap_reg, saved_mark_addr); )
load_prototype_header(tmp_reg, obj_reg);
if (os::is_MP()) {
lock();
}
cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
// Fall through to the normal CAS-based lock, because no matter what
// the result of the above CAS, some thread must have succeeded in
// removing the bias bit from the object's header.
if (counters != NULL) {
cond_inc32(Assembler::zero,
ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
}
bind(cas_label);
return null_check_offset;
}
void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
assert(UseBiasedLocking, "why call this otherwise?");
// Check for biased locking unlock case, which is a no-op
// Note: we do not have to check the thread ID for two reasons.
// First, the interpreter checks for IllegalMonitorStateException at
// a higher level. Second, if the bias was revoked while we held the
// lock, the object could not be rebiased toward another thread, so
// the bias bit would be clear.
movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
jcc(Assembler::equal, done);
}
#ifdef COMPILER2
#if INCLUDE_RTM_OPT
// Update rtm_counters based on abort status
// input: abort_status
// rtm_counters (RTMLockingCounters*)
// flags are killed
void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
if (PrintPreciseRTMLockingStatistics) {
for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
Label check_abort;
testl(abort_status, (1<<i));
jccb(Assembler::equal, check_abort);
atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
bind(check_abort);
}
}
}
// Branch if (random & (count-1) != 0), count is 2^n
// tmp, scr and flags are killed
void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
assert(tmp == rax, "");
assert(scr == rdx, "");
rdtsc(); // modifies EDX:EAX
andptr(tmp, count-1);
jccb(Assembler::notZero, brLabel);
}
// Perform abort ratio calculation, set no_rtm bit if high ratio
// input: rtm_counters_Reg (RTMLockingCounters* address)
// tmpReg, rtm_counters_Reg and flags are killed
void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
Register rtm_counters_Reg,
RTMLockingCounters* rtm_counters,
Metadata* method_data) {
Label L_done, L_check_always_rtm1, L_check_always_rtm2;
if (RTMLockingCalculationDelay > 0) {
// Delay calculation
movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
testptr(tmpReg, tmpReg);
jccb(Assembler::equal, L_done);
}
// Abort ratio calculation only if abort_count > RTMAbortThreshold
// Aborted transactions = abort_count * 100
// All transactions = total_count * RTMTotalCountIncrRate
// Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
cmpptr(tmpReg, RTMAbortThreshold);
jccb(Assembler::below, L_check_always_rtm2);
imulptr(tmpReg, tmpReg, 100);
Register scrReg = rtm_counters_Reg;
movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
imulptr(scrReg, scrReg, RTMAbortRatio);
cmpptr(tmpReg, scrReg);
jccb(Assembler::below, L_check_always_rtm1);
if (method_data != NULL) {
// set rtm_state to "no rtm" in MDO
mov_metadata(tmpReg, method_data);
if (os::is_MP()) {
lock();
}
orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
}
jmpb(L_done);
bind(L_check_always_rtm1);
// Reload RTMLockingCounters* address
lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
bind(L_check_always_rtm2);
movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
jccb(Assembler::below, L_done);
if (method_data != NULL) {
// set rtm_state to "always rtm" in MDO
mov_metadata(tmpReg, method_data);
if (os::is_MP()) {
lock();
}
orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
}
bind(L_done);
}
// Update counters and perform abort ratio calculation
// input: abort_status_Reg
// rtm_counters_Reg, flags are killed
void MacroAssembler::rtm_profiling(Register abort_status_Reg,
Register rtm_counters_Reg,
RTMLockingCounters* rtm_counters,
Metadata* method_data,
bool profile_rtm) {
assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
// update rtm counters based on rax value at abort
// reads abort_status_Reg, updates flags
lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
if (profile_rtm) {
// Save abort status because abort_status_Reg is used by following code.
if (RTMRetryCount > 0) {
push(abort_status_Reg);
}
assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
// restore abort status
if (RTMRetryCount > 0) {
pop(abort_status_Reg);
}
}
}
// Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
// inputs: retry_count_Reg
// : abort_status_Reg
// output: retry_count_Reg decremented by 1
// flags are killed
void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
Label doneRetry;
assert(abort_status_Reg == rax, "");
// The abort reason bits are in eax (see all states in rtmLocking.hpp)
// 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
// if reason is in 0x6 and retry count != 0 then retry
andptr(abort_status_Reg, 0x6);
jccb(Assembler::zero, doneRetry);
testl(retry_count_Reg, retry_count_Reg);
jccb(Assembler::zero, doneRetry);
pause();
decrementl(retry_count_Reg);
jmp(retryLabel);
bind(doneRetry);
}
// Spin and retry if lock is busy,
// inputs: box_Reg (monitor address)
// : retry_count_Reg
// output: retry_count_Reg decremented by 1
// : clear z flag if retry count exceeded
// tmp_Reg, scr_Reg, flags are killed
void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
Label SpinLoop, SpinExit, doneRetry;
int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
testl(retry_count_Reg, retry_count_Reg);
jccb(Assembler::zero, doneRetry);
decrementl(retry_count_Reg);
movptr(scr_Reg, RTMSpinLoopCount);
bind(SpinLoop);
pause();
decrementl(scr_Reg);
jccb(Assembler::lessEqual, SpinExit);
movptr(tmp_Reg, Address(box_Reg, owner_offset));
testptr(tmp_Reg, tmp_Reg);
jccb(Assembler::notZero, SpinLoop);
bind(SpinExit);
jmp(retryLabel);
bind(doneRetry);
incrementl(retry_count_Reg); // clear z flag
}
// Use RTM for normal stack locks
// Input: objReg (object to lock)
void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
Register retry_on_abort_count_Reg,
RTMLockingCounters* stack_rtm_counters,
Metadata* method_data, bool profile_rtm,
Label& DONE_LABEL, Label& IsInflated) {
assert(UseRTMForStackLocks, "why call this otherwise?");
assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
assert(tmpReg == rax, "");
assert(scrReg == rdx, "");
Label L_rtm_retry, L_decrement_retry, L_on_abort;
if (RTMRetryCount > 0) {
movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
bind(L_rtm_retry);
}
movptr(tmpReg, Address(objReg, 0));
testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
jcc(Assembler::notZero, IsInflated);
if (PrintPreciseRTMLockingStatistics || profile_rtm) {
Label L_noincrement;
if (RTMTotalCountIncrRate > 1) {
// tmpReg, scrReg and flags are killed
branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
}
assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
bind(L_noincrement);
}
xbegin(L_on_abort);
movptr(tmpReg, Address(objReg, 0)); // fetch markword
andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
cmpptr(tmpReg, markOopDesc::unlocked_value); // bits = 001 unlocked
jcc(Assembler::equal, DONE_LABEL); // all done if unlocked
Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
if (UseRTMXendForLockBusy) {
xend();
movptr(abort_status_Reg, 0x2); // Set the abort status to 2 (so we can retry)
jmp(L_decrement_retry);
}
else {
xabort(0);
}
bind(L_on_abort);
if (PrintPreciseRTMLockingStatistics || profile_rtm) {
rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
}
bind(L_decrement_retry);
if (RTMRetryCount > 0) {
// retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
}
}
// Use RTM for inflating locks
// inputs: objReg (object to lock)
// boxReg (on-stack box address (displaced header location) - KILLED)
// tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
Register scrReg, Register retry_on_busy_count_Reg,
Register retry_on_abort_count_Reg,
RTMLockingCounters* rtm_counters,
Metadata* method_data, bool profile_rtm,
Label& DONE_LABEL) {
assert(UseRTMLocking, "why call this otherwise?");
assert(tmpReg == rax, "");
assert(scrReg == rdx, "");
Label L_rtm_retry, L_decrement_retry, L_on_abort;
int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
// Without cast to int32_t a movptr will destroy r10 which is typically obj
movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
movptr(boxReg, tmpReg); // Save ObjectMonitor address
if (RTMRetryCount > 0) {
movl(retry_on_busy_count_Reg, RTMRetryCount); // Retry on lock busy
movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
bind(L_rtm_retry);
}
if (PrintPreciseRTMLockingStatistics || profile_rtm) {
Label L_noincrement;
if (RTMTotalCountIncrRate > 1) {
// tmpReg, scrReg and flags are killed
branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
}
assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
bind(L_noincrement);
}
xbegin(L_on_abort);
movptr(tmpReg, Address(objReg, 0));
movptr(tmpReg, Address(tmpReg, owner_offset));
testptr(tmpReg, tmpReg);
jcc(Assembler::zero, DONE_LABEL);
if (UseRTMXendForLockBusy) {
xend();
jmp(L_decrement_retry);
}
else {
xabort(0);
}
bind(L_on_abort);
Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
if (PrintPreciseRTMLockingStatistics || profile_rtm) {
rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
}
if (RTMRetryCount > 0) {
// retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
}
movptr(tmpReg, Address(boxReg, owner_offset)) ;
testptr(tmpReg, tmpReg) ;
jccb(Assembler::notZero, L_decrement_retry) ;
// Appears unlocked - try to swing _owner from null to non-null.
// Invariant: tmpReg == 0. tmpReg is EAX which is the implicit cmpxchg comparand.
#ifdef _LP64
Register threadReg = r15_thread;
#else
get_thread(scrReg);
Register threadReg = scrReg;
#endif
if (os::is_MP()) {
lock();
}
cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
if (RTMRetryCount > 0) {
// success done else retry
jccb(Assembler::equal, DONE_LABEL) ;
bind(L_decrement_retry);
// Spin and retry if lock is busy.
rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
}
else {
bind(L_decrement_retry);
}
}
#endif // INCLUDE_RTM_OPT
// Fast_Lock and Fast_Unlock used by C2
// Because the transitions from emitted code to the runtime
// monitorenter/exit helper stubs are so slow it's critical that
// we inline both the stack-locking fast-path and the inflated fast path.
//
// See also: cmpFastLock and cmpFastUnlock.
//
// What follows is a specialized inline transliteration of the code
// in slow_enter() and slow_exit(). If we're concerned about I$ bloat
// another option would be to emit TrySlowEnter and TrySlowExit methods
// at startup-time. These methods would accept arguments as
// (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
// indications in the icc.ZFlag. Fast_Lock and Fast_Unlock would simply
// marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
// In practice, however, the # of lock sites is bounded and is usually small.
// Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
// if the processor uses simple bimodal branch predictors keyed by EIP
// Since the helper routines would be called from multiple synchronization
// sites.
//
// An even better approach would be write "MonitorEnter()" and "MonitorExit()"
// in java - using j.u.c and unsafe - and just bind the lock and unlock sites
// to those specialized methods. That'd give us a mostly platform-independent
// implementation that the JITs could optimize and inline at their pleasure.
// Done correctly, the only time we'd need to cross to native could would be
// to park() or unpark() threads. We'd also need a few more unsafe operators
// to (a) prevent compiler-JIT reordering of non-volatile accesses, and
// (b) explicit barriers or fence operations.
//
// TODO:
//
// * Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
// This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
// Given TLAB allocation, Self is usually manifested in a register, so passing it into
// the lock operators would typically be faster than reifying Self.
//
// * Ideally I'd define the primitives as:
// fast_lock (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
// fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
// Unfortunately ADLC bugs prevent us from expressing the ideal form.
// Instead, we're stuck with a rather awkward and brittle register assignments below.
// Furthermore the register assignments are overconstrained, possibly resulting in
// sub-optimal code near the synchronization site.
//
// * Eliminate the sp-proximity tests and just use "== Self" tests instead.
// Alternately, use a better sp-proximity test.
//
// * Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
// Either one is sufficient to uniquely identify a thread.
// TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
//
// * Intrinsify notify() and notifyAll() for the common cases where the
// object is locked by the calling thread but the waitlist is empty.
// avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
//
// * use jccb and jmpb instead of jcc and jmp to improve code density.
// But beware of excessive branch density on AMD Opterons.
//
// * Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
// or failure of the fast-path. If the fast-path fails then we pass
// control to the slow-path, typically in C. In Fast_Lock and
// Fast_Unlock we often branch to DONE_LABEL, just to find that C2
// will emit a conditional branch immediately after the node.
// So we have branches to branches and lots of ICC.ZF games.
// Instead, it might be better to have C2 pass a "FailureLabel"
// into Fast_Lock and Fast_Unlock. In the case of success, control
// will drop through the node. ICC.ZF is undefined at exit.
// In the case of failure, the node will branch directly to the
// FailureLabel
// obj: object to lock
// box: on-stack box address (displaced header location) - KILLED
// rax,: tmp -- KILLED
// scr: tmp -- KILLED
void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
Register scrReg, Register cx1Reg, Register cx2Reg,
BiasedLockingCounters* counters,
RTMLockingCounters* rtm_counters,
RTMLockingCounters* stack_rtm_counters,
Metadata* method_data,
bool use_rtm, bool profile_rtm) {
// Ensure the register assignents are disjoint
assert(tmpReg == rax, "");
if (use_rtm) {
assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
} else {
assert(cx1Reg == noreg, "");
assert(cx2Reg == noreg, "");
assert_different_registers(objReg, boxReg, tmpReg, scrReg);
}
if (counters != NULL) {
atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
}
if (EmitSync & 1) {
// set box->dhw = markOopDesc::unused_mark()
// Force all sync thru slow-path: slow_enter() and slow_exit()
movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
cmpptr (rsp, (int32_t)NULL_WORD);
} else {
// Possible cases that we'll encounter in fast_lock
// ------------------------------------------------
// * Inflated
// -- unlocked
// -- Locked
// = by self
// = by other
// * biased
// -- by Self
// -- by other
// * neutral
// * stack-locked
// -- by self
// = sp-proximity test hits
// = sp-proximity test generates false-negative
// -- by other
//
Label IsInflated, DONE_LABEL;
// it's stack-locked, biased or neutral
// TODO: optimize away redundant LDs of obj->mark and improve the markword triage
// order to reduce the number of conditional branches in the most common cases.
// Beware -- there's a subtle invariant that fetch of the markword
// at [FETCH], below, will never observe a biased encoding (*101b).
// If this invariant is not held we risk exclusion (safety) failure.
if (UseBiasedLocking && !UseOptoBiasInlining) {
biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
}
#if INCLUDE_RTM_OPT
if (UseRTMForStackLocks && use_rtm) {
rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
stack_rtm_counters, method_data, profile_rtm,
DONE_LABEL, IsInflated);
}
#endif // INCLUDE_RTM_OPT
movptr(tmpReg, Address(objReg, 0)); // [FETCH]
testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
jccb(Assembler::notZero, IsInflated);
// Attempt stack-locking ...
orptr (tmpReg, markOopDesc::unlocked_value);
movptr(Address(boxReg, 0), tmpReg); // Anticipate successful CAS
if (os::is_MP()) {
lock();
}
cmpxchgptr(boxReg, Address(objReg, 0)); // Updates tmpReg
if (counters != NULL) {
cond_inc32(Assembler::equal,
ExternalAddress((address)counters->fast_path_entry_count_addr()));
}
jcc(Assembler::equal, DONE_LABEL); // Success
// Recursive locking.
// The object is stack-locked: markword contains stack pointer to BasicLock.
// Locked by current thread if difference with current SP is less than one page.
subptr(tmpReg, rsp);
// Next instruction set ZFlag == 1 (Success) if difference is less then one page.
andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
movptr(Address(boxReg, 0), tmpReg);
if (counters != NULL) {
cond_inc32(Assembler::equal,
ExternalAddress((address)counters->fast_path_entry_count_addr()));
}
jmp(DONE_LABEL);
bind(IsInflated);
// The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
#if INCLUDE_RTM_OPT
// Use the same RTM locking code in 32- and 64-bit VM.
if (use_rtm) {
rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
rtm_counters, method_data, profile_rtm, DONE_LABEL);
} else {
#endif // INCLUDE_RTM_OPT
#ifndef _LP64
// The object is inflated.
// boxReg refers to the on-stack BasicLock in the current frame.
// We'd like to write:
// set box->_displaced_header = markOopDesc::unused_mark(). Any non-0 value suffices.
// This is convenient but results a ST-before-CAS penalty. The following CAS suffers
// additional latency as we have another ST in the store buffer that must drain.
if (EmitSync & 8192) {
movptr(Address(boxReg, 0), 3); // results in ST-before-CAS penalty
get_thread (scrReg);
movptr(boxReg, tmpReg); // consider: LEA box, [tmp-2]
movptr(tmpReg, NULL_WORD); // consider: xor vs mov
if (os::is_MP()) {
lock();
}
cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
} else
if ((EmitSync & 128) == 0) { // avoid ST-before-CAS
movptr(scrReg, boxReg);
movptr(boxReg, tmpReg); // consider: LEA box, [tmp-2]
// Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
// prefetchw [eax + Offset(_owner)-2]
prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
}
if ((EmitSync & 64) == 0) {
// Optimistic form: consider XORL tmpReg,tmpReg
movptr(tmpReg, NULL_WORD);
} else {
// Can suffer RTS->RTO upgrades on shared or cold $ lines
// Test-And-CAS instead of CAS
movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner))); // rax, = m->_owner
testptr(tmpReg, tmpReg); // Locked ?
jccb (Assembler::notZero, DONE_LABEL);
}
// Appears unlocked - try to swing _owner from null to non-null.
// Ideally, I'd manifest "Self" with get_thread and then attempt
// to CAS the register containing Self into m->Owner.
// But we don't have enough registers, so instead we can either try to CAS
// rsp or the address of the box (in scr) into &m->owner. If the CAS succeeds
// we later store "Self" into m->Owner. Transiently storing a stack address
// (rsp or the address of the box) into m->owner is harmless.
// Invariant: tmpReg == 0. tmpReg is EAX which is the implicit cmpxchg comparand.
if (os::is_MP()) {
lock();
}
cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
movptr(Address(scrReg, 0), 3); // box->_displaced_header = 3
jccb (Assembler::notZero, DONE_LABEL);
get_thread (scrReg); // beware: clobbers ICCs
movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
xorptr(boxReg, boxReg); // set icc.ZFlag = 1 to indicate success
// If the CAS fails we can either retry or pass control to the slow-path.
// We use the latter tactic.
// Pass the CAS result in the icc.ZFlag into DONE_LABEL
// If the CAS was successful ...
// Self has acquired the lock
// Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
// Intentional fall-through into DONE_LABEL ...
} else {
movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark())); // results in ST-before-CAS penalty
movptr(boxReg, tmpReg);
// Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
// prefetchw [eax + Offset(_owner)-2]
prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
}
if ((EmitSync & 64) == 0) {
// Optimistic form
xorptr (tmpReg, tmpReg);
} else {
// Can suffer RTS->RTO upgrades on shared or cold $ lines
movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner))); // rax, = m->_owner
testptr(tmpReg, tmpReg); // Locked ?
jccb (Assembler::notZero, DONE_LABEL);
}
// Appears unlocked - try to swing _owner from null to non-null.
// Use either "Self" (in scr) or rsp as thread identity in _owner.
// Invariant: tmpReg == 0. tmpReg is EAX which is the implicit cmpxchg comparand.
get_thread (scrReg);
if (os::is_MP()) {
lock();
}
cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
// If the CAS fails we can either retry or pass control to the slow-path.
// We use the latter tactic.
// Pass the CAS result in the icc.ZFlag into DONE_LABEL
// If the CAS was successful ...
// Self has acquired the lock
// Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
// Intentional fall-through into DONE_LABEL ...
}
#else // _LP64
// It's inflated
movq(scrReg, tmpReg);
xorq(tmpReg, tmpReg);
if (os::is_MP()) {
lock();
}
cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
// Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
// Without cast to int32_t movptr will destroy r10 which is typically obj.
movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
// Intentional fall-through into DONE_LABEL ...
// Propagate ICC.ZF from CAS above into DONE_LABEL.
#endif // _LP64
#if INCLUDE_RTM_OPT
} // use_rtm()
#endif
// DONE_LABEL is a hot target - we'd really like to place it at the
// start of cache line by padding with NOPs.
// See the AMD and Intel software optimization manuals for the
// most efficient "long" NOP encodings.
// Unfortunately none of our alignment mechanisms suffice.
bind(DONE_LABEL);
// At DONE_LABEL the icc ZFlag is set as follows ...
// Fast_Unlock uses the same protocol.
// ZFlag == 1 -> Success
// ZFlag == 0 -> Failure - force control through the slow-path
}
}
// obj: object to unlock
// box: box address (displaced header location), killed. Must be EAX.
// tmp: killed, cannot be obj nor box.
//
// Some commentary on balanced locking:
//
// Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
// Methods that don't have provably balanced locking are forced to run in the
// interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
// The interpreter provides two properties:
// I1: At return-time the interpreter automatically and quietly unlocks any
// objects acquired the current activation (frame). Recall that the
// interpreter maintains an on-stack list of locks currently held by
// a frame.
// I2: If a method attempts to unlock an object that is not held by the
// the frame the interpreter throws IMSX.
//
// Lets say A(), which has provably balanced locking, acquires O and then calls B().
// B() doesn't have provably balanced locking so it runs in the interpreter.
// Control returns to A() and A() unlocks O. By I1 and I2, above, we know that O
// is still locked by A().
//
// The only other source of unbalanced locking would be JNI. The "Java Native Interface:
// Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
// should not be unlocked by "normal" java-level locking and vice-versa. The specification
// doesn't specify what will occur if a program engages in such mixed-mode locking, however.
// Arguably given that the spec legislates the JNI case as undefined our implementation
// could reasonably *avoid* checking owner in Fast_Unlock().
// In the interest of performance we elide m->Owner==Self check in unlock.
// A perfectly viable alternative is to elide the owner check except when
// Xcheck:jni is enabled.
void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
assert(boxReg == rax, "");
assert_different_registers(objReg, boxReg, tmpReg);
if (EmitSync & 4) {
// Disable - inhibit all inlining. Force control through the slow-path
cmpptr (rsp, 0);
} else {
Label DONE_LABEL, Stacked, CheckSucc;
// Critically, the biased locking test must have precedence over
// and appear before the (box->dhw == 0) recursive stack-lock test.
if (UseBiasedLocking && !UseOptoBiasInlining) {
biased_locking_exit(objReg, tmpReg, DONE_LABEL);
}
#if INCLUDE_RTM_OPT
if (UseRTMForStackLocks && use_rtm) {
assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
Label L_regular_unlock;
movptr(tmpReg, Address(objReg, 0)); // fetch markword
andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
cmpptr(tmpReg, markOopDesc::unlocked_value); // bits = 001 unlocked
jccb(Assembler::notEqual, L_regular_unlock); // if !HLE RegularLock
xend(); // otherwise end...
jmp(DONE_LABEL); // ... and we're done
bind(L_regular_unlock);
}
#endif
cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
jcc (Assembler::zero, DONE_LABEL); // 0 indicates recursive stack-lock
movptr(tmpReg, Address(objReg, 0)); // Examine the object's markword
testptr(tmpReg, markOopDesc::monitor_value); // Inflated?
jccb (Assembler::zero, Stacked);
// It's inflated.
#if INCLUDE_RTM_OPT
if (use_rtm) {
Label L_regular_inflated_unlock;
int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
movptr(boxReg, Address(tmpReg, owner_offset));
testptr(boxReg, boxReg);
jccb(Assembler::notZero, L_regular_inflated_unlock);
xend();
jmpb(DONE_LABEL);
bind(L_regular_inflated_unlock);
}
#endif
// Despite our balanced locking property we still check that m->_owner == Self
// as java routines or native JNI code called by this thread might
// have released the lock.
// Refer to the comments in synchronizer.cpp for how we might encode extra
// state in _succ so we can avoid fetching EntryList|cxq.
//
// I'd like to add more cases in fast_lock() and fast_unlock() --
// such as recursive enter and exit -- but we have to be wary of
// I$ bloat, T$ effects and BP$ effects.
//
// If there's no contention try a 1-0 exit. That is, exit without
// a costly MEMBAR or CAS. See synchronizer.cpp for details on how
// we detect and recover from the race that the 1-0 exit admits.
//
// Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
// before it STs null into _owner, releasing the lock. Updates
// to data protected by the critical section must be visible before
// we drop the lock (and thus before any other thread could acquire
// the lock and observe the fields protected by the lock).
// IA32's memory-model is SPO, so STs are ordered with respect to
// each other and there's no need for an explicit barrier (fence).
// See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
#ifndef _LP64
get_thread (boxReg);
if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
// prefetchw [ebx + Offset(_owner)-2]
prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
}
// Note that we could employ various encoding schemes to reduce
// the number of loads below (currently 4) to just 2 or 3.
// Refer to the comments in synchronizer.cpp.
// In practice the chain of fetches doesn't seem to impact performance, however.
xorptr(boxReg, boxReg);
if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
// Attempt to reduce branch density - AMD's branch predictor.
orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
jccb (Assembler::notZero, DONE_LABEL);
movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
jmpb (DONE_LABEL);
} else {
orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
jccb (Assembler::notZero, DONE_LABEL);
movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
jccb (Assembler::notZero, CheckSucc);
movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
jmpb (DONE_LABEL);
}
// The Following code fragment (EmitSync & 65536) improves the performance of
// contended applications and contended synchronization microbenchmarks.
// Unfortunately the emission of the code - even though not executed - causes regressions
// in scimark and jetstream, evidently because of $ effects. Replacing the code
// with an equal number of never-executed NOPs results in the same regression.
// We leave it off by default.
if ((EmitSync & 65536) != 0) {
Label LSuccess, LGoSlowPath ;
bind (CheckSucc);
// Optional pre-test ... it's safe to elide this
cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
jccb(Assembler::zero, LGoSlowPath);
// We have a classic Dekker-style idiom:
// ST m->_owner = 0 ; MEMBAR; LD m->_succ
// There are a number of ways to implement the barrier:
// (1) lock:andl &m->_owner, 0
// is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
// LOCK: ANDL [ebx+Offset(_Owner)-2], 0
// Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
// (2) If supported, an explicit MFENCE is appealing.
// In older IA32 processors MFENCE is slower than lock:add or xchg
// particularly if the write-buffer is full as might be the case if
// if stores closely precede the fence or fence-equivalent instruction.
// See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
// as the situation has changed with Nehalem and Shanghai.
// (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
// The $lines underlying the top-of-stack should be in M-state.
// The locked add instruction is serializing, of course.
// (4) Use xchg, which is serializing
// mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
// (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
// The integer condition codes will tell us if succ was 0.
// Since _succ and _owner should reside in the same $line and
// we just stored into _owner, it's likely that the $line
// remains in M-state for the lock:orl.
//
// We currently use (3), although it's likely that switching to (2)
// is correct for the future.
movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
if (os::is_MP()) {
lock(); addptr(Address(rsp, 0), 0);
}
// Ratify _succ remains non-null
cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
jccb (Assembler::notZero, LSuccess);
xorptr(boxReg, boxReg); // box is really EAX
if (os::is_MP()) { lock(); }
cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
jccb (Assembler::notEqual, LSuccess);
// Since we're low on registers we installed rsp as a placeholding in _owner.
// Now install Self over rsp. This is safe as we're transitioning from
// non-null to non=null
get_thread (boxReg);
movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
// Intentional fall-through into LGoSlowPath ...
bind (LGoSlowPath);
orptr(boxReg, 1); // set ICC.ZF=0 to indicate failure
jmpb (DONE_LABEL);
bind (LSuccess);
xorptr(boxReg, boxReg); // set ICC.ZF=1 to indicate success
jmpb (DONE_LABEL);
}
bind (Stacked);
// It's not inflated and it's not recursively stack-locked and it's not biased.
// It must be stack-locked.
// Try to reset the header to displaced header.
// The "box" value on the stack is stable, so we can reload
// and be assured we observe the same value as above.
movptr(tmpReg, Address(boxReg, 0));
if (os::is_MP()) {
lock();
}
cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
// Intention fall-thru into DONE_LABEL
// DONE_LABEL is a hot target - we'd really like to place it at the
// start of cache line by padding with NOPs.
// See the AMD and Intel software optimization manuals for the
// most efficient "long" NOP encodings.
// Unfortunately none of our alignment mechanisms suffice.
if ((EmitSync & 65536) == 0) {
bind (CheckSucc);
}
#else // _LP64
// It's inflated
if (EmitSync & 1024) {
// Emit code to check that _owner == Self
// We could fold the _owner test into subsequent code more efficiently
// than using a stand-alone check, but since _owner checking is off by
// default we don't bother. We also might consider predicating the
// _owner==Self check on Xcheck:jni or running on a debug build.
movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
xorptr(boxReg, r15_thread);
} else {
xorptr(boxReg, boxReg);
}
orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
jccb (Assembler::notZero, DONE_LABEL);
movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
jccb (Assembler::notZero, CheckSucc);
movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
jmpb (DONE_LABEL);
if ((EmitSync & 65536) == 0) {
// Try to avoid passing control into the slow_path ...
Label LSuccess, LGoSlowPath ;
bind (CheckSucc);
// The following optional optimization can be elided if necessary
// Effectively: if (succ == null) goto SlowPath
// The code reduces the window for a race, however,
// and thus benefits performance.
cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
jccb (Assembler::zero, LGoSlowPath);
if ((EmitSync & 16) && os::is_MP()) {
orptr(boxReg, boxReg);
xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
} else {
movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
if (os::is_MP()) {
// Memory barrier/fence
// Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
// Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
// This is faster on Nehalem and AMD Shanghai/Barcelona.
// See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
// We might also restructure (ST Owner=0;barrier;LD _Succ) to
// (mov box,0; xchgq box, &m->Owner; LD _succ) .
lock(); addl(Address(rsp, 0), 0);
}
}
cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
jccb (Assembler::notZero, LSuccess);
// Rare inopportune interleaving - race.
// The successor vanished in the small window above.
// The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
// We need to ensure progress and succession.
// Try to reacquire the lock.
// If that fails then the new owner is responsible for succession and this
// thread needs to take no further action and can exit via the fast path (success).
// If the re-acquire succeeds then pass control into the slow path.
// As implemented, this latter mode is horrible because we generated more
// coherence traffic on the lock *and* artifically extended the critical section
// length while by virtue of passing control into the slow path.
// box is really RAX -- the following CMPXCHG depends on that binding
// cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
movptr(boxReg, (int32_t)NULL_WORD);
if (os::is_MP()) { lock(); }
cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
jccb (Assembler::notEqual, LSuccess);
// Intentional fall-through into slow-path
bind (LGoSlowPath);
orl (boxReg, 1); // set ICC.ZF=0 to indicate failure
jmpb (DONE_LABEL);
bind (LSuccess);
testl (boxReg, 0); // set ICC.ZF=1 to indicate success
jmpb (DONE_LABEL);
}
bind (Stacked);
movptr(tmpReg, Address (boxReg, 0)); // re-fetch
if (os::is_MP()) { lock(); }
cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
if (EmitSync & 65536) {
bind (CheckSucc);
}
#endif
bind(DONE_LABEL);
}
}
#endif // COMPILER2
void MacroAssembler::c2bool(Register x) {
// implements x == 0 ? 0 : 1
// note: must only look at least-significant byte of x
// since C-style booleans are stored in one byte
// only! (was bug)
andl(x, 0xFF);
setb(Assembler::notZero, x);
}
// Wouldn't need if AddressLiteral version had new name
void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
Assembler::call(L, rtype);
}
void MacroAssembler::call(Register entry) {
Assembler::call(entry);
}
void MacroAssembler::call(AddressLiteral entry) {
if (reachable(entry)) {
Assembler::call_literal(entry.target(), entry.rspec());
} else {
lea(rscratch1, entry);
Assembler::call(rscratch1);
}
}
void MacroAssembler::ic_call(address entry) {
RelocationHolder rh = virtual_call_Relocation::spec(pc());
movptr(rax, (intptr_t)Universe::non_oop_word());
call(AddressLiteral(entry, rh));
}
// Implementation of call_VM versions
void MacroAssembler::call_VM(Register oop_result,
address entry_point,
bool check_exceptions) {
Label C, E;
call(C, relocInfo::none);
jmp(E);
bind(C);
call_VM_helper(oop_result, entry_point, 0, check_exceptions);
ret(0);
bind(E);
}
void MacroAssembler::call_VM(Register oop_result,
address entry_point,
Register arg_1,
bool check_exceptions) {
Label C, E;
call(C, relocInfo::none);
jmp(E);
bind(C);
pass_arg1(this, arg_1);
call_VM_helper(oop_result, entry_point, 1, check_exceptions);
ret(0);
bind(E);
}
void MacroAssembler::call_VM(Register oop_result,
address entry_point,
Register arg_1,
Register arg_2,
bool check_exceptions) {
Label C, E;
call(C, relocInfo::none);
jmp(E);
bind(C);
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
pass_arg1(this, arg_1);
call_VM_helper(oop_result, entry_point, 2, check_exceptions);
ret(0);
bind(E);
}
void MacroAssembler::call_VM(Register oop_result,
address entry_point,
Register arg_1,
Register arg_2,
Register arg_3,
bool check_exceptions) {
Label C, E;
call(C, relocInfo::none);
jmp(E);
bind(C);
LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
pass_arg3(this, arg_3);
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
pass_arg1(this, arg_1);
call_VM_helper(oop_result, entry_point, 3, check_exceptions);
ret(0);
bind(E);
}
void MacroAssembler::call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
int number_of_arguments,
bool check_exceptions) {
Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
}
void MacroAssembler::call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1,
bool check_exceptions) {
pass_arg1(this, arg_1);
call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
}
void MacroAssembler::call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1,
Register arg_2,
bool check_exceptions) {
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
pass_arg1(this, arg_1);
call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
}
void MacroAssembler::call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1,
Register arg_2,
Register arg_3,
bool check_exceptions) {
LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
pass_arg3(this, arg_3);
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
pass_arg1(this, arg_1);
call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
}
void MacroAssembler::super_call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
int number_of_arguments,
bool check_exceptions) {
Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
}
void MacroAssembler::super_call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1,
bool check_exceptions) {
pass_arg1(this, arg_1);
super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
}
void MacroAssembler::super_call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1,
Register arg_2,
bool check_exceptions) {
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
pass_arg1(this, arg_1);
super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
}
void MacroAssembler::super_call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1,
Register arg_2,
Register arg_3,
bool check_exceptions) {
LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
pass_arg3(this, arg_3);
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
pass_arg1(this, arg_1);
super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
}
void MacroAssembler::call_VM_base(Register oop_result,
Register java_thread,
Register last_java_sp,
address entry_point,
int number_of_arguments,
bool check_exceptions) {
// determine java_thread register
if (!java_thread->is_valid()) {
#ifdef _LP64
java_thread = r15_thread;
#else
java_thread = rdi;
get_thread(java_thread);
#endif // LP64
}
// determine last_java_sp register
if (!last_java_sp->is_valid()) {
last_java_sp = rsp;
}
// debugging support
assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
#ifdef ASSERT
// TraceBytecodes does not use r12 but saves it over the call, so don't verify
// r12 is the heapbase.
LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
#endif // ASSERT
assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result");
assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
// push java thread (becomes first argument of C function)
NOT_LP64(push(java_thread); number_of_arguments++);
LP64_ONLY(mov(c_rarg0, r15_thread));
// set last Java frame before call
assert(last_java_sp != rbp, "can't use ebp/rbp");
// Only interpreter should have to set fp
set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
// do the call, remove parameters
MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
// restore the thread (cannot use the pushed argument since arguments
// may be overwritten by C code generated by an optimizing compiler);
// however can use the register value directly if it is callee saved.
if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
// rdi & rsi (also r15) are callee saved -> nothing to do
#ifdef ASSERT
guarantee(java_thread != rax, "change this code");
push(rax);
{ Label L;
get_thread(rax);
cmpptr(java_thread, rax);
jcc(Assembler::equal, L);
STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
bind(L);
}
pop(rax);
#endif
} else {
get_thread(java_thread);
}
// reset last Java frame
// Only interpreter should have to clear fp
reset_last_Java_frame(java_thread, true, false);
#ifndef CC_INTERP
// C++ interp handles this in the interpreter
check_and_handle_popframe(java_thread);
check_and_handle_earlyret(java_thread);
#endif /* CC_INTERP */
if (check_exceptions) {
// check for pending exceptions (java_thread is set upon return)
cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
#ifndef _LP64
jump_cc(Assembler::notEqual,
RuntimeAddress(StubRoutines::forward_exception_entry()));
#else
// This used to conditionally jump to forward_exception however it is
// possible if we relocate that the branch will not reach. So we must jump
// around so we can always reach
Label ok;
jcc(Assembler::equal, ok);
jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
bind(ok);
#endif // LP64
}
// get oop result if there is one and reset the value in the thread
if (oop_result->is_valid()) {
get_vm_result(oop_result, java_thread);
}
}
void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
// Calculate the value for last_Java_sp
// somewhat subtle. call_VM does an intermediate call
// which places a return address on the stack just under the
// stack pointer as the user finsihed with it. This allows
// use to retrieve last_Java_pc from last_Java_sp[-1].
// On 32bit we then have to push additional args on the stack to accomplish
// the actual requested call. On 64bit call_VM only can use register args
// so the only extra space is the return address that call_VM created.
// This hopefully explains the calculations here.
#ifdef _LP64
// We've pushed one address, correct last_Java_sp
lea(rax, Address(rsp, wordSize));
#else
lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
#endif // LP64
call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
}
void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
call_VM_leaf_base(entry_point, number_of_arguments);
}
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
pass_arg0(this, arg_0);
call_VM_leaf(entry_point, 1);
}
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
pass_arg1(this, arg_1);
pass_arg0(this, arg_0);
call_VM_leaf(entry_point, 2);
}
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
pass_arg1(this, arg_1);
pass_arg0(this, arg_0);
call_VM_leaf(entry_point, 3);
}
void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
pass_arg0(this, arg_0);
MacroAssembler::call_VM_leaf_base(entry_point, 1);
}
void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
pass_arg1(this, arg_1);
pass_arg0(this, arg_0);
MacroAssembler::call_VM_leaf_base(entry_point, 2);
}
void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
pass_arg1(this, arg_1);
pass_arg0(this, arg_0);
MacroAssembler::call_VM_leaf_base(entry_point, 3);
}
void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
pass_arg3(this, arg_3);
LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
pass_arg1(this, arg_1);
pass_arg0(this, arg_0);
MacroAssembler::call_VM_leaf_base(entry_point, 4);
}
void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
verify_oop(oop_result, "broken oop in call_VM_base");
}
void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
}
void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
}
void MacroAssembler::check_and_handle_popframe(Register java_thread) {
}
void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
if (reachable(src1)) {
cmpl(as_Address(src1), imm);
} else {
lea(rscratch1, src1);
cmpl(Address(rscratch1, 0), imm);
}
}
void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
assert(!src2.is_lval(), "use cmpptr");
if (reachable(src2)) {
cmpl(src1, as_Address(src2));
} else {
lea(rscratch1, src2);
cmpl(src1, Address(rscratch1, 0));
}
}
void MacroAssembler::cmp32(Register src1, int32_t imm) {
Assembler::cmpl(src1, imm);
}
void MacroAssembler::cmp32(Register src1, Address src2) {
Assembler::cmpl(src1, src2);
}
void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
ucomisd(opr1, opr2);
Label L;
if (unordered_is_less) {
movl(dst, -1);
jcc(Assembler::parity, L);
jcc(Assembler::below , L);
movl(dst, 0);
jcc(Assembler::equal , L);
increment(dst);
} else { // unordered is greater
movl(dst, 1);
jcc(Assembler::parity, L);
jcc(Assembler::above , L);
movl(dst, 0);
jcc(Assembler::equal , L);
decrementl(dst);
}
bind(L);
}
void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
ucomiss(opr1, opr2);
Label L;
if (unordered_is_less) {
movl(dst, -1);
jcc(Assembler::parity, L);
jcc(Assembler::below , L);
movl(dst, 0);
jcc(Assembler::equal , L);
increment(dst);
} else { // unordered is greater
movl(dst, 1);
jcc(Assembler::parity, L);
jcc(Assembler::above , L);
movl(dst, 0);
jcc(Assembler::equal , L);
decrementl(dst);
}
bind(L);
}
void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
if (reachable(src1)) {
cmpb(as_Address(src1), imm);
} else {
lea(rscratch1, src1);
cmpb(Address(rscratch1, 0), imm);
}
}
void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
#ifdef _LP64
if (src2.is_lval()) {
movptr(rscratch1, src2);
Assembler::cmpq(src1, rscratch1);
} else if (reachable(src2)) {
cmpq(src1, as_Address(src2));
} else {
lea(rscratch1, src2);
Assembler::cmpq(src1, Address(rscratch1, 0));
}
#else
if (src2.is_lval()) {
cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
} else {
cmpl(src1, as_Address(src2));
}
#endif // _LP64
}
void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
assert(src2.is_lval(), "not a mem-mem compare");
#ifdef _LP64
// moves src2's literal address
movptr(rscratch1, src2);
Assembler::cmpq(src1, rscratch1);
#else
cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
#endif // _LP64
}
void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
if (reachable(adr)) {
if (os::is_MP())
lock();
cmpxchgptr(reg, as_Address(adr));
} else {
lea(rscratch1, adr);
if (os::is_MP())
lock();
cmpxchgptr(reg, Address(rscratch1, 0));
}
}
void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
}
void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::comisd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::comisd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::comiss(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::comiss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
Condition negated_cond = negate_condition(cond);
Label L;
jcc(negated_cond, L);
pushf(); // Preserve flags
atomic_incl(counter_addr);
popf();
bind(L);
}
int MacroAssembler::corrected_idivl(Register reg) {
// Full implementation of Java idiv and irem; checks for
// special case as described in JVM spec., p.243 & p.271.
// The function returns the (pc) offset of the idivl
// instruction - may be needed for implicit exceptions.
//
// normal case special case
//
// input : rax,: dividend min_int
// reg: divisor (may not be rax,/rdx) -1
//
// output: rax,: quotient (= rax, idiv reg) min_int
// rdx: remainder (= rax, irem reg) 0
assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
const int min_int = 0x80000000;
Label normal_case, special_case;
// check for special case
cmpl(rax, min_int);
jcc(Assembler::notEqual, normal_case);
xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
cmpl(reg, -1);
jcc(Assembler::equal, special_case);
// handle normal case
bind(normal_case);
cdql();
int idivl_offset = offset();
idivl(reg);
// normal and special case exit
bind(special_case);
return idivl_offset;
}
void MacroAssembler::decrementl(Register reg, int value) {
if (value == min_jint) {subl(reg, value) ; return; }
if (value < 0) { incrementl(reg, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { decl(reg) ; return; }
/* else */ { subl(reg, value) ; return; }
}
void MacroAssembler::decrementl(Address dst, int value) {
if (value == min_jint) {subl(dst, value) ; return; }
if (value < 0) { incrementl(dst, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { decl(dst) ; return; }
/* else */ { subl(dst, value) ; return; }
}
void MacroAssembler::division_with_shift (Register reg, int shift_value) {
assert (shift_value > 0, "illegal shift value");
Label _is_positive;
testl (reg, reg);
jcc (Assembler::positive, _is_positive);
int offset = (1 << shift_value) - 1 ;
if (offset == 1) {
incrementl(reg);
} else {
addl(reg, offset);
}
bind (_is_positive);
sarl(reg, shift_value);
}
void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::divsd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::divsd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::divss(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::divss(dst, Address(rscratch1, 0));
}
}
// !defined(COMPILER2) is because of stupid core builds
#if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
void MacroAssembler::empty_FPU_stack() {
if (VM_Version::supports_mmx()) {
emms();
} else {
for (int i = 8; i-- > 0; ) ffree(i);
}
}
#endif // !LP64 || C1 || !C2
// Defines obj, preserves var_size_in_bytes
void MacroAssembler::eden_allocate(Register obj,
Register var_size_in_bytes,
int con_size_in_bytes,
Register t1,
Label& slow_case) {
assert(obj == rax, "obj must be in rax, for cmpxchg");
assert_different_registers(obj, var_size_in_bytes, t1);
if (!Universe::heap()->supports_inline_contig_alloc()) {
jmp(slow_case);
} else {
Register end = t1;
Label retry;
bind(retry);
ExternalAddress heap_top((address) Universe::heap()->top_addr());
movptr(obj, heap_top);
if (var_size_in_bytes == noreg) {
lea(end, Address(obj, con_size_in_bytes));
} else {
lea(end, Address(obj, var_size_in_bytes, Address::times_1));
}
// if end < obj then we wrapped around => object too long => slow case
cmpptr(end, obj);
jcc(Assembler::below, slow_case);
cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
jcc(Assembler::above, slow_case);
// Compare obj with the top addr, and if still equal, store the new top addr in
// end at the address of the top addr pointer. Sets ZF if was equal, and clears
// it otherwise. Use lock prefix for atomicity on MPs.
locked_cmpxchgptr(end, heap_top);
jcc(Assembler::notEqual, retry);
}
}
void MacroAssembler::enter() {
push(rbp);
mov(rbp, rsp);
}
// A 5 byte nop that is safe for patching (see patch_verified_entry)
void MacroAssembler::fat_nop() {
if (UseAddressNop) {
addr_nop_5();
} else {
emit_int8(0x26); // es:
emit_int8(0x2e); // cs:
emit_int8(0x64); // fs:
emit_int8(0x65); // gs:
emit_int8((unsigned char)0x90);
}
}
void MacroAssembler::fcmp(Register tmp) {
fcmp(tmp, 1, true, true);
}
void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
assert(!pop_right || pop_left, "usage error");
if (VM_Version::supports_cmov()) {
assert(tmp == noreg, "unneeded temp");
if (pop_left) {
fucomip(index);
} else {
fucomi(index);
}
if (pop_right) {
fpop();
}
} else {
assert(tmp != noreg, "need temp");
if (pop_left) {
if (pop_right) {
fcompp();
} else {
fcomp(index);
}
} else {
fcom(index);
}
// convert FPU condition into eflags condition via rax,
save_rax(tmp);
fwait(); fnstsw_ax();
sahf();
restore_rax(tmp);
}
// condition codes set as follows:
//
// CF (corresponds to C0) if x < y
// PF (corresponds to C2) if unordered
// ZF (corresponds to C3) if x = y
}
void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
fcmp2int(dst, unordered_is_less, 1, true, true);
}
void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
Label L;
if (unordered_is_less) {
movl(dst, -1);
jcc(Assembler::parity, L);
jcc(Assembler::below , L);
movl(dst, 0);
jcc(Assembler::equal , L);
increment(dst);
} else { // unordered is greater
movl(dst, 1);
jcc(Assembler::parity, L);
jcc(Assembler::above , L);
movl(dst, 0);
jcc(Assembler::equal , L);
decrementl(dst);
}
bind(L);
}
void MacroAssembler::fld_d(AddressLiteral src) {
fld_d(as_Address(src));
}
void MacroAssembler::fld_s(AddressLiteral src) {
fld_s(as_Address(src));
}
void MacroAssembler::fld_x(AddressLiteral src) {
Assembler::fld_x(as_Address(src));
}
void MacroAssembler::fldcw(AddressLiteral src) {
Assembler::fldcw(as_Address(src));
}
void MacroAssembler::pow_exp_core_encoding() {
// kills rax, rcx, rdx
subptr(rsp,sizeof(jdouble));
// computes 2^X. Stack: X ...
// f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
// keep it on the thread's stack to compute 2^int(X) later
// then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
// final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
fld_s(0); // Stack: X X ...
frndint(); // Stack: int(X) X ...
fsuba(1); // Stack: int(X) X-int(X) ...
fistp_s(Address(rsp,0)); // move int(X) as integer to thread's stack. Stack: X-int(X) ...
f2xm1(); // Stack: 2^(X-int(X))-1 ...
fld1(); // Stack: 1 2^(X-int(X))-1 ...
faddp(1); // Stack: 2^(X-int(X))
// computes 2^(int(X)): add exponent bias (1023) to int(X), then
// shift int(X)+1023 to exponent position.
// Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
// bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
// values so detect them and set result to NaN.
movl(rax,Address(rsp,0));
movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
addl(rax, 1023);
movl(rdx,rax);
shll(rax,20);
// Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
addl(rdx,1);
// Check that 1 < int(X)+1023+1 < 2048
// in 3 steps:
// 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
// 2- (int(X)+1023+1)&-2048 != 0
// 3- (int(X)+1023+1)&-2048 != 1
// Do 2- first because addl just updated the flags.
cmov32(Assembler::equal,rax,rcx);
cmpl(rdx,1);
cmov32(Assembler::equal,rax,rcx);
testl(rdx,rcx);
cmov32(Assembler::notEqual,rax,rcx);
movl(Address(rsp,4),rax);
movl(Address(rsp,0),0);
fmul_d(Address(rsp,0)); // Stack: 2^X ...
addptr(rsp,sizeof(jdouble));
}
void MacroAssembler::increase_precision() {
subptr(rsp, BytesPerWord);
fnstcw(Address(rsp, 0));
movl(rax, Address(rsp, 0));
orl(rax, 0x300);
push(rax);
fldcw(Address(rsp, 0));
pop(rax);
}
void MacroAssembler::restore_precision() {
fldcw(Address(rsp, 0));
addptr(rsp, BytesPerWord);
}
void MacroAssembler::fast_pow() {
// computes X^Y = 2^(Y * log2(X))
// if fast computation is not possible, result is NaN. Requires
// fallback from user of this macro.
// increase precision for intermediate steps of the computation
BLOCK_COMMENT("fast_pow {");
increase_precision();
fyl2x(); // Stack: (Y*log2(X)) ...
pow_exp_core_encoding(); // Stack: exp(X) ...
restore_precision();
BLOCK_COMMENT("} fast_pow");
}
void MacroAssembler::fast_exp() {
// computes exp(X) = 2^(X * log2(e))
// if fast computation is not possible, result is NaN. Requires
// fallback from user of this macro.
// increase precision for intermediate steps of the computation
increase_precision();
fldl2e(); // Stack: log2(e) X ...
fmulp(1); // Stack: (X*log2(e)) ...
pow_exp_core_encoding(); // Stack: exp(X) ...
restore_precision();
}
void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
// kills rax, rcx, rdx
// pow and exp needs 2 extra registers on the fpu stack.
Label slow_case, done;
Register tmp = noreg;
if (!VM_Version::supports_cmov()) {
// fcmp needs a temporary so preserve rdx,
tmp = rdx;
}
Register tmp2 = rax;
Register tmp3 = rcx;
if (is_exp) {
// Stack: X
fld_s(0); // duplicate argument for runtime call. Stack: X X
fast_exp(); // Stack: exp(X) X
fcmp(tmp, 0, false, false); // Stack: exp(X) X
// exp(X) not equal to itself: exp(X) is NaN go to slow case.
jcc(Assembler::parity, slow_case);
// get rid of duplicate argument. Stack: exp(X)
if (num_fpu_regs_in_use > 0) {
fxch();
fpop();
} else {
ffree(1);
}
jmp(done);
} else {
// Stack: X Y
Label x_negative, y_not_2;
static double two = 2.0;
ExternalAddress two_addr((address)&two);
// constant maybe too far on 64 bit
lea(tmp2, two_addr);
fld_d(Address(tmp2, 0)); // Stack: 2 X Y
fcmp(tmp, 2, true, false); // Stack: X Y
jcc(Assembler::parity, y_not_2);
jcc(Assembler::notEqual, y_not_2);
fxch(); fpop(); // Stack: X
fmul(0); // Stack: X*X
jmp(done);
bind(y_not_2);
fldz(); // Stack: 0 X Y
fcmp(tmp, 1, true, false); // Stack: X Y
jcc(Assembler::above, x_negative);
// X >= 0
fld_s(1); // duplicate arguments for runtime call. Stack: Y X Y
fld_s(1); // Stack: X Y X Y
fast_pow(); // Stack: X^Y X Y
fcmp(tmp, 0, false, false); // Stack: X^Y X Y
// X^Y not equal to itself: X^Y is NaN go to slow case.
jcc(Assembler::parity, slow_case);
// get rid of duplicate arguments. Stack: X^Y
if (num_fpu_regs_in_use > 0) {
fxch(); fpop();
fxch(); fpop();
} else {
ffree(2);
ffree(1);
}
jmp(done);
// X <= 0
bind(x_negative);
fld_s(1); // Stack: Y X Y
frndint(); // Stack: int(Y) X Y
fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
jcc(Assembler::notEqual, slow_case);
subptr(rsp, 8);
// For X^Y, when X < 0, Y has to be an integer and the final
// result depends on whether it's odd or even. We just checked
// that int(Y) == Y. We move int(Y) to gp registers as a 64 bit
// integer to test its parity. If int(Y) is huge and doesn't fit
// in the 64 bit integer range, the integer indefinite value will
// end up in the gp registers. Huge numbers are all even, the
// integer indefinite number is even so it's fine.
#ifdef ASSERT
// Let's check we don't end up with an integer indefinite number
// when not expected. First test for huge numbers: check whether
// int(Y)+1 == int(Y) which is true for very large numbers and
// those are all even. A 64 bit integer is guaranteed to not
// overflow for numbers where y+1 != y (when precision is set to
// double precision).
Label y_not_huge;
fld1(); // Stack: 1 int(Y) X Y
fadd(1); // Stack: 1+int(Y) int(Y) X Y
#ifdef _LP64
// trip to memory to force the precision down from double extended
// precision
fstp_d(Address(rsp, 0));
fld_d(Address(rsp, 0));
#endif
fcmp(tmp, 1, true, false); // Stack: int(Y) X Y
#endif
// move int(Y) as 64 bit integer to thread's stack
fistp_d(Address(rsp,0)); // Stack: X Y
#ifdef ASSERT
jcc(Assembler::notEqual, y_not_huge);
// Y is huge so we know it's even. It may not fit in a 64 bit
// integer and we don't want the debug code below to see the
// integer indefinite value so overwrite int(Y) on the thread's
// stack with 0.
movl(Address(rsp, 0), 0);
movl(Address(rsp, 4), 0);
bind(y_not_huge);
#endif
fld_s(1); // duplicate arguments for runtime call. Stack: Y X Y
fld_s(1); // Stack: X Y X Y
fabs(); // Stack: abs(X) Y X Y
fast_pow(); // Stack: abs(X)^Y X Y
fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
// abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
pop(tmp2);
NOT_LP64(pop(tmp3));
jcc(Assembler::parity, slow_case);
#ifdef ASSERT
// Check that int(Y) is not integer indefinite value (int
// overflow). Shouldn't happen because for values that would
// overflow, 1+int(Y)==Y which was tested earlier.
#ifndef _LP64
{
Label integer;
testl(tmp2, tmp2);
jcc(Assembler::notZero, integer);
cmpl(tmp3, 0x80000000);
jcc(Assembler::notZero, integer);
STOP("integer indefinite value shouldn't be seen here");
bind(integer);
}
#else
{
Label integer;
mov(tmp3, tmp2); // preserve tmp2 for parity check below
shlq(tmp3, 1);
jcc(Assembler::carryClear, integer);
jcc(Assembler::notZero, integer);
STOP("integer indefinite value shouldn't be seen here");
bind(integer);
}
#endif
#endif
// get rid of duplicate arguments. Stack: X^Y
if (num_fpu_regs_in_use > 0) {
fxch(); fpop();
fxch(); fpop();
} else {
ffree(2);
ffree(1);
}
testl(tmp2, 1);
jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
// X <= 0, Y even: X^Y = -abs(X)^Y
fchs(); // Stack: -abs(X)^Y Y
jmp(done);
}
// slow case: runtime call
bind(slow_case);
fpop(); // pop incorrect result or int(Y)
fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
is_exp ? 1 : 2, num_fpu_regs_in_use);
// Come here with result in F-TOS
bind(done);
}
void MacroAssembler::fpop() {
ffree();
fincstp();
}
void MacroAssembler::fremr(Register tmp) {
save_rax(tmp);
{ Label L;
bind(L);
fprem();
fwait(); fnstsw_ax();
#ifdef _LP64
testl(rax, 0x400);
jcc(Assembler::notEqual, L);
#else
sahf();
jcc(Assembler::parity, L);
#endif // _LP64
}
restore_rax(tmp);
// Result is in ST0.
// Note: fxch & fpop to get rid of ST1
// (otherwise FPU stack could overflow eventually)
fxch(1);
fpop();
}
void MacroAssembler::incrementl(AddressLiteral dst) {
if (reachable(dst)) {
incrementl(as_Address(dst));
} else {
lea(rscratch1, dst);
incrementl(Address(rscratch1, 0));
}
}
void MacroAssembler::incrementl(ArrayAddress dst) {
incrementl(as_Address(dst));
}
void MacroAssembler::incrementl(Register reg, int value) {
if (value == min_jint) {addl(reg, value) ; return; }
if (value < 0) { decrementl(reg, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { incl(reg) ; return; }
/* else */ { addl(reg, value) ; return; }
}
void MacroAssembler::incrementl(Address dst, int value) {
if (value == min_jint) {addl(dst, value) ; return; }
if (value < 0) { decrementl(dst, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { incl(dst) ; return; }
/* else */ { addl(dst, value) ; return; }
}
void MacroAssembler::jump(AddressLiteral dst) {
if (reachable(dst)) {
jmp_literal(dst.target(), dst.rspec());
} else {
lea(rscratch1, dst);
jmp(rscratch1);
}
}
void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
if (reachable(dst)) {
InstructionMark im(this);
relocate(dst.reloc());
const int short_size = 2;
const int long_size = 6;
int offs = (intptr_t)dst.target() - ((intptr_t)pc());
if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
// 0111 tttn #8-bit disp
emit_int8(0x70 | cc);
emit_int8((offs - short_size) & 0xFF);
} else {
// 0000 1111 1000 tttn #32-bit disp
emit_int8(0x0F);
emit_int8((unsigned char)(0x80 | cc));
emit_int32(offs - long_size);
}
} else {
#ifdef ASSERT
warning("reversing conditional branch");
#endif /* ASSERT */
Label skip;
jccb(reverse[cc], skip);
lea(rscratch1, dst);
Assembler::jmp(rscratch1);
bind(skip);
}
}
void MacroAssembler::ldmxcsr(AddressLiteral src) {
if (reachable(src)) {
Assembler::ldmxcsr(as_Address(src));
} else {
lea(rscratch1, src);
Assembler::ldmxcsr(Address(rscratch1, 0));
}
}
int MacroAssembler::load_signed_byte(Register dst, Address src) {
int off;
if (LP64_ONLY(true ||) VM_Version::is_P6()) {
off = offset();
movsbl(dst, src); // movsxb
} else {
off = load_unsigned_byte(dst, src);
shll(dst, 24);
sarl(dst, 24);
}
return off;
}
// Note: load_signed_short used to be called load_signed_word.
// Although the 'w' in x86 opcodes refers to the term "word" in the assembler
// manual, which means 16 bits, that usage is found nowhere in HotSpot code.
// The term "word" in HotSpot means a 32- or 64-bit machine word.
int MacroAssembler::load_signed_short(Register dst, Address src) {
int off;
if (LP64_ONLY(true ||) VM_Version::is_P6()) {
// This is dubious to me since it seems safe to do a signed 16 => 64 bit
// version but this is what 64bit has always done. This seems to imply
// that users are only using 32bits worth.
off = offset();
movswl(dst, src); // movsxw
} else {
off = load_unsigned_short(dst, src);
shll(dst, 16);
sarl(dst, 16);
}
return off;
}
int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
// According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
// and "3.9 Partial Register Penalties", p. 22).
int off;
if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
off = offset();
movzbl(dst, src); // movzxb
} else {
xorl(dst, dst);
off = offset();
movb(dst, src);
}
return off;
}
// Note: load_unsigned_short used to be called load_unsigned_word.
int MacroAssembler::load_unsigned_short(Register dst, Address src) {
// According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
// and "3.9 Partial Register Penalties", p. 22).
int off;
if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
off = offset();
movzwl(dst, src); // movzxw
} else {
xorl(dst, dst);
off = offset();
movw(dst, src);
}
return off;
}
void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
switch (size_in_bytes) {
#ifndef _LP64
case 8:
assert(dst2 != noreg, "second dest register required");
movl(dst, src);
movl(dst2, src.plus_disp(BytesPerInt));
break;
#else
case 8: movq(dst, src); break;
#endif
case 4: movl(dst, src); break;
case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
default: ShouldNotReachHere();
}
}
void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
switch (size_in_bytes) {
#ifndef _LP64
case 8:
assert(src2 != noreg, "second source register required");
movl(dst, src);
movl(dst.plus_disp(BytesPerInt), src2);
break;
#else
case 8: movq(dst, src); break;
#endif
case 4: movl(dst, src); break;
case 2: movw(dst, src); break;
case 1: movb(dst, src); break;
default: ShouldNotReachHere();
}
}
void MacroAssembler::mov32(AddressLiteral dst, Register src) {
if (reachable(dst)) {
movl(as_Address(dst), src);
} else {
lea(rscratch1, dst);
movl(Address(rscratch1, 0), src);
}
}
void MacroAssembler::mov32(Register dst, AddressLiteral src) {
if (reachable(src)) {
movl(dst, as_Address(src));
} else {
lea(rscratch1, src);
movl(dst, Address(rscratch1, 0));
}
}
// C++ bool manipulation
void MacroAssembler::movbool(Register dst, Address src) {
if(sizeof(bool) == 1)
movb(dst, src);
else if(sizeof(bool) == 2)
movw(dst, src);
else if(sizeof(bool) == 4)
movl(dst, src);
else
// unsupported
ShouldNotReachHere();
}
void MacroAssembler::movbool(Address dst, bool boolconst) {
if(sizeof(bool) == 1)
movb(dst, (int) boolconst);
else if(sizeof(bool) == 2)
movw(dst, (int) boolconst);
else if(sizeof(bool) == 4)
movl(dst, (int) boolconst);
else
// unsupported
ShouldNotReachHere();
}
void MacroAssembler::movbool(Address dst, Register src) {
if(sizeof(bool) == 1)
movb(dst, src);
else if(sizeof(bool) == 2)
movw(dst, src);
else if(sizeof(bool) == 4)
movl(dst, src);
else
// unsupported
ShouldNotReachHere();
}
void MacroAssembler::movbyte(ArrayAddress dst, int src) {
movb(as_Address(dst), src);
}
void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
movdl(dst, as_Address(src));
} else {
lea(rscratch1, src);
movdl(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
movq(dst, as_Address(src));
} else {
lea(rscratch1, src);
movq(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
if (UseXmmLoadAndClearUpper) {
movsd (dst, as_Address(src));
} else {
movlpd(dst, as_Address(src));
}
} else {
lea(rscratch1, src);
if (UseXmmLoadAndClearUpper) {
movsd (dst, Address(rscratch1, 0));
} else {
movlpd(dst, Address(rscratch1, 0));
}
}
}
void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
movss(dst, as_Address(src));
} else {
lea(rscratch1, src);
movss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::movptr(Register dst, Register src) {
LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
}
void MacroAssembler::movptr(Register dst, Address src) {
LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
}
// src should NEVER be a real pointer. Use AddressLiteral for true pointers
void MacroAssembler::movptr(Register dst, intptr_t src) {
LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
}
void MacroAssembler::movptr(Address dst, Register src) {
LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
}
void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::movdqu(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::movdqu(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::movdqa(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::movdqa(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::movsd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::movsd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::movss(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::movss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::mulsd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::mulsd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::mulss(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::mulss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::null_check(Register reg, int offset) {
if (needs_explicit_null_check(offset)) {
// provoke OS NULL exception if reg = NULL by
// accessing M[reg] w/o changing any (non-CC) registers
// NOTE: cmpl is plenty here to provoke a segv
cmpptr(rax, Address(reg, 0));
// Note: should probably use testl(rax, Address(reg, 0));
// may be shorter code (however, this version of
// testl needs to be implemented first)
} else {
// nothing to do, (later) access of M[reg + offset]
// will provoke OS NULL exception if reg = NULL
}
}
void MacroAssembler::os_breakpoint() {
// instead of directly emitting a breakpoint, call os:breakpoint for better debugability
// (e.g., MSVC can't call ps() otherwise)
call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
}
void MacroAssembler::pop_CPU_state() {
pop_FPU_state();
pop_IU_state();
}
void MacroAssembler::pop_FPU_state() {
NOT_LP64(frstor(Address(rsp, 0));)
LP64_ONLY(fxrstor(Address(rsp, 0));)
addptr(rsp, FPUStateSizeInWords * wordSize);
}
void MacroAssembler::pop_IU_state() {
popa();
LP64_ONLY(addq(rsp, 8));
popf();
}
// Save Integer and Float state
// Warning: Stack must be 16 byte aligned (64bit)
void MacroAssembler::push_CPU_state() {
push_IU_state();
push_FPU_state();
}
void MacroAssembler::push_FPU_state() {
subptr(rsp, FPUStateSizeInWords * wordSize);
#ifndef _LP64
fnsave(Address(rsp, 0));
fwait();
#else
fxsave(Address(rsp, 0));
#endif // LP64
}
void MacroAssembler::push_IU_state() {
// Push flags first because pusha kills them
pushf();
// Make sure rsp stays 16-byte aligned
LP64_ONLY(subq(rsp, 8));
pusha();
}
void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
// determine java_thread register
if (!java_thread->is_valid()) {
java_thread = rdi;
get_thread(java_thread);
}
// we must set sp to zero to clear frame
movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
if (clear_fp) {
movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
}
if (clear_pc)
movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
}
void MacroAssembler::restore_rax(Register tmp) {
if (tmp == noreg) pop(rax);
else if (tmp != rax) mov(rax, tmp);
}
void MacroAssembler::round_to(Register reg, int modulus) {
addptr(reg, modulus - 1);
andptr(reg, -modulus);
}
void MacroAssembler::save_rax(Register tmp) {
if (tmp == noreg) push(rax);
else if (tmp != rax) mov(tmp, rax);
}
// Write serialization page so VM thread can do a pseudo remote membar.
// We use the current thread pointer to calculate a thread specific
// offset to write to within the page. This minimizes bus traffic
// due to cache line collision.
void MacroAssembler::serialize_memory(Register thread, Register tmp) {
movl(tmp, thread);
shrl(tmp, os::get_serialize_page_shift_count());
andl(tmp, (os::vm_page_size() - sizeof(int)));
Address index(noreg, tmp, Address::times_1);
ExternalAddress page(os::get_memory_serialize_page());
// Size of store must match masking code above
movl(as_Address(ArrayAddress(page, index)), tmp);
}
// Calls to C land
//
// When entering C land, the rbp, & rsp of the last Java frame have to be recorded
// in the (thread-local) JavaThread object. When leaving C land, the last Java fp
// has to be reset to 0. This is required to allow proper stack traversal.
void MacroAssembler::set_last_Java_frame(Register java_thread,
Register last_java_sp,
Register last_java_fp,
address last_java_pc) {
// determine java_thread register
if (!java_thread->is_valid()) {
java_thread = rdi;
get_thread(java_thread);
}
// determine last_java_sp register
if (!last_java_sp->is_valid()) {
last_java_sp = rsp;
}
// last_java_fp is optional
if (last_java_fp->is_valid()) {
movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
}
// last_java_pc is optional
if (last_java_pc != NULL) {
lea(Address(java_thread,
JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
InternalAddress(last_java_pc));
}
movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
}
void MacroAssembler::shlptr(Register dst, int imm8) {
LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
}
void MacroAssembler::shrptr(Register dst, int imm8) {
LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
}
void MacroAssembler::sign_extend_byte(Register reg) {
if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
movsbl(reg, reg); // movsxb
} else {
shll(reg, 24);
sarl(reg, 24);
}
}
void MacroAssembler::sign_extend_short(Register reg) {
if (LP64_ONLY(true ||) VM_Version::is_P6()) {
movswl(reg, reg); // movsxw
} else {
shll(reg, 16);
sarl(reg, 16);
}
}
void MacroAssembler::testl(Register dst, AddressLiteral src) {
assert(reachable(src), "Address should be reachable");
testl(dst, as_Address(src));
}
void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::sqrtsd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::sqrtsd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::sqrtss(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::sqrtss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::subsd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::subsd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::subss(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::subss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::ucomisd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::ucomisd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::ucomiss(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::ucomiss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
// Used in sign-bit flipping with aligned address.
assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
if (reachable(src)) {
Assembler::xorpd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::xorpd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
// Used in sign-bit flipping with aligned address.
assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
if (reachable(src)) {
Assembler::xorps(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::xorps(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
// Used in sign-bit flipping with aligned address.
bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
if (reachable(src)) {
Assembler::pshufb(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::pshufb(dst, Address(rscratch1, 0));
}
}
// AVX 3-operands instructions
void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vaddsd(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vaddsd(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vaddss(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vaddss(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
if (reachable(src)) {
vandpd(dst, nds, as_Address(src), vector256);
} else {
lea(rscratch1, src);
vandpd(dst, nds, Address(rscratch1, 0), vector256);
}
}
void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
if (reachable(src)) {
vandps(dst, nds, as_Address(src), vector256);
} else {
lea(rscratch1, src);
vandps(dst, nds, Address(rscratch1, 0), vector256);
}
}
void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vdivsd(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vdivsd(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vdivss(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vdivss(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vmulsd(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vmulsd(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vmulss(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vmulss(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vsubsd(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vsubsd(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vsubss(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vsubss(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
if (reachable(src)) {
vxorpd(dst, nds, as_Address(src), vector256);
} else {
lea(rscratch1, src);
vxorpd(dst, nds, Address(rscratch1, 0), vector256);
}
}
void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
if (reachable(src)) {
vxorps(dst, nds, as_Address(src), vector256);
} else {
lea(rscratch1, src);
vxorps(dst, nds, Address(rscratch1, 0), vector256);
}
}
//////////////////////////////////////////////////////////////////////////////////
#if INCLUDE_ALL_GCS
void MacroAssembler::g1_write_barrier_pre(Register obj,
Register pre_val,
Register thread,
Register tmp,
bool tosca_live,
bool expand_call) {
// If expand_call is true then we expand the call_VM_leaf macro
// directly to skip generating the check by
// InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
#ifdef _LP64
assert(thread == r15_thread, "must be");
#endif // _LP64
Label done;
Label runtime;
assert(pre_val != noreg, "check this code");
if (obj != noreg) {
assert_different_registers(obj, pre_val, tmp);
assert(pre_val != rax, "check this code");
}
Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
PtrQueue::byte_offset_of_active()));
Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
PtrQueue::byte_offset_of_index()));
Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
PtrQueue::byte_offset_of_buf()));
// Is marking active?
if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
cmpl(in_progress, 0);
} else {
assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
cmpb(in_progress, 0);
}
jcc(Assembler::equal, done);
// Do we need to load the previous value?
if (obj != noreg) {
load_heap_oop(pre_val, Address(obj, 0));
}
// Is the previous value null?
cmpptr(pre_val, (int32_t) NULL_WORD);
jcc(Assembler::equal, done);
// Can we store original value in the thread's buffer?
// Is index == 0?
// (The index field is typed as size_t.)
movptr(tmp, index); // tmp := *index_adr
cmpptr(tmp, 0); // tmp == 0?
jcc(Assembler::equal, runtime); // If yes, goto runtime
subptr(tmp, wordSize); // tmp := tmp - wordSize
movptr(index, tmp); // *index_adr := tmp
addptr(tmp, buffer); // tmp := tmp + *buffer_adr
// Record the previous value
movptr(Address(tmp, 0), pre_val);
jmp(done);
bind(runtime);
// save the live input values
if(tosca_live) push(rax);
if (obj != noreg && obj != rax)
push(obj);
if (pre_val != rax)
push(pre_val);
// Calling the runtime using the regular call_VM_leaf mechanism generates
// code (generated by InterpreterMacroAssember::call_VM_leaf_base)
// that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
//
// If we care generating the pre-barrier without a frame (e.g. in the
// intrinsified Reference.get() routine) then ebp might be pointing to
// the caller frame and so this check will most likely fail at runtime.
//
// Expanding the call directly bypasses the generation of the check.
// So when we do not have have a full interpreter frame on the stack
// expand_call should be passed true.
NOT_LP64( push(thread); )
if (expand_call) {
LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
pass_arg1(this, thread);
pass_arg0(this, pre_val);
MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
} else {
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
}
NOT_LP64( pop(thread); )
// save the live input values
if (pre_val != rax)
pop(pre_val);
if (obj != noreg && obj != rax)
pop(obj);
if(tosca_live) pop(rax);
bind(done);
}
void MacroAssembler::g1_write_barrier_post(Register store_addr,
Register new_val,
Register thread,
Register tmp,
Register tmp2) {
#ifdef _LP64
assert(thread == r15_thread, "must be");
#endif // _LP64
Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
PtrQueue::byte_offset_of_index()));
Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
PtrQueue::byte_offset_of_buf()));
CardTableModRefBS* ct =
barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
Label done;
Label runtime;
// Does store cross heap regions?
movptr(tmp, store_addr);
xorptr(tmp, new_val);
shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
jcc(Assembler::equal, done);
// crosses regions, storing NULL?
cmpptr(new_val, (int32_t) NULL_WORD);
jcc(Assembler::equal, done);
// storing region crossing non-NULL, is card already dirty?
const Register card_addr = tmp;
const Register cardtable = tmp2;
movptr(card_addr, store_addr);
shrptr(card_addr, CardTableModRefBS::card_shift);
// Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
// a valid address and therefore is not properly handled by the relocation code.
movptr(cardtable, (intptr_t)ct->byte_map_base);
addptr(card_addr, cardtable);
cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
jcc(Assembler::equal, done);
membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
jcc(Assembler::equal, done);
// storing a region crossing, non-NULL oop, card is clean.
// dirty card and log.
movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
cmpl(queue_index, 0);
jcc(Assembler::equal, runtime);
subl(queue_index, wordSize);
movptr(tmp2, buffer);
#ifdef _LP64
movslq(rscratch1, queue_index);
addq(tmp2, rscratch1);
movq(Address(tmp2, 0), card_addr);
#else
addl(tmp2, queue_index);
movl(Address(tmp2, 0), card_addr);
#endif
jmp(done);
bind(runtime);
// save the live input values
push(store_addr);
push(new_val);
#ifdef _LP64
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
#else
push(thread);
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
pop(thread);
#endif
pop(new_val);
pop(store_addr);
bind(done);
}
#endif // INCLUDE_ALL_GCS
//////////////////////////////////////////////////////////////////////////////////
void MacroAssembler::store_check(Register obj) {
// Does a store check for the oop in register obj. The content of
// register obj is destroyed afterwards.
store_check_part_1(obj);
store_check_part_2(obj);
}
void MacroAssembler::store_check(Register obj, Address dst) {
store_check(obj);
}
// split the store check operation so that other instructions can be scheduled inbetween
void MacroAssembler::store_check_part_1(Register obj) {
BarrierSet* bs = Universe::heap()->barrier_set();
assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
shrptr(obj, CardTableModRefBS::card_shift);
}
void MacroAssembler::store_check_part_2(Register obj) {
BarrierSet* bs = Universe::heap()->barrier_set();
assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
// The calculation for byte_map_base is as follows:
// byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
// So this essentially converts an address to a displacement and it will
// never need to be relocated. On 64bit however the value may be too
// large for a 32bit displacement.
intptr_t disp = (intptr_t) ct->byte_map_base;
if (is_simm32(disp)) {
Address cardtable(noreg, obj, Address::times_1, disp);
movb(cardtable, 0);
} else {
// By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
// displacement and done in a single instruction given favorable mapping and a
// smarter version of as_Address. However, 'ExternalAddress' generates a relocation
// entry and that entry is not properly handled by the relocation code.
AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
Address index(noreg, obj, Address::times_1);
movb(as_Address(ArrayAddress(cardtable, index)), 0);
}
}
void MacroAssembler::subptr(Register dst, int32_t imm32) {
LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
}
// Force generation of a 4 byte immediate value even if it fits into 8bit
void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
}
void MacroAssembler::subptr(Register dst, Register src) {
LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
}
// C++ bool manipulation
void MacroAssembler::testbool(Register dst) {
if(sizeof(bool) == 1)
testb(dst, 0xff);
else if(sizeof(bool) == 2) {
// testw implementation needed for two byte bools
ShouldNotReachHere();
} else if(sizeof(bool) == 4)
testl(dst, dst);
else
// unsupported
ShouldNotReachHere();
}
void MacroAssembler::testptr(Register dst, Register src) {
LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
}
// Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
void MacroAssembler::tlab_allocate(Register obj,
Register var_size_in_bytes,
int con_size_in_bytes,
Register t1,
Register t2,
Label& slow_case) {
assert_different_registers(obj, t1, t2);
assert_different_registers(obj, var_size_in_bytes, t1);
Register end = t2;
Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
verify_tlab();
NOT_LP64(get_thread(thread));
movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
if (var_size_in_bytes == noreg) {
lea(end, Address(obj, con_size_in_bytes));
} else {
lea(end, Address(obj, var_size_in_bytes, Address::times_1));
}
cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
jcc(Assembler::above, slow_case);
// update the tlab top pointer
movptr(Address(thread, JavaThread::tlab_top_offset()), end);
// recover var_size_in_bytes if necessary
if (var_size_in_bytes == end) {
subptr(var_size_in_bytes, obj);
}
verify_tlab();
}
// Preserves rbx, and rdx.
Register MacroAssembler::tlab_refill(Label& retry,
Label& try_eden,
Label& slow_case) {
Register top = rax;
Register t1 = rcx;
Register t2 = rsi;
Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
Label do_refill, discard_tlab;
if (!Universe::heap()->supports_inline_contig_alloc()) {
// No allocation in the shared eden.
jmp(slow_case);
}
NOT_LP64(get_thread(thread_reg));
movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
// calculate amount of free space
subptr(t1, top);
shrptr(t1, LogHeapWordSize);
// Retain tlab and allocate object in shared space if
// the amount free in the tlab is too large to discard.
cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
jcc(Assembler::lessEqual, discard_tlab);
// Retain
// %%% yuck as movptr...
movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
if (TLABStats) {
// increment number of slow_allocations
addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
}
jmp(try_eden);
bind(discard_tlab);
if (TLABStats) {
// increment number of refills
addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
// accumulate wastage -- t1 is amount free in tlab
addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
}
// if tlab is currently allocated (top or end != null) then
// fill [top, end + alignment_reserve) with array object
testptr(top, top);
jcc(Assembler::zero, do_refill);
// set up the mark word
movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
// set the length to the remaining space
subptr(t1, typeArrayOopDesc::header_size(T_INT));
addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
// set klass to intArrayKlass
// dubious reloc why not an oop reloc?
movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
// store klass last. concurrent gcs assumes klass length is valid if
// klass field is not null.
store_klass(top, t1);
movptr(t1, top);
subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
incr_allocated_bytes(thread_reg, t1, 0);
// refill the tlab with an eden allocation
bind(do_refill);
movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
shlptr(t1, LogHeapWordSize);
// allocate new tlab, address returned in top
eden_allocate(top, t1, 0, t2, slow_case);
// Check that t1 was preserved in eden_allocate.
#ifdef ASSERT
if (UseTLAB) {
Label ok;
Register tsize = rsi;
assert_different_registers(tsize, thread_reg, t1);
push(tsize);
movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
shlptr(tsize, LogHeapWordSize);
cmpptr(t1, tsize);
jcc(Assembler::equal, ok);
STOP("assert(t1 != tlab size)");
should_not_reach_here();
bind(ok);
pop(tsize);
}
#endif
movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
addptr(top, t1);
subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
verify_tlab();
jmp(retry);
return thread_reg; // for use by caller
}
void MacroAssembler::incr_allocated_bytes(Register thread,
Register var_size_in_bytes,
int con_size_in_bytes,
Register t1) {
if (!thread->is_valid()) {
#ifdef _LP64
thread = r15_thread;
#else
assert(t1->is_valid(), "need temp reg");
thread = t1;
get_thread(thread);
#endif
}
#ifdef _LP64
if (var_size_in_bytes->is_valid()) {
addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
} else {
addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
}
#else
if (var_size_in_bytes->is_valid()) {
addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
} else {
addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
}
adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
#endif
}
void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
pusha();
// if we are coming from c1, xmm registers may be live
int off = 0;
if (UseSSE == 1) {
subptr(rsp, sizeof(jdouble)*8);
movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
} else if (UseSSE >= 2) {
#ifdef COMPILER2
if (MaxVectorSize > 16) {
assert(UseAVX > 0, "256bit vectors are supported only with AVX");
// Save upper half of YMM registes
subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
vextractf128h(Address(rsp, 0),xmm0);
vextractf128h(Address(rsp, 16),xmm1);
vextractf128h(Address(rsp, 32),xmm2);
vextractf128h(Address(rsp, 48),xmm3);
vextractf128h(Address(rsp, 64),xmm4);
vextractf128h(Address(rsp, 80),xmm5);
vextractf128h(Address(rsp, 96),xmm6);
vextractf128h(Address(rsp,112),xmm7);
#ifdef _LP64
vextractf128h(Address(rsp,128),xmm8);
vextractf128h(Address(rsp,144),xmm9);
vextractf128h(Address(rsp,160),xmm10);
vextractf128h(Address(rsp,176),xmm11);
vextractf128h(Address(rsp,192),xmm12);
vextractf128h(Address(rsp,208),xmm13);
vextractf128h(Address(rsp,224),xmm14);
vextractf128h(Address(rsp,240),xmm15);
#endif
}
#endif
// Save whole 128bit (16 bytes) XMM regiters
subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
movdqu(Address(rsp,off++*16),xmm0);
movdqu(Address(rsp,off++*16),xmm1);
movdqu(Address(rsp,off++*16),xmm2);
movdqu(Address(rsp,off++*16),xmm3);
movdqu(Address(rsp,off++*16),xmm4);
movdqu(Address(rsp,off++*16),xmm5);
movdqu(Address(rsp,off++*16),xmm6);
movdqu(Address(rsp,off++*16),xmm7);
#ifdef _LP64
movdqu(Address(rsp,off++*16),xmm8);
movdqu(Address(rsp,off++*16),xmm9);
movdqu(Address(rsp,off++*16),xmm10);
movdqu(Address(rsp,off++*16),xmm11);
movdqu(Address(rsp,off++*16),xmm12);
movdqu(Address(rsp,off++*16),xmm13);
movdqu(Address(rsp,off++*16),xmm14);
movdqu(Address(rsp,off++*16),xmm15);
#endif
}
// Preserve registers across runtime call
int incoming_argument_and_return_value_offset = -1;
if (num_fpu_regs_in_use > 1) {
// Must preserve all other FPU regs (could alternatively convert
// SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
// FPU state, but can not trust C compiler)
NEEDS_CLEANUP;
// NOTE that in this case we also push the incoming argument(s) to
// the stack and restore it later; we also use this stack slot to
// hold the return value from dsin, dcos etc.
for (int i = 0; i < num_fpu_regs_in_use; i++) {
subptr(rsp, sizeof(jdouble));
fstp_d(Address(rsp, 0));
}
incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
for (int i = nb_args-1; i >= 0; i--) {
fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
}
}
subptr(rsp, nb_args*sizeof(jdouble));
for (int i = 0; i < nb_args; i++) {
fstp_d(Address(rsp, i*sizeof(jdouble)));
}
#ifdef _LP64
if (nb_args > 0) {
movdbl(xmm0, Address(rsp, 0));
}
if (nb_args > 1) {
movdbl(xmm1, Address(rsp, sizeof(jdouble)));
}
assert(nb_args <= 2, "unsupported number of args");
#endif // _LP64
// NOTE: we must not use call_VM_leaf here because that requires a
// complete interpreter frame in debug mode -- same bug as 4387334
// MacroAssembler::call_VM_leaf_base is perfectly safe and will
// do proper 64bit abi
NEEDS_CLEANUP;
// Need to add stack banging before this runtime call if it needs to
// be taken; however, there is no generic stack banging routine at
// the MacroAssembler level
MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
#ifdef _LP64
movsd(Address(rsp, 0), xmm0);
fld_d(Address(rsp, 0));
#endif // _LP64
addptr(rsp, sizeof(jdouble) * nb_args);
if (num_fpu_regs_in_use > 1) {
// Must save return value to stack and then restore entire FPU
// stack except incoming arguments
fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
fld_d(Address(rsp, 0));
addptr(rsp, sizeof(jdouble));
}
fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
addptr(rsp, sizeof(jdouble) * nb_args);
}
off = 0;
if (UseSSE == 1) {
movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
addptr(rsp, sizeof(jdouble)*8);
} else if (UseSSE >= 2) {
// Restore whole 128bit (16 bytes) XMM regiters
movdqu(xmm0, Address(rsp,off++*16));
movdqu(xmm1, Address(rsp,off++*16));
movdqu(xmm2, Address(rsp,off++*16));
movdqu(xmm3, Address(rsp,off++*16));
movdqu(xmm4, Address(rsp,off++*16));
movdqu(xmm5, Address(rsp,off++*16));
movdqu(xmm6, Address(rsp,off++*16));
movdqu(xmm7, Address(rsp,off++*16));
#ifdef _LP64
movdqu(xmm8, Address(rsp,off++*16));
movdqu(xmm9, Address(rsp,off++*16));
movdqu(xmm10, Address(rsp,off++*16));
movdqu(xmm11, Address(rsp,off++*16));
movdqu(xmm12, Address(rsp,off++*16));
movdqu(xmm13, Address(rsp,off++*16));
movdqu(xmm14, Address(rsp,off++*16));
movdqu(xmm15, Address(rsp,off++*16));
#endif
addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
#ifdef COMPILER2
if (MaxVectorSize > 16) {
// Restore upper half of YMM registes.
vinsertf128h(xmm0, Address(rsp, 0));
vinsertf128h(xmm1, Address(rsp, 16));
vinsertf128h(xmm2, Address(rsp, 32));
vinsertf128h(xmm3, Address(rsp, 48));
vinsertf128h(xmm4, Address(rsp, 64));
vinsertf128h(xmm5, Address(rsp, 80));
vinsertf128h(xmm6, Address(rsp, 96));
vinsertf128h(xmm7, Address(rsp,112));
#ifdef _LP64
vinsertf128h(xmm8, Address(rsp,128));
vinsertf128h(xmm9, Address(rsp,144));
vinsertf128h(xmm10, Address(rsp,160));
vinsertf128h(xmm11, Address(rsp,176));
vinsertf128h(xmm12, Address(rsp,192));
vinsertf128h(xmm13, Address(rsp,208));
vinsertf128h(xmm14, Address(rsp,224));
vinsertf128h(xmm15, Address(rsp,240));
#endif
addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
}
#endif
}
popa();
}
static const double pi_4 = 0.7853981633974483;
void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
// A hand-coded argument reduction for values in fabs(pi/4, pi/2)
// was attempted in this code; unfortunately it appears that the
// switch to 80-bit precision and back causes this to be
// unprofitable compared with simply performing a runtime call if
// the argument is out of the (-pi/4, pi/4) range.
Register tmp = noreg;
if (!VM_Version::supports_cmov()) {
// fcmp needs a temporary so preserve rbx,
tmp = rbx;
push(tmp);
}
Label slow_case, done;
ExternalAddress pi4_adr = (address)&pi_4;
if (reachable(pi4_adr)) {
// x ?<= pi/4
fld_d(pi4_adr);
fld_s(1); // Stack: X PI/4 X
fabs(); // Stack: |X| PI/4 X
fcmp(tmp);
jcc(Assembler::above, slow_case);
// fastest case: -pi/4 <= x <= pi/4
switch(trig) {
case 's':
fsin();
break;
case 'c':
fcos();
break;
case 't':
ftan();
break;
default:
assert(false, "bad intrinsic");
break;
}
jmp(done);
}
// slow case: runtime call
bind(slow_case);
switch(trig) {
case 's':
{
fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
}
break;
case 'c':
{
fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
}
break;
case 't':
{
fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
}
break;
default:
assert(false, "bad intrinsic");
break;
}
// Come here with result in F-TOS
bind(done);
if (tmp != noreg) {
pop(tmp);
}
}
// Look up the method for a megamorphic invokeinterface call.
// The target method is determined by <intf_klass, itable_index>.
// The receiver klass is in recv_klass.
// On success, the result will be in method_result, and execution falls through.
// On failure, execution transfers to the given label.
void MacroAssembler::lookup_interface_method(Register recv_klass,
Register intf_klass,
RegisterOrConstant itable_index,
Register method_result,
Register scan_temp,
Label& L_no_such_interface) {
assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
assert(itable_index.is_constant() || itable_index.as_register() == method_result,
"caller must use same register for non-constant itable index as for method");
// Compute start of first itableOffsetEntry (which is at the end of the vtable)
int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
int itentry_off = itableMethodEntry::method_offset_in_bytes();
int scan_step = itableOffsetEntry::size() * wordSize;
int vte_size = vtableEntry::size() * wordSize;
Address::ScaleFactor times_vte_scale = Address::times_ptr;
assert(vte_size == wordSize, "else adjust times_vte_scale");
movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
// %%% Could store the aligned, prescaled offset in the klassoop.
lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
if (HeapWordsPerLong > 1) {
// Round up to align_object_offset boundary
// see code for InstanceKlass::start_of_itable!
round_to(scan_temp, BytesPerLong);
}
// Adjust recv_klass by scaled itable_index, so we can free itable_index.
assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
// for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
// if (scan->interface() == intf) {
// result = (klass + scan->offset() + itable_index);
// }
// }
Label search, found_method;
for (int peel = 1; peel >= 0; peel--) {
movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
cmpptr(intf_klass, method_result);
if (peel) {
jccb(Assembler::equal, found_method);
} else {
jccb(Assembler::notEqual, search);
// (invert the test to fall through to found_method...)
}
if (!peel) break;
bind(search);
// Check that the previous entry is non-null. A null entry means that
// the receiver class doesn't implement the interface, and wasn't the
// same as when the caller was compiled.
testptr(method_result, method_result);
jcc(Assembler::zero, L_no_such_interface);
addptr(scan_temp, scan_step);
}
bind(found_method);
// Got a hit.
movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
}
// virtual method calling
void MacroAssembler::lookup_virtual_method(Register recv_klass,
RegisterOrConstant vtable_index,
Register method_result) {
const int base = InstanceKlass::vtable_start_offset() * wordSize;
assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
Address vtable_entry_addr(recv_klass,
vtable_index, Address::times_ptr,
base + vtableEntry::method_offset_in_bytes());
movptr(method_result, vtable_entry_addr);
}
void MacroAssembler::check_klass_subtype(Register sub_klass,
Register super_klass,
Register temp_reg,
Label& L_success) {
Label L_failure;
check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, NULL);
check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
bind(L_failure);
}
void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
Register super_klass,
Register temp_reg,
Label* L_success,
Label* L_failure,
Label* L_slow_path,
RegisterOrConstant super_check_offset) {
assert_different_registers(sub_klass, super_klass, temp_reg);
bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
if (super_check_offset.is_register()) {
assert_different_registers(sub_klass, super_klass,
super_check_offset.as_register());
} else if (must_load_sco) {
assert(temp_reg != noreg, "supply either a temp or a register offset");
}
Label L_fallthrough;
int label_nulls = 0;
if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
assert(label_nulls <= 1, "at most one NULL in the batch");
int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
int sco_offset = in_bytes(Klass::super_check_offset_offset());
Address super_check_offset_addr(super_klass, sco_offset);
// Hacked jcc, which "knows" that L_fallthrough, at least, is in
// range of a jccb. If this routine grows larger, reconsider at
// least some of these.
#define local_jcc(assembler_cond, label) \
if (&(label) == &L_fallthrough) jccb(assembler_cond, label); \
else jcc( assembler_cond, label) /*omit semi*/
// Hacked jmp, which may only be used just before L_fallthrough.
#define final_jmp(label) \
if (&(label) == &L_fallthrough) { /*do nothing*/ } \
else jmp(label) /*omit semi*/
// If the pointers are equal, we are done (e.g., String[] elements).
// This self-check enables sharing of secondary supertype arrays among
// non-primary types such as array-of-interface. Otherwise, each such
// type would need its own customized SSA.
// We move this check to the front of the fast path because many
// type checks are in fact trivially successful in this manner,
// so we get a nicely predicted branch right at the start of the check.
cmpptr(sub_klass, super_klass);
local_jcc(Assembler::equal, *L_success);
// Check the supertype display:
if (must_load_sco) {
// Positive movl does right thing on LP64.
movl(temp_reg, super_check_offset_addr);
super_check_offset = RegisterOrConstant(temp_reg);
}
Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
cmpptr(super_klass, super_check_addr); // load displayed supertype
// This check has worked decisively for primary supers.
// Secondary supers are sought in the super_cache ('super_cache_addr').
// (Secondary supers are interfaces and very deeply nested subtypes.)
// This works in the same check above because of a tricky aliasing
// between the super_cache and the primary super display elements.
// (The 'super_check_addr' can address either, as the case requires.)
// Note that the cache is updated below if it does not help us find
// what we need immediately.
// So if it was a primary super, we can just fail immediately.
// Otherwise, it's the slow path for us (no success at this point).
if (super_check_offset.is_register()) {
local_jcc(Assembler::equal, *L_success);
cmpl(super_check_offset.as_register(), sc_offset);
if (L_failure == &L_fallthrough) {
local_jcc(Assembler::equal, *L_slow_path);
} else {
local_jcc(Assembler::notEqual, *L_failure);
final_jmp(*L_slow_path);
}
} else if (super_check_offset.as_constant() == sc_offset) {
// Need a slow path; fast failure is impossible.
if (L_slow_path == &L_fallthrough) {
local_jcc(Assembler::equal, *L_success);
} else {
local_jcc(Assembler::notEqual, *L_slow_path);
final_jmp(*L_success);
}
} else {
// No slow path; it's a fast decision.
if (L_failure == &L_fallthrough) {
local_jcc(Assembler::equal, *L_success);
} else {
local_jcc(Assembler::notEqual, *L_failure);
final_jmp(*L_success);
}
}
bind(L_fallthrough);
#undef local_jcc
#undef final_jmp
}
void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
Register super_klass,
Register temp_reg,
Register temp2_reg,
Label* L_success,
Label* L_failure,
bool set_cond_codes) {
assert_different_registers(sub_klass, super_klass, temp_reg);
if (temp2_reg != noreg)
assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
#define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
Label L_fallthrough;
int label_nulls = 0;
if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
assert(label_nulls <= 1, "at most one NULL in the batch");
// a couple of useful fields in sub_klass:
int ss_offset = in_bytes(Klass::secondary_supers_offset());
int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
Address secondary_supers_addr(sub_klass, ss_offset);
Address super_cache_addr( sub_klass, sc_offset);
// Do a linear scan of the secondary super-klass chain.
// This code is rarely used, so simplicity is a virtue here.
// The repne_scan instruction uses fixed registers, which we must spill.
// Don't worry too much about pre-existing connections with the input regs.
assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
// Get super_klass value into rax (even if it was in rdi or rcx).
bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
if (super_klass != rax || UseCompressedOops) {
if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
mov(rax, super_klass);
}
if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
#ifndef PRODUCT
int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
ExternalAddress pst_counter_addr((address) pst_counter);
NOT_LP64( incrementl(pst_counter_addr) );
LP64_ONLY( lea(rcx, pst_counter_addr) );
LP64_ONLY( incrementl(Address(rcx, 0)) );
#endif //PRODUCT
// We will consult the secondary-super array.
movptr(rdi, secondary_supers_addr);
// Load the array length. (Positive movl does right thing on LP64.)
movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
// Skip to start of data.
addptr(rdi, Array<Klass*>::base_offset_in_bytes());
// Scan RCX words at [RDI] for an occurrence of RAX.
// Set NZ/Z based on last compare.
// Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
// not change flags (only scas instruction which is repeated sets flags).
// Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
testptr(rax,rax); // Set Z = 0
repne_scan();
// Unspill the temp. registers:
if (pushed_rdi) pop(rdi);
if (pushed_rcx) pop(rcx);
if (pushed_rax) pop(rax);
if (set_cond_codes) {
// Special hack for the AD files: rdi is guaranteed non-zero.
assert(!pushed_rdi, "rdi must be left non-NULL");
// Also, the condition codes are properly set Z/NZ on succeed/failure.
}
if (L_failure == &L_fallthrough)
jccb(Assembler::notEqual, *L_failure);
else jcc(Assembler::notEqual, *L_failure);
// Success. Cache the super we found and proceed in triumph.
movptr(super_cache_addr, super_klass);
if (L_success != &L_fallthrough) {
jmp(*L_success);
}
#undef IS_A_TEMP
bind(L_fallthrough);
}
void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
if (VM_Version::supports_cmov()) {
cmovl(cc, dst, src);
} else {
Label L;
jccb(negate_condition(cc), L);
movl(dst, src);
bind(L);
}
}
void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
if (VM_Version::supports_cmov()) {
cmovl(cc, dst, src);
} else {
Label L;
jccb(negate_condition(cc), L);
movl(dst, src);
bind(L);
}
}
void MacroAssembler::verify_oop(Register reg, const char* s) {
if (!VerifyOops) return;
// Pass register number to verify_oop_subroutine
const char* b = NULL;
{
ResourceMark rm;
stringStream ss;
ss.print("verify_oop: %s: %s", reg->name(), s);
b = code_string(ss.as_string());
}
BLOCK_COMMENT("verify_oop {");
#ifdef _LP64
push(rscratch1); // save r10, trashed by movptr()
#endif
push(rax); // save rax,
push(reg); // pass register argument
ExternalAddress buffer((address) b);
// avoid using pushptr, as it modifies scratch registers
// and our contract is not to modify anything
movptr(rax, buffer.addr());
push(rax);
// call indirectly to solve generation ordering problem
movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
call(rax);
// Caller pops the arguments (oop, message) and restores rax, r10
BLOCK_COMMENT("} verify_oop");
}
RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
Register tmp,
int offset) {
intptr_t value = *delayed_value_addr;
if (value != 0)
return RegisterOrConstant(value + offset);
// load indirectly to solve generation ordering problem
movptr(tmp, ExternalAddress((address) delayed_value_addr));
#ifdef ASSERT
{ Label L;
testptr(tmp, tmp);
if (WizardMode) {
const char* buf = NULL;
{
ResourceMark rm;
stringStream ss;
ss.print("DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
buf = code_string(ss.as_string());
}
jcc(Assembler::notZero, L);
STOP(buf);
} else {
jccb(Assembler::notZero, L);
hlt();
}
bind(L);
}
#endif
if (offset != 0)
addptr(tmp, offset);
return RegisterOrConstant(tmp);
}
Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
int extra_slot_offset) {
// cf. TemplateTable::prepare_invoke(), if (load_receiver).
int stackElementSize = Interpreter::stackElementSize;
int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
#ifdef ASSERT
int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
assert(offset1 - offset == stackElementSize, "correct arithmetic");
#endif
Register scale_reg = noreg;
Address::ScaleFactor scale_factor = Address::no_scale;
if (arg_slot.is_constant()) {
offset += arg_slot.as_constant() * stackElementSize;
} else {
scale_reg = arg_slot.as_register();
scale_factor = Address::times(stackElementSize);
}
offset += wordSize; // return PC is on stack
return Address(rsp, scale_reg, scale_factor, offset);
}
void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
if (!VerifyOops) return;
// Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
// Pass register number to verify_oop_subroutine
const char* b = NULL;
{
ResourceMark rm;
stringStream ss;
ss.print("verify_oop_addr: %s", s);
b = code_string(ss.as_string());
}
#ifdef _LP64
push(rscratch1); // save r10, trashed by movptr()
#endif
push(rax); // save rax,
// addr may contain rsp so we will have to adjust it based on the push
// we just did (and on 64 bit we do two pushes)
// NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
// stores rax into addr which is backwards of what was intended.
if (addr.uses(rsp)) {
lea(rax, addr);
pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
} else {
pushptr(addr);
}
ExternalAddress buffer((address) b);
// pass msg argument
// avoid using pushptr, as it modifies scratch registers
// and our contract is not to modify anything
movptr(rax, buffer.addr());
push(rax);
// call indirectly to solve generation ordering problem
movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
call(rax);
// Caller pops the arguments (addr, message) and restores rax, r10.
}
void MacroAssembler::verify_tlab() {
#ifdef ASSERT
if (UseTLAB && VerifyOops) {
Label next, ok;
Register t1 = rsi;
Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
push(t1);
NOT_LP64(push(thread_reg));
NOT_LP64(get_thread(thread_reg));
movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
jcc(Assembler::aboveEqual, next);
STOP("assert(top >= start)");
should_not_reach_here();
bind(next);
movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
jcc(Assembler::aboveEqual, ok);
STOP("assert(top <= end)");
should_not_reach_here();
bind(ok);
NOT_LP64(pop(thread_reg));
pop(t1);
}
#endif
}
class ControlWord {
public:
int32_t _value;
int rounding_control() const { return (_value >> 10) & 3 ; }
int precision_control() const { return (_value >> 8) & 3 ; }
bool precision() const { return ((_value >> 5) & 1) != 0; }
bool underflow() const { return ((_value >> 4) & 1) != 0; }
bool overflow() const { return ((_value >> 3) & 1) != 0; }
bool zero_divide() const { return ((_value >> 2) & 1) != 0; }
bool denormalized() const { return ((_value >> 1) & 1) != 0; }
bool invalid() const { return ((_value >> 0) & 1) != 0; }
void print() const {
// rounding control
const char* rc;
switch (rounding_control()) {
case 0: rc = "round near"; break;
case 1: rc = "round down"; break;
case 2: rc = "round up "; break;
case 3: rc = "chop "; break;
};
// precision control
const char* pc;
switch (precision_control()) {
case 0: pc = "24 bits "; break;
case 1: pc = "reserved"; break;
case 2: pc = "53 bits "; break;
case 3: pc = "64 bits "; break;
};
// flags
char f[9];
f[0] = ' ';
f[1] = ' ';
f[2] = (precision ()) ? 'P' : 'p';
f[3] = (underflow ()) ? 'U' : 'u';
f[4] = (overflow ()) ? 'O' : 'o';
f[5] = (zero_divide ()) ? 'Z' : 'z';
f[6] = (denormalized()) ? 'D' : 'd';
f[7] = (invalid ()) ? 'I' : 'i';
f[8] = '\x0';
// output
printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
}
};
class StatusWord {
public:
int32_t _value;
bool busy() const { return ((_value >> 15) & 1) != 0; }
bool C3() const { return ((_value >> 14) & 1) != 0; }
bool C2() const { return ((_value >> 10) & 1) != 0; }
bool C1() const { return ((_value >> 9) & 1) != 0; }
bool C0() const { return ((_value >> 8) & 1) != 0; }
int top() const { return (_value >> 11) & 7 ; }
bool error_status() const { return ((_value >> 7) & 1) != 0; }
bool stack_fault() const { return ((_value >> 6) & 1) != 0; }
bool precision() const { return ((_value >> 5) & 1) != 0; }
bool underflow() const { return ((_value >> 4) & 1) != 0; }
bool overflow() const { return ((_value >> 3) & 1) != 0; }
bool zero_divide() const { return ((_value >> 2) & 1) != 0; }
bool denormalized() const { return ((_value >> 1) & 1) != 0; }
bool invalid() const { return ((_value >> 0) & 1) != 0; }
void print() const {
// condition codes
char c[5];
c[0] = (C3()) ? '3' : '-';
c[1] = (C2()) ? '2' : '-';
c[2] = (C1()) ? '1' : '-';
c[3] = (C0()) ? '0' : '-';
c[4] = '\x0';
// flags
char f[9];
f[0] = (error_status()) ? 'E' : '-';
f[1] = (stack_fault ()) ? 'S' : '-';
f[2] = (precision ()) ? 'P' : '-';
f[3] = (underflow ()) ? 'U' : '-';
f[4] = (overflow ()) ? 'O' : '-';
f[5] = (zero_divide ()) ? 'Z' : '-';
f[6] = (denormalized()) ? 'D' : '-';
f[7] = (invalid ()) ? 'I' : '-';
f[8] = '\x0';
// output
printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top());
}
};
class TagWord {
public:
int32_t _value;
int tag_at(int i) const { return (_value >> (i*2)) & 3; }
void print() const {
printf("%04x", _value & 0xFFFF);
}
};
class FPU_Register {
public:
int32_t _m0;
int32_t _m1;
int16_t _ex;
bool is_indefinite() const {
return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
}
void print() const {
char sign = (_ex < 0) ? '-' : '+';
const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " ";
printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind);
};
};
class FPU_State {
public:
enum {
register_size = 10,
number_of_registers = 8,
register_mask = 7
};
ControlWord _control_word;
StatusWord _status_word;
TagWord _tag_word;
int32_t _error_offset;
int32_t _error_selector;
int32_t _data_offset;
int32_t _data_selector;
int8_t _register[register_size * number_of_registers];
int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; }
const char* tag_as_string(int tag) const {
switch (tag) {
case 0: return "valid";
case 1: return "zero";
case 2: return "special";
case 3: return "empty";
}
ShouldNotReachHere();
return NULL;
}
void print() const {
// print computation registers
{ int t = _status_word.top();
for (int i = 0; i < number_of_registers; i++) {
int j = (i - t) & register_mask;
printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
st(j)->print();
printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
}
}
printf("\n");
// print control registers
printf("ctrl = "); _control_word.print(); printf("\n");
printf("stat = "); _status_word .print(); printf("\n");
printf("tags = "); _tag_word .print(); printf("\n");
}
};
class Flag_Register {
public:
int32_t _value;
bool overflow() const { return ((_value >> 11) & 1) != 0; }
bool direction() const { return ((_value >> 10) & 1) != 0; }
bool sign() const { return ((_value >> 7) & 1) != 0; }
bool zero() const { return ((_value >> 6) & 1) != 0; }
bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; }
bool parity() const { return ((_value >> 2) & 1) != 0; }
bool carry() const { return ((_value >> 0) & 1) != 0; }
void print() const {
// flags
char f[8];
f[0] = (overflow ()) ? 'O' : '-';
f[1] = (direction ()) ? 'D' : '-';
f[2] = (sign ()) ? 'S' : '-';
f[3] = (zero ()) ? 'Z' : '-';
f[4] = (auxiliary_carry()) ? 'A' : '-';
f[5] = (parity ()) ? 'P' : '-';
f[6] = (carry ()) ? 'C' : '-';
f[7] = '\x0';
// output
printf("%08x flags = %s", _value, f);
}
};
class IU_Register {
public:
int32_t _value;
void print() const {
printf("%08x %11d", _value, _value);
}
};
class IU_State {
public:
Flag_Register _eflags;
IU_Register _rdi;
IU_Register _rsi;
IU_Register _rbp;
IU_Register _rsp;
IU_Register _rbx;
IU_Register _rdx;
IU_Register _rcx;
IU_Register _rax;
void print() const {
// computation registers
printf("rax, = "); _rax.print(); printf("\n");
printf("rbx, = "); _rbx.print(); printf("\n");
printf("rcx = "); _rcx.print(); printf("\n");
printf("rdx = "); _rdx.print(); printf("\n");
printf("rdi = "); _rdi.print(); printf("\n");
printf("rsi = "); _rsi.print(); printf("\n");
printf("rbp, = "); _rbp.print(); printf("\n");
printf("rsp = "); _rsp.print(); printf("\n");
printf("\n");
// control registers
printf("flgs = "); _eflags.print(); printf("\n");
}
};
class CPU_State {
public:
FPU_State _fpu_state;
IU_State _iu_state;
void print() const {
printf("--------------------------------------------------\n");
_iu_state .print();
printf("\n");
_fpu_state.print();
printf("--------------------------------------------------\n");
}
};
static void _print_CPU_state(CPU_State* state) {
state->print();
};
void MacroAssembler::print_CPU_state() {
push_CPU_state();
push(rsp); // pass CPU state
call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
addptr(rsp, wordSize); // discard argument
pop_CPU_state();
}
static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
static int counter = 0;
FPU_State* fs = &state->_fpu_state;
counter++;
// For leaf calls, only verify that the top few elements remain empty.
// We only need 1 empty at the top for C2 code.
if( stack_depth < 0 ) {
if( fs->tag_for_st(7) != 3 ) {
printf("FPR7 not empty\n");
state->print();
assert(false, "error");
return false;
}
return true; // All other stack states do not matter
}
assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
"bad FPU control word");
// compute stack depth
int i = 0;
while (i < FPU_State::number_of_registers && fs->tag_for_st(i) < 3) i++;
int d = i;
while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
// verify findings
if (i != FPU_State::number_of_registers) {
// stack not contiguous
printf("%s: stack not contiguous at ST%d\n", s, i);
state->print();
assert(false, "error");
return false;
}
// check if computed stack depth corresponds to expected stack depth
if (stack_depth < 0) {
// expected stack depth is -stack_depth or less
if (d > -stack_depth) {
// too many elements on the stack
printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
state->print();
assert(false, "error");
return false;
}
} else {
// expected stack depth is stack_depth
if (d != stack_depth) {
// wrong stack depth
printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
state->print();
assert(false, "error");
return false;
}
}
// everything is cool
return true;
}
void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
if (!VerifyFPU) return;
push_CPU_state();
push(rsp); // pass CPU state
ExternalAddress msg((address) s);
// pass message string s
pushptr(msg.addr());
push(stack_depth); // pass stack depth
call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
addptr(rsp, 3 * wordSize); // discard arguments
// check for error
{ Label L;
testl(rax, rax);
jcc(Assembler::notZero, L);
int3(); // break if error condition
bind(L);
}
pop_CPU_state();
}
void MacroAssembler::restore_cpu_control_state_after_jni() {
// Either restore the MXCSR register after returning from the JNI Call
// or verify that it wasn't changed (with -Xcheck:jni flag).
if (VM_Version::supports_sse()) {
if (RestoreMXCSROnJNICalls) {
ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
} else if (CheckJNICalls) {
call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
}
}
if (VM_Version::supports_avx()) {
// Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
vzeroupper();
}
#ifndef _LP64
// Either restore the x87 floating pointer control word after returning
// from the JNI call or verify that it wasn't changed.
if (CheckJNICalls) {
call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
}
#endif // _LP64
}
void MacroAssembler::load_klass(Register dst, Register src) {
#ifdef _LP64
if (UseCompressedClassPointers) {
movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
decode_klass_not_null(dst);
} else
#endif
movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
}
void MacroAssembler::load_prototype_header(Register dst, Register src) {
load_klass(dst, src);
movptr(dst, Address(dst, Klass::prototype_header_offset()));
}
void MacroAssembler::store_klass(Register dst, Register src) {
#ifdef _LP64
if (UseCompressedClassPointers) {
encode_klass_not_null(src);
movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
} else
#endif
movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
}
void MacroAssembler::load_heap_oop(Register dst, Address src) {
#ifdef _LP64
// FIXME: Must change all places where we try to load the klass.
if (UseCompressedOops) {
movl(dst, src);
decode_heap_oop(dst);
} else
#endif
movptr(dst, src);
}
// Doesn't do verfication, generates fixed size code
void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
#ifdef _LP64
if (UseCompressedOops) {
movl(dst, src);
decode_heap_oop_not_null(dst);
} else
#endif
movptr(dst, src);
}
void MacroAssembler::store_heap_oop(Address dst, Register src) {
#ifdef _LP64
if (UseCompressedOops) {
assert(!dst.uses(src), "not enough registers");
encode_heap_oop(src);
movl(dst, src);
} else
#endif
movptr(dst, src);
}
void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
assert_different_registers(src1, tmp);
#ifdef _LP64
if (UseCompressedOops) {
bool did_push = false;
if (tmp == noreg) {
tmp = rax;
push(tmp);
did_push = true;
assert(!src2.uses(rsp), "can't push");
}
load_heap_oop(tmp, src2);
cmpptr(src1, tmp);
if (did_push) pop(tmp);
} else
#endif
cmpptr(src1, src2);
}
// Used for storing NULLs.
void MacroAssembler::store_heap_oop_null(Address dst) {
#ifdef _LP64
if (UseCompressedOops) {
movl(dst, (int32_t)NULL_WORD);
} else {
movslq(dst, (int32_t)NULL_WORD);
}
#else
movl(dst, (int32_t)NULL_WORD);
#endif
}
#ifdef _LP64
void MacroAssembler::store_klass_gap(Register dst, Register src) {
if (UseCompressedClassPointers) {
// Store to klass gap in destination
movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
}
}
#ifdef ASSERT
void MacroAssembler::verify_heapbase(const char* msg) {
assert (UseCompressedOops, "should be compressed");
assert (Universe::heap() != NULL, "java heap should be initialized");
if (CheckCompressedOops) {
Label ok;
push(rscratch1); // cmpptr trashes rscratch1
cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
jcc(Assembler::equal, ok);
STOP(msg);
bind(ok);
pop(rscratch1);
}
}
#endif
// Algorithm must match oop.inline.hpp encode_heap_oop.
void MacroAssembler::encode_heap_oop(Register r) {
#ifdef ASSERT
verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
#endif
verify_oop(r, "broken oop in encode_heap_oop");
if (Universe::narrow_oop_base() == NULL) {
if (Universe::narrow_oop_shift() != 0) {
assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
shrq(r, LogMinObjAlignmentInBytes);
}
return;
}
testq(r, r);
cmovq(Assembler::equal, r, r12_heapbase);
subq(r, r12_heapbase);
shrq(r, LogMinObjAlignmentInBytes);
}
void MacroAssembler::encode_heap_oop_not_null(Register r) {
#ifdef ASSERT
verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
if (CheckCompressedOops) {
Label ok;
testq(r, r);
jcc(Assembler::notEqual, ok);
STOP("null oop passed to encode_heap_oop_not_null");
bind(ok);
}
#endif
verify_oop(r, "broken oop in encode_heap_oop_not_null");
if (Universe::narrow_oop_base() != NULL) {
subq(r, r12_heapbase);
}
if (Universe::narrow_oop_shift() != 0) {
assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
shrq(r, LogMinObjAlignmentInBytes);
}
}
void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
#ifdef ASSERT
verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
if (CheckCompressedOops) {
Label ok;
testq(src, src);
jcc(Assembler::notEqual, ok);
STOP("null oop passed to encode_heap_oop_not_null2");
bind(ok);
}
#endif
verify_oop(src, "broken oop in encode_heap_oop_not_null2");
if (dst != src) {
movq(dst, src);
}
if (Universe::narrow_oop_base() != NULL) {
subq(dst, r12_heapbase);
}
if (Universe::narrow_oop_shift() != 0) {
assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
shrq(dst, LogMinObjAlignmentInBytes);
}
}
void MacroAssembler::decode_heap_oop(Register r) {
#ifdef ASSERT
verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
#endif
if (Universe::narrow_oop_base() == NULL) {
if (Universe::narrow_oop_shift() != 0) {
assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
shlq(r, LogMinObjAlignmentInBytes);
}
} else {
Label done;
shlq(r, LogMinObjAlignmentInBytes);
jccb(Assembler::equal, done);
addq(r, r12_heapbase);
bind(done);
}
verify_oop(r, "broken oop in decode_heap_oop");
}
void MacroAssembler::decode_heap_oop_not_null(Register r) {
// Note: it will change flags
assert (UseCompressedOops, "should only be used for compressed headers");
assert (Universe::heap() != NULL, "java heap should be initialized");
// Cannot assert, unverified entry point counts instructions (see .ad file)
// vtableStubs also counts instructions in pd_code_size_limit.
// Also do not verify_oop as this is called by verify_oop.
if (Universe::narrow_oop_shift() != 0) {
assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
shlq(r, LogMinObjAlignmentInBytes);
if (Universe::narrow_oop_base() != NULL) {
addq(r, r12_heapbase);
}
} else {
assert (Universe::narrow_oop_base() == NULL, "sanity");
}
}
void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
// Note: it will change flags
assert (UseCompressedOops, "should only be used for compressed headers");
assert (Universe::heap() != NULL, "java heap should be initialized");
// Cannot assert, unverified entry point counts instructions (see .ad file)
// vtableStubs also counts instructions in pd_code_size_limit.
// Also do not verify_oop as this is called by verify_oop.
if (Universe::narrow_oop_shift() != 0) {
assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
if (LogMinObjAlignmentInBytes == Address::times_8) {
leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
} else {
if (dst != src) {
movq(dst, src);
}
shlq(dst, LogMinObjAlignmentInBytes);
if (Universe::narrow_oop_base() != NULL) {
addq(dst, r12_heapbase);
}
}
} else {
assert (Universe::narrow_oop_base() == NULL, "sanity");
if (dst != src) {
movq(dst, src);
}
}
}
void MacroAssembler::encode_klass_not_null(Register r) {
if (Universe::narrow_klass_base() != NULL) {
// Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
assert(r != r12_heapbase, "Encoding a klass in r12");
mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
subq(r, r12_heapbase);
}
if (Universe::narrow_klass_shift() != 0) {
assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
shrq(r, LogKlassAlignmentInBytes);
}
if (Universe::narrow_klass_base() != NULL) {
reinit_heapbase();
}
}
void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
if (dst == src) {
encode_klass_not_null(src);
} else {
if (Universe::narrow_klass_base() != NULL) {
mov64(dst, (int64_t)Universe::narrow_klass_base());
negq(dst);
addq(dst, src);
} else {
movptr(dst, src);
}
if (Universe::narrow_klass_shift() != 0) {
assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
shrq(dst, LogKlassAlignmentInBytes);
}
}
}
// Function instr_size_for_decode_klass_not_null() counts the instructions
// generated by decode_klass_not_null(register r) and reinit_heapbase(),
// when (Universe::heap() != NULL). Hence, if the instructions they
// generate change, then this method needs to be updated.
int MacroAssembler::instr_size_for_decode_klass_not_null() {
assert (UseCompressedClassPointers, "only for compressed klass ptrs");
if (Universe::narrow_klass_base() != NULL) {
// mov64 + addq + shlq? + mov64 (for reinit_heapbase()).
return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
} else {
// longest load decode klass function, mov64, leaq
return 16;
}
}
// !!! If the instructions that get generated here change then function
// instr_size_for_decode_klass_not_null() needs to get updated.
void MacroAssembler::decode_klass_not_null(Register r) {
// Note: it will change flags
assert (UseCompressedClassPointers, "should only be used for compressed headers");
assert(r != r12_heapbase, "Decoding a klass in r12");
// Cannot assert, unverified entry point counts instructions (see .ad file)
// vtableStubs also counts instructions in pd_code_size_limit.
// Also do not verify_oop as this is called by verify_oop.
if (Universe::narrow_klass_shift() != 0) {
assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
shlq(r, LogKlassAlignmentInBytes);
}
// Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
if (Universe::narrow_klass_base() != NULL) {
mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
addq(r, r12_heapbase);
reinit_heapbase();
}
}
void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
// Note: it will change flags
assert (UseCompressedClassPointers, "should only be used for compressed headers");
if (dst == src) {
decode_klass_not_null(dst);
} else {
// Cannot assert, unverified entry point counts instructions (see .ad file)
// vtableStubs also counts instructions in pd_code_size_limit.
// Also do not verify_oop as this is called by verify_oop.
mov64(dst, (int64_t)Universe::narrow_klass_base());
if (Universe::narrow_klass_shift() != 0) {
assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
leaq(dst, Address(dst, src, Address::times_8, 0));
} else {
addq(dst, src);
}
}
}
void MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
assert (UseCompressedOops, "should only be used for compressed headers");
assert (Universe::heap() != NULL, "java heap should be initialized");
assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
int oop_index = oop_recorder()->find_index(obj);
RelocationHolder rspec = oop_Relocation::spec(oop_index);
mov_narrow_oop(dst, oop_index, rspec);
}
void MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
assert (UseCompressedOops, "should only be used for compressed headers");
assert (Universe::heap() != NULL, "java heap should be initialized");
assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
int oop_index = oop_recorder()->find_index(obj);
RelocationHolder rspec = oop_Relocation::spec(oop_index);
mov_narrow_oop(dst, oop_index, rspec);
}
void MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
assert (UseCompressedClassPointers, "should only be used for compressed headers");
assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
int klass_index = oop_recorder()->find_index(k);
RelocationHolder rspec = metadata_Relocation::spec(klass_index);
mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
}
void MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
assert (UseCompressedClassPointers, "should only be used for compressed headers");
assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
int klass_index = oop_recorder()->find_index(k);
RelocationHolder rspec = metadata_Relocation::spec(klass_index);
mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
}
void MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
assert (UseCompressedOops, "should only be used for compressed headers");
assert (Universe::heap() != NULL, "java heap should be initialized");
assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
int oop_index = oop_recorder()->find_index(obj);
RelocationHolder rspec = oop_Relocation::spec(oop_index);
Assembler::cmp_narrow_oop(dst, oop_index, rspec);
}
void MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
assert (UseCompressedOops, "should only be used for compressed headers");
assert (Universe::heap() != NULL, "java heap should be initialized");
assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
int oop_index = oop_recorder()->find_index(obj);
RelocationHolder rspec = oop_Relocation::spec(oop_index);
Assembler::cmp_narrow_oop(dst, oop_index, rspec);
}
void MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
assert (UseCompressedClassPointers, "should only be used for compressed headers");
assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
int klass_index = oop_recorder()->find_index(k);
RelocationHolder rspec = metadata_Relocation::spec(klass_index);
Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
}
void MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
assert (UseCompressedClassPointers, "should only be used for compressed headers");
assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
int klass_index = oop_recorder()->find_index(k);
RelocationHolder rspec = metadata_Relocation::spec(klass_index);
Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
}
void MacroAssembler::reinit_heapbase() {
if (UseCompressedOops || UseCompressedClassPointers) {
if (Universe::heap() != NULL) {
if (Universe::narrow_oop_base() == NULL) {
MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
} else {
mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
}
} else {
movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
}
}
}
#endif // _LP64
// C2 compiled method's prolog code.
void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
// WARNING: Initial instruction MUST be 5 bytes or longer so that
// NativeJump::patch_verified_entry will be able to patch out the entry
// code safely. The push to verify stack depth is ok at 5 bytes,
// the frame allocation can be either 3 or 6 bytes. So if we don't do
// stack bang then we must use the 6 byte frame allocation even if
// we have no frame. :-(
assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
// Remove word for return addr
framesize -= wordSize;
stack_bang_size -= wordSize;
// Calls to C2R adapters often do not accept exceptional returns.
// We require that their callers must bang for them. But be careful, because
// some VM calls (such as call site linkage) can use several kilobytes of
// stack. But the stack safety zone should account for that.
// See bugs 4446381, 4468289, 4497237.
if (stack_bang_size > 0) {
generate_stack_overflow_check(stack_bang_size);
// We always push rbp, so that on return to interpreter rbp, will be
// restored correctly and we can correct the stack.
push(rbp);
// Save caller's stack pointer into RBP if the frame pointer is preserved.
if (PreserveFramePointer) {
mov(rbp, rsp);
}
// Remove word for ebp
framesize -= wordSize;
// Create frame
if (framesize) {
subptr(rsp, framesize);
}
} else {
// Create frame (force generation of a 4 byte immediate value)
subptr_imm32(rsp, framesize);
// Save RBP register now.
framesize -= wordSize;
movptr(Address(rsp, framesize), rbp);
// Save caller's stack pointer into RBP if the frame pointer is preserved.
if (PreserveFramePointer) {
movptr(rbp, rsp);
addptr(rbp, framesize + wordSize);
}
}
if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
framesize -= wordSize;
movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
}
#ifndef _LP64
// If method sets FPU control word do it now
if (fp_mode_24b) {
fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
}
if (UseSSE >= 2 && VerifyFPU) {
verify_FPU(0, "FPU stack must be clean on entry");
}
#endif
#ifdef ASSERT
if (VerifyStackAtCalls) {
Label L;
push(rax);
mov(rax, rsp);
andptr(rax, StackAlignmentInBytes-1);
cmpptr(rax, StackAlignmentInBytes-wordSize);
pop(rax);
jcc(Assembler::equal, L);
STOP("Stack is not properly aligned!");
bind(L);
}
#endif
}
void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
// cnt - number of qwords (8-byte words).
// base - start address, qword aligned.
assert(base==rdi, "base register must be edi for rep stos");
assert(tmp==rax, "tmp register must be eax for rep stos");
assert(cnt==rcx, "cnt register must be ecx for rep stos");
xorptr(tmp, tmp);
if (UseFastStosb) {
shlptr(cnt,3); // convert to number of bytes
rep_stosb();
} else {
NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
rep_stos();
}
}
// IndexOf for constant substrings with size >= 8 chars
// which don't need to be loaded through stack.
void MacroAssembler::string_indexofC8(Register str1, Register str2,
Register cnt1, Register cnt2,
int int_cnt2, Register result,
XMMRegister vec, Register tmp) {
ShortBranchVerifier sbv(this);
assert(UseSSE42Intrinsics, "SSE4.2 is required");
// This method uses pcmpestri instruction with bound registers
// inputs:
// xmm - substring
// rax - substring length (elements count)
// mem - scanned string
// rdx - string length (elements count)
// 0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
// outputs:
// rcx - matched index in string
assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
// Note, inline_string_indexOf() generates checks:
// if (substr.count > string.count) return -1;
// if (substr.count == 0) return 0;
assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
// Load substring.
movdqu(vec, Address(str2, 0));
movl(cnt2, int_cnt2);
movptr(result, str1); // string addr
if (int_cnt2 > 8) {
jmpb(SCAN_TO_SUBSTR);
// Reload substr for rescan, this code
// is executed only for large substrings (> 8 chars)
bind(RELOAD_SUBSTR);
movdqu(vec, Address(str2, 0));
negptr(cnt2); // Jumped here with negative cnt2, convert to positive
bind(RELOAD_STR);
// We came here after the beginning of the substring was
// matched but the rest of it was not so we need to search
// again. Start from the next element after the previous match.
// cnt2 is number of substring reminding elements and
// cnt1 is number of string reminding elements when cmp failed.
// Restored cnt1 = cnt1 - cnt2 + int_cnt2
subl(cnt1, cnt2);
addl(cnt1, int_cnt2);
movl(cnt2, int_cnt2); // Now restore cnt2
decrementl(cnt1); // Shift to next element
cmpl(cnt1, cnt2);
jccb(Assembler::negative, RET_NOT_FOUND); // Left less then substring
addptr(result, 2);
} // (int_cnt2 > 8)
// Scan string for start of substr in 16-byte vectors
bind(SCAN_TO_SUBSTR);
pcmpestri(vec, Address(result, 0), 0x0d);
jccb(Assembler::below, FOUND_CANDIDATE); // CF == 1
subl(cnt1, 8);
jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
cmpl(cnt1, cnt2);
jccb(Assembler::negative, RET_NOT_FOUND); // Left less then substring
addptr(result, 16);
jmpb(SCAN_TO_SUBSTR);
// Found a potential substr
bind(FOUND_CANDIDATE);
// Matched whole vector if first element matched (tmp(rcx) == 0).
if (int_cnt2 == 8) {
jccb(Assembler::overflow, RET_FOUND); // OF == 1
} else { // int_cnt2 > 8
jccb(Assembler::overflow, FOUND_SUBSTR);
}
// After pcmpestri tmp(rcx) contains matched element index
// Compute start addr of substr
lea(result, Address(result, tmp, Address::times_2));
// Make sure string is still long enough
subl(cnt1, tmp);
cmpl(cnt1, cnt2);
if (int_cnt2 == 8) {
jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
} else { // int_cnt2 > 8
jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
}
// Left less then substring.
bind(RET_NOT_FOUND);
movl(result, -1);
jmpb(EXIT);
if (int_cnt2 > 8) {
// This code is optimized for the case when whole substring
// is matched if its head is matched.
bind(MATCH_SUBSTR_HEAD);
pcmpestri(vec, Address(result, 0), 0x0d);
// Reload only string if does not match
jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
Label CONT_SCAN_SUBSTR;
// Compare the rest of substring (> 8 chars).
bind(FOUND_SUBSTR);
// First 8 chars are already matched.
negptr(cnt2);
addptr(cnt2, 8);
bind(SCAN_SUBSTR);
subl(cnt1, 8);
cmpl(cnt2, -8); // Do not read beyond substring
jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
// Back-up strings to avoid reading beyond substring:
// cnt1 = cnt1 - cnt2 + 8
addl(cnt1, cnt2); // cnt2 is negative
addl(cnt1, 8);
movl(cnt2, 8); negptr(cnt2);
bind(CONT_SCAN_SUBSTR);
if (int_cnt2 < (int)G) {
movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
} else {
// calculate index in register to avoid integer overflow (int_cnt2*2)
movl(tmp, int_cnt2);
addptr(tmp, cnt2);
movdqu(vec, Address(str2, tmp, Address::times_2, 0));
pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
}
// Need to reload strings pointers if not matched whole vector
jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
addptr(cnt2, 8);
jcc(Assembler::negative, SCAN_SUBSTR);
// Fall through if found full substring
} // (int_cnt2 > 8)
bind(RET_FOUND);
// Found result if we matched full small substring.
// Compute substr offset
subptr(result, str1);
shrl(result, 1); // index
bind(EXIT);
} // string_indexofC8
// Small strings are loaded through stack if they cross page boundary.
void MacroAssembler::string_indexof(Register str1, Register str2,
Register cnt1, Register cnt2,
int int_cnt2, Register result,
XMMRegister vec, Register tmp) {
ShortBranchVerifier sbv(this);
assert(UseSSE42Intrinsics, "SSE4.2 is required");
//
// int_cnt2 is length of small (< 8 chars) constant substring
// or (-1) for non constant substring in which case its length
// is in cnt2 register.
//
// Note, inline_string_indexOf() generates checks:
// if (substr.count > string.count) return -1;
// if (substr.count == 0) return 0;
//
assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
// This method uses pcmpestri instruction with bound registers
// inputs:
// xmm - substring
// rax - substring length (elements count)
// mem - scanned string
// rdx - string length (elements count)
// 0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
// outputs:
// rcx - matched index in string
assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
FOUND_CANDIDATE;
{ //========================================================
// We don't know where these strings are located
// and we can't read beyond them. Load them through stack.
Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
movptr(tmp, rsp); // save old SP
if (int_cnt2 > 0) { // small (< 8 chars) constant substring
if (int_cnt2 == 1) { // One char
load_unsigned_short(result, Address(str2, 0));
movdl(vec, result); // move 32 bits
} else if (int_cnt2 == 2) { // Two chars
movdl(vec, Address(str2, 0)); // move 32 bits
} else if (int_cnt2 == 4) { // Four chars
movq(vec, Address(str2, 0)); // move 64 bits
} else { // cnt2 = { 3, 5, 6, 7 }
// Array header size is 12 bytes in 32-bit VM
// + 6 bytes for 3 chars == 18 bytes,
// enough space to load vec and shift.
assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
movdqu(vec, Address(str2, (int_cnt2*2)-16));
psrldq(vec, 16-(int_cnt2*2));
}
} else { // not constant substring
cmpl(cnt2, 8);
jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
// We can read beyond string if srt+16 does not cross page boundary
// since heaps are aligned and mapped by pages.
assert(os::vm_page_size() < (int)G, "default page should be small");
movl(result, str2); // We need only low 32 bits
andl(result, (os::vm_page_size()-1));
cmpl(result, (os::vm_page_size()-16));
jccb(Assembler::belowEqual, CHECK_STR);
// Move small strings to stack to allow load 16 bytes into vec.
subptr(rsp, 16);
int stk_offset = wordSize-2;
push(cnt2);
bind(COPY_SUBSTR);
load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
decrement(cnt2);
jccb(Assembler::notZero, COPY_SUBSTR);
pop(cnt2);
movptr(str2, rsp); // New substring address
} // non constant
bind(CHECK_STR);
cmpl(cnt1, 8);
jccb(Assembler::aboveEqual, BIG_STRINGS);
// Check cross page boundary.
movl(result, str1); // We need only low 32 bits
andl(result, (os::vm_page_size()-1));
cmpl(result, (os::vm_page_size()-16));
jccb(Assembler::belowEqual, BIG_STRINGS);
subptr(rsp, 16);
int stk_offset = -2;
if (int_cnt2 < 0) { // not constant
push(cnt2);
stk_offset += wordSize;
}
movl(cnt2, cnt1);
bind(COPY_STR);
load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
decrement(cnt2);
jccb(Assembler::notZero, COPY_STR);
if (int_cnt2 < 0) { // not constant
pop(cnt2);
}
movptr(str1, rsp); // New string address
bind(BIG_STRINGS);
// Load substring.
if (int_cnt2 < 0) { // -1
movdqu(vec, Address(str2, 0));
push(cnt2); // substr count
push(str2); // substr addr
push(str1); // string addr
} else {
// Small (< 8 chars) constant substrings are loaded already.
movl(cnt2, int_cnt2);
}
push(tmp); // original SP
} // Finished loading
//========================================================
// Start search
//
movptr(result, str1); // string addr
if (int_cnt2 < 0) { // Only for non constant substring
jmpb(SCAN_TO_SUBSTR);
// SP saved at sp+0
// String saved at sp+1*wordSize
// Substr saved at sp+2*wordSize
// Substr count saved at sp+3*wordSize
// Reload substr for rescan, this code
// is executed only for large substrings (> 8 chars)
bind(RELOAD_SUBSTR);
movptr(str2, Address(rsp, 2*wordSize));
movl(cnt2, Address(rsp, 3*wordSize));
movdqu(vec, Address(str2, 0));
// We came here after the beginning of the substring was
// matched but the rest of it was not so we need to search
// again. Start from the next element after the previous match.
subptr(str1, result); // Restore counter
shrl(str1, 1);
addl(cnt1, str1);
decrementl(cnt1); // Shift to next element
cmpl(cnt1, cnt2);
jccb(Assembler::negative, RET_NOT_FOUND); // Left less then substring
addptr(result, 2);
} // non constant
// Scan string for start of substr in 16-byte vectors
bind(SCAN_TO_SUBSTR);
assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
pcmpestri(vec, Address(result, 0), 0x0d);
jccb(Assembler::below, FOUND_CANDIDATE); // CF == 1
subl(cnt1, 8);
jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
cmpl(cnt1, cnt2);
jccb(Assembler::negative, RET_NOT_FOUND); // Left less then substring
addptr(result, 16);
bind(ADJUST_STR);
cmpl(cnt1, 8); // Do not read beyond string
jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
// Back-up string to avoid reading beyond string.
lea(result, Address(result, cnt1, Address::times_2, -16));
movl(cnt1, 8);
jmpb(SCAN_TO_SUBSTR);
// Found a potential substr
bind(FOUND_CANDIDATE);
// After pcmpestri tmp(rcx) contains matched element index
// Make sure string is still long enough
subl(cnt1, tmp);
cmpl(cnt1, cnt2);
jccb(Assembler::greaterEqual, FOUND_SUBSTR);
// Left less then substring.
bind(RET_NOT_FOUND);
movl(result, -1);
jmpb(CLEANUP);
bind(FOUND_SUBSTR);
// Compute start addr of substr
lea(result, Address(result, tmp, Address::times_2));
if (int_cnt2 > 0) { // Constant substring
// Repeat search for small substring (< 8 chars)
// from new point without reloading substring.
// Have to check that we don't read beyond string.
cmpl(tmp, 8-int_cnt2);
jccb(Assembler::greater, ADJUST_STR);
// Fall through if matched whole substring.
} else { // non constant
assert(int_cnt2 == -1, "should be != 0");
addl(tmp, cnt2);
// Found result if we matched whole substring.
cmpl(tmp, 8);
jccb(Assembler::lessEqual, RET_FOUND);
// Repeat search for small substring (<= 8 chars)
// from new point 'str1' without reloading substring.
cmpl(cnt2, 8);
// Have to check that we don't read beyond string.
jccb(Assembler::lessEqual, ADJUST_STR);
Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
// Compare the rest of substring (> 8 chars).
movptr(str1, result);
cmpl(tmp, cnt2);
// First 8 chars are already matched.
jccb(Assembler::equal, CHECK_NEXT);
bind(SCAN_SUBSTR);
pcmpestri(vec, Address(str1, 0), 0x0d);
// Need to reload strings pointers if not matched whole vector
jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
bind(CHECK_NEXT);
subl(cnt2, 8);
jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
addptr(str1, 16);
addptr(str2, 16);
subl(cnt1, 8);
cmpl(cnt2, 8); // Do not read beyond substring
jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
// Back-up strings to avoid reading beyond substring.
lea(str2, Address(str2, cnt2, Address::times_2, -16));
lea(str1, Address(str1, cnt2, Address::times_2, -16));
subl(cnt1, cnt2);
movl(cnt2, 8);
addl(cnt1, 8);
bind(CONT_SCAN_SUBSTR);
movdqu(vec, Address(str2, 0));
jmpb(SCAN_SUBSTR);
bind(RET_FOUND_LONG);
movptr(str1, Address(rsp, wordSize));
} // non constant
bind(RET_FOUND);
// Compute substr offset
subptr(result, str1);
shrl(result, 1); // index
bind(CLEANUP);
pop(rsp); // restore SP
} // string_indexof
// Compare strings.
void MacroAssembler::string_compare(Register str1, Register str2,
Register cnt1, Register cnt2, Register result,
XMMRegister vec1) {
ShortBranchVerifier sbv(this);
Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
// Compute the minimum of the string lengths and the
// difference of the string lengths (stack).
// Do the conditional move stuff
movl(result, cnt1);
subl(cnt1, cnt2);
push(cnt1);
cmov32(Assembler::lessEqual, cnt2, result);
// Is the minimum length zero?
testl(cnt2, cnt2);
jcc(Assembler::zero, LENGTH_DIFF_LABEL);
// Compare first characters
load_unsigned_short(result, Address(str1, 0));
load_unsigned_short(cnt1, Address(str2, 0));
subl(result, cnt1);
jcc(Assembler::notZero, POP_LABEL);
cmpl(cnt2, 1);
jcc(Assembler::equal, LENGTH_DIFF_LABEL);
// Check if the strings start at the same location.
cmpptr(str1, str2);
jcc(Assembler::equal, LENGTH_DIFF_LABEL);
Address::ScaleFactor scale = Address::times_2;
int stride = 8;
if (UseAVX >= 2 && UseSSE42Intrinsics) {
Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
Label COMPARE_TAIL_LONG;
int pcmpmask = 0x19;
// Setup to compare 16-chars (32-bytes) vectors,
// start from first character again because it has aligned address.
int stride2 = 16;
int adr_stride = stride << scale;
assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
// rax and rdx are used by pcmpestri as elements counters
movl(result, cnt2);
andl(cnt2, ~(stride2-1)); // cnt2 holds the vector count
jcc(Assembler::zero, COMPARE_TAIL_LONG);
// fast path : compare first 2 8-char vectors.
bind(COMPARE_16_CHARS);
movdqu(vec1, Address(str1, 0));
pcmpestri(vec1, Address(str2, 0), pcmpmask);
jccb(Assembler::below, COMPARE_INDEX_CHAR);
movdqu(vec1, Address(str1, adr_stride));
pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
addl(cnt1, stride);
// Compare the characters at index in cnt1
bind(COMPARE_INDEX_CHAR); //cnt1 has the offset of the mismatching character
load_unsigned_short(result, Address(str1, cnt1, scale));
load_unsigned_short(cnt2, Address(str2, cnt1, scale));
subl(result, cnt2);
jmp(POP_LABEL);
// Setup the registers to start vector comparison loop
bind(COMPARE_WIDE_VECTORS);
lea(str1, Address(str1, result, scale));
lea(str2, Address(str2, result, scale));
subl(result, stride2);
subl(cnt2, stride2);
jccb(Assembler::zero, COMPARE_WIDE_TAIL);
negptr(result);
// In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
bind(COMPARE_WIDE_VECTORS_LOOP);
vmovdqu(vec1, Address(str1, result, scale));
vpxor(vec1, Address(str2, result, scale));
vptest(vec1, vec1);
jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
addptr(result, stride2);
subl(cnt2, stride2);
jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
// clean upper bits of YMM registers
vpxor(vec1, vec1);
// compare wide vectors tail
bind(COMPARE_WIDE_TAIL);
testptr(result, result);
jccb(Assembler::zero, LENGTH_DIFF_LABEL);
movl(result, stride2);
movl(cnt2, result);
negptr(result);
jmpb(COMPARE_WIDE_VECTORS_LOOP);
// Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
bind(VECTOR_NOT_EQUAL);
// clean upper bits of YMM registers
vpxor(vec1, vec1);
lea(str1, Address(str1, result, scale));
lea(str2, Address(str2, result, scale));
jmp(COMPARE_16_CHARS);
// Compare tail chars, length between 1 to 15 chars
bind(COMPARE_TAIL_LONG);
movl(cnt2, result);
cmpl(cnt2, stride);
jccb(Assembler::less, COMPARE_SMALL_STR);
movdqu(vec1, Address(str1, 0));
pcmpestri(vec1, Address(str2, 0), pcmpmask);
jcc(Assembler::below, COMPARE_INDEX_CHAR);
subptr(cnt2, stride);
jccb(Assembler::zero, LENGTH_DIFF_LABEL);
lea(str1, Address(str1, result, scale));
lea(str2, Address(str2, result, scale));
negptr(cnt2);
jmpb(WHILE_HEAD_LABEL);
bind(COMPARE_SMALL_STR);
} else if (UseSSE42Intrinsics) {
Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
int pcmpmask = 0x19;
// Setup to compare 8-char (16-byte) vectors,
// start from first character again because it has aligned address.
movl(result, cnt2);
andl(cnt2, ~(stride - 1)); // cnt2 holds the vector count
jccb(Assembler::zero, COMPARE_TAIL);
lea(str1, Address(str1, result, scale));
lea(str2, Address(str2, result, scale));
negptr(result);
// pcmpestri
// inputs:
// vec1- substring
// rax - negative string length (elements count)
// mem - scanned string
// rdx - string length (elements count)
// pcmpmask - cmp mode: 11000 (string compare with negated result)
// + 00 (unsigned bytes) or + 01 (unsigned shorts)
// outputs:
// rcx - first mismatched element index
assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
bind(COMPARE_WIDE_VECTORS);
movdqu(vec1, Address(str1, result, scale));
pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
// After pcmpestri cnt1(rcx) contains mismatched element index
jccb(Assembler::below, VECTOR_NOT_EQUAL); // CF==1
addptr(result, stride);
subptr(cnt2, stride);
jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
// compare wide vectors tail
testptr(result, result);
jccb(Assembler::zero, LENGTH_DIFF_LABEL);
movl(cnt2, stride);
movl(result, stride);
negptr(result);
movdqu(vec1, Address(str1, result, scale));
pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
// Mismatched characters in the vectors
bind(VECTOR_NOT_EQUAL);
addptr(cnt1, result);
load_unsigned_short(result, Address(str1, cnt1, scale));
load_unsigned_short(cnt2, Address(str2, cnt1, scale));
subl(result, cnt2);
jmpb(POP_LABEL);
bind(COMPARE_TAIL); // limit is zero
movl(cnt2, result);
// Fallthru to tail compare
}
// Shift str2 and str1 to the end of the arrays, negate min
lea(str1, Address(str1, cnt2, scale));
lea(str2, Address(str2, cnt2, scale));
decrementl(cnt2); // first character was compared already
negptr(cnt2);
// Compare the rest of the elements
bind(WHILE_HEAD_LABEL);
load_unsigned_short(result, Address(str1, cnt2, scale, 0));
load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
subl(result, cnt1);
jccb(Assembler::notZero, POP_LABEL);
increment(cnt2);
jccb(Assembler::notZero, WHILE_HEAD_LABEL);
// Strings are equal up to min length. Return the length difference.
bind(LENGTH_DIFF_LABEL);
pop(result);
jmpb(DONE_LABEL);
// Discard the stored length difference
bind(POP_LABEL);
pop(cnt1);
// That's it
bind(DONE_LABEL);
}
// Compare char[] arrays aligned to 4 bytes or substrings.
void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
Register limit, Register result, Register chr,
XMMRegister vec1, XMMRegister vec2) {
ShortBranchVerifier sbv(this);
Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
int length_offset = arrayOopDesc::length_offset_in_bytes();
int base_offset = arrayOopDesc::base_offset_in_bytes(T_CHAR);
// Check the input args
cmpptr(ary1, ary2);
jcc(Assembler::equal, TRUE_LABEL);
if (is_array_equ) {
// Need additional checks for arrays_equals.
testptr(ary1, ary1);
jcc(Assembler::zero, FALSE_LABEL);
testptr(ary2, ary2);
jcc(Assembler::zero, FALSE_LABEL);
// Check the lengths
movl(limit, Address(ary1, length_offset));
cmpl(limit, Address(ary2, length_offset));
jcc(Assembler::notEqual, FALSE_LABEL);
}
// count == 0
testl(limit, limit);
jcc(Assembler::zero, TRUE_LABEL);
if (is_array_equ) {
// Load array address
lea(ary1, Address(ary1, base_offset));
lea(ary2, Address(ary2, base_offset));
}
shll(limit, 1); // byte count != 0
movl(result, limit); // copy
if (UseAVX >= 2) {
// With AVX2, use 32-byte vector compare
Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
// Compare 32-byte vectors
andl(result, 0x0000001e); // tail count (in bytes)
andl(limit, 0xffffffe0); // vector count (in bytes)
jccb(Assembler::zero, COMPARE_TAIL);
lea(ary1, Address(ary1, limit, Address::times_1));
lea(ary2, Address(ary2, limit, Address::times_1));
negptr(limit);
bind(COMPARE_WIDE_VECTORS);
vmovdqu(vec1, Address(ary1, limit, Address::times_1));
vmovdqu(vec2, Address(ary2, limit, Address::times_1));
vpxor(vec1, vec2);
vptest(vec1, vec1);
jccb(Assembler::notZero, FALSE_LABEL);
addptr(limit, 32);
jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
testl(result, result);
jccb(Assembler::zero, TRUE_LABEL);
vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
vpxor(vec1, vec2);
vptest(vec1, vec1);
jccb(Assembler::notZero, FALSE_LABEL);
jmpb(TRUE_LABEL);
bind(COMPARE_TAIL); // limit is zero
movl(limit, result);
// Fallthru to tail compare
} else if (UseSSE42Intrinsics) {
// With SSE4.2, use double quad vector compare
Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
// Compare 16-byte vectors
andl(result, 0x0000000e); // tail count (in bytes)
andl(limit, 0xfffffff0); // vector count (in bytes)
jccb(Assembler::zero, COMPARE_TAIL);
lea(ary1, Address(ary1, limit, Address::times_1));
lea(ary2, Address(ary2, limit, Address::times_1));
negptr(limit);
bind(COMPARE_WIDE_VECTORS);
movdqu(vec1, Address(ary1, limit, Address::times_1));
movdqu(vec2, Address(ary2, limit, Address::times_1));
pxor(vec1, vec2);
ptest(vec1, vec1);
jccb(Assembler::notZero, FALSE_LABEL);
addptr(limit, 16);
jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
testl(result, result);
jccb(Assembler::zero, TRUE_LABEL);
movdqu(vec1, Address(ary1, result, Address::times_1, -16));
movdqu(vec2, Address(ary2, result, Address::times_1, -16));
pxor(vec1, vec2);
ptest(vec1, vec1);
jccb(Assembler::notZero, FALSE_LABEL);
jmpb(TRUE_LABEL);
bind(COMPARE_TAIL); // limit is zero
movl(limit, result);
// Fallthru to tail compare
}
// Compare 4-byte vectors
andl(limit, 0xfffffffc); // vector count (in bytes)
jccb(Assembler::zero, COMPARE_CHAR);
lea(ary1, Address(ary1, limit, Address::times_1));
lea(ary2, Address(ary2, limit, Address::times_1));
negptr(limit);
bind(COMPARE_VECTORS);
movl(chr, Address(ary1, limit, Address::times_1));
cmpl(chr, Address(ary2, limit, Address::times_1));
jccb(Assembler::notEqual, FALSE_LABEL);
addptr(limit, 4);
jcc(Assembler::notZero, COMPARE_VECTORS);
// Compare trailing char (final 2 bytes), if any
bind(COMPARE_CHAR);
testl(result, 0x2); // tail char
jccb(Assembler::zero, TRUE_LABEL);
load_unsigned_short(chr, Address(ary1, 0));
load_unsigned_short(limit, Address(ary2, 0));
cmpl(chr, limit);
jccb(Assembler::notEqual, FALSE_LABEL);
bind(TRUE_LABEL);
movl(result, 1); // return true
jmpb(DONE);
bind(FALSE_LABEL);
xorl(result, result); // return false
// That's it
bind(DONE);
if (UseAVX >= 2) {
// clean upper bits of YMM registers
vpxor(vec1, vec1);
vpxor(vec2, vec2);
}
}
void MacroAssembler::generate_fill(BasicType t, bool aligned,
Register to, Register value, Register count,
Register rtmp, XMMRegister xtmp) {
ShortBranchVerifier sbv(this);
assert_different_registers(to, value, count, rtmp);
Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
Label L_fill_2_bytes, L_fill_4_bytes;
int shift = -1;
switch (t) {
case T_BYTE:
shift = 2;
break;
case T_SHORT:
shift = 1;
break;
case T_INT:
shift = 0;
break;
default: ShouldNotReachHere();
}
if (t == T_BYTE) {
andl(value, 0xff);
movl(rtmp, value);
shll(rtmp, 8);
orl(value, rtmp);
}
if (t == T_SHORT) {
andl(value, 0xffff);
}
if (t == T_BYTE || t == T_SHORT) {
movl(rtmp, value);
shll(rtmp, 16);
orl(value, rtmp);
}
cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
// align source address at 4 bytes address boundary
if (t == T_BYTE) {
// One byte misalignment happens only for byte arrays
testptr(to, 1);
jccb(Assembler::zero, L_skip_align1);
movb(Address(to, 0), value);
increment(to);
decrement(count);
BIND(L_skip_align1);
}
// Two bytes misalignment happens only for byte and short (char) arrays
testptr(to, 2);
jccb(Assembler::zero, L_skip_align2);
movw(Address(to, 0), value);
addptr(to, 2);
subl(count, 1<<(shift-1));
BIND(L_skip_align2);
}
if (UseSSE < 2) {
Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
// Fill 32-byte chunks
subl(count, 8 << shift);
jcc(Assembler::less, L_check_fill_8_bytes);
align(16);
BIND(L_fill_32_bytes_loop);
for (int i = 0; i < 32; i += 4) {
movl(Address(to, i), value);
}
addptr(to, 32);
subl(count, 8 << shift);
jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
BIND(L_check_fill_8_bytes);
addl(count, 8 << shift);
jccb(Assembler::zero, L_exit);
jmpb(L_fill_8_bytes);
//
// length is too short, just fill qwords
//
BIND(L_fill_8_bytes_loop);
movl(Address(to, 0), value);
movl(Address(to, 4), value);
addptr(to, 8);
BIND(L_fill_8_bytes);
subl(count, 1 << (shift + 1));
jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
// fall through to fill 4 bytes
} else {
Label L_fill_32_bytes;
if (!UseUnalignedLoadStores) {
// align to 8 bytes, we know we are 4 byte aligned to start
testptr(to, 4);
jccb(Assembler::zero, L_fill_32_bytes);
movl(Address(to, 0), value);
addptr(to, 4);
subl(count, 1<<shift);
}
BIND(L_fill_32_bytes);
{
assert( UseSSE >= 2, "supported cpu only" );
Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
movdl(xtmp, value);
if (UseAVX >= 2 && UseUnalignedLoadStores) {
// Fill 64-byte chunks
Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
vpbroadcastd(xtmp, xtmp);
subl(count, 16 << shift);
jcc(Assembler::less, L_check_fill_32_bytes);
align(16);
BIND(L_fill_64_bytes_loop);
vmovdqu(Address(to, 0), xtmp);
vmovdqu(Address(to, 32), xtmp);
addptr(to, 64);
subl(count, 16 << shift);
jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
BIND(L_check_fill_32_bytes);
addl(count, 8 << shift);
jccb(Assembler::less, L_check_fill_8_bytes);
vmovdqu(Address(to, 0), xtmp);
addptr(to, 32);
subl(count, 8 << shift);
BIND(L_check_fill_8_bytes);
// clean upper bits of YMM registers
movdl(xtmp, value);
pshufd(xtmp, xtmp, 0);
} else {
// Fill 32-byte chunks
pshufd(xtmp, xtmp, 0);
subl(count, 8 << shift);
jcc(Assembler::less, L_check_fill_8_bytes);
align(16);
BIND(L_fill_32_bytes_loop);
if (UseUnalignedLoadStores) {
movdqu(Address(to, 0), xtmp);
movdqu(Address(to, 16), xtmp);
} else {
movq(Address(to, 0), xtmp);
movq(Address(to, 8), xtmp);
movq(Address(to, 16), xtmp);
movq(Address(to, 24), xtmp);
}
addptr(to, 32);
subl(count, 8 << shift);
jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
BIND(L_check_fill_8_bytes);
}
addl(count, 8 << shift);
jccb(Assembler::zero, L_exit);
jmpb(L_fill_8_bytes);
//
// length is too short, just fill qwords
//
BIND(L_fill_8_bytes_loop);
movq(Address(to, 0), xtmp);
addptr(to, 8);
BIND(L_fill_8_bytes);
subl(count, 1 << (shift + 1));
jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
}
}
// fill trailing 4 bytes
BIND(L_fill_4_bytes);
testl(count, 1<<shift);
jccb(Assembler::zero, L_fill_2_bytes);
movl(Address(to, 0), value);
if (t == T_BYTE || t == T_SHORT) {
addptr(to, 4);
BIND(L_fill_2_bytes);
// fill trailing 2 bytes
testl(count, 1<<(shift-1));
jccb(Assembler::zero, L_fill_byte);
movw(Address(to, 0), value);
if (t == T_BYTE) {
addptr(to, 2);
BIND(L_fill_byte);
// fill trailing byte
testl(count, 1);
jccb(Assembler::zero, L_exit);
movb(Address(to, 0), value);
} else {
BIND(L_fill_byte);
}
} else {
BIND(L_fill_2_bytes);
}
BIND(L_exit);
}
// encode char[] to byte[] in ISO_8859_1
void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
XMMRegister tmp1Reg, XMMRegister tmp2Reg,
XMMRegister tmp3Reg, XMMRegister tmp4Reg,
Register tmp5, Register result) {
// rsi: src
// rdi: dst
// rdx: len
// rcx: tmp5
// rax: result
ShortBranchVerifier sbv(this);
assert_different_registers(src, dst, len, tmp5, result);
Label L_done, L_copy_1_char, L_copy_1_char_exit;
// set result
xorl(result, result);
// check for zero length
testl(len, len);
jcc(Assembler::zero, L_done);
movl(result, len);
// Setup pointers
lea(src, Address(src, len, Address::times_2)); // char[]
lea(dst, Address(dst, len, Address::times_1)); // byte[]
negptr(len);
if (UseSSE42Intrinsics || UseAVX >= 2) {
Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
if (UseAVX >= 2) {
Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vector
movdl(tmp1Reg, tmp5);
vpbroadcastd(tmp1Reg, tmp1Reg);
jmpb(L_chars_32_check);
bind(L_copy_32_chars);
vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
vptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector
jccb(Assembler::notZero, L_copy_32_chars_exit);
vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector256 */ true);
vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
bind(L_chars_32_check);
addptr(len, 32);
jccb(Assembler::lessEqual, L_copy_32_chars);
bind(L_copy_32_chars_exit);
subptr(len, 16);
jccb(Assembler::greater, L_copy_16_chars_exit);
} else if (UseSSE42Intrinsics) {
movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vector
movdl(tmp1Reg, tmp5);
pshufd(tmp1Reg, tmp1Reg, 0);
jmpb(L_chars_16_check);
}
bind(L_copy_16_chars);
if (UseAVX >= 2) {
vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
vptest(tmp2Reg, tmp1Reg);
jccb(Assembler::notZero, L_copy_16_chars_exit);
vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector256 */ true);
vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector256 */ true);
} else {
if (UseAVX > 0) {
movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ false);
} else {
movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
por(tmp2Reg, tmp3Reg);
movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
por(tmp2Reg, tmp4Reg);
}
ptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector
jccb(Assembler::notZero, L_copy_16_chars_exit);
packuswb(tmp3Reg, tmp4Reg);
}
movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
bind(L_chars_16_check);
addptr(len, 16);
jccb(Assembler::lessEqual, L_copy_16_chars);
bind(L_copy_16_chars_exit);
if (UseAVX >= 2) {
// clean upper bits of YMM registers
vpxor(tmp2Reg, tmp2Reg);
vpxor(tmp3Reg, tmp3Reg);
vpxor(tmp4Reg, tmp4Reg);
movdl(tmp1Reg, tmp5);
pshufd(tmp1Reg, tmp1Reg, 0);
}
subptr(len, 8);
jccb(Assembler::greater, L_copy_8_chars_exit);
bind(L_copy_8_chars);
movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
ptest(tmp3Reg, tmp1Reg);
jccb(Assembler::notZero, L_copy_8_chars_exit);
packuswb(tmp3Reg, tmp1Reg);
movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
addptr(len, 8);
jccb(Assembler::lessEqual, L_copy_8_chars);
bind(L_copy_8_chars_exit);
subptr(len, 8);
jccb(Assembler::zero, L_done);
}
bind(L_copy_1_char);
load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
testl(tmp5, 0xff00); // check if Unicode char
jccb(Assembler::notZero, L_copy_1_char_exit);
movb(Address(dst, len, Address::times_1, 0), tmp5);
addptr(len, 1);
jccb(Assembler::less, L_copy_1_char);
bind(L_copy_1_char_exit);
addptr(result, len); // len is negative count of not processed elements
bind(L_done);
}
#ifdef _LP64
/**
* Helper for multiply_to_len().
*/
void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
addq(dest_lo, src1);
adcq(dest_hi, 0);
addq(dest_lo, src2);
adcq(dest_hi, 0);
}
/**
* Multiply 64 bit by 64 bit first loop.
*/
void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
Register y, Register y_idx, Register z,
Register carry, Register product,
Register idx, Register kdx) {
//
// jlong carry, x[], y[], z[];
// for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
// huge_128 product = y[idx] * x[xstart] + carry;
// z[kdx] = (jlong)product;
// carry = (jlong)(product >>> 64);
// }
// z[xstart] = carry;
//
Label L_first_loop, L_first_loop_exit;
Label L_one_x, L_one_y, L_multiply;
decrementl(xstart);
jcc(Assembler::negative, L_one_x);
movq(x_xstart, Address(x, xstart, Address::times_4, 0));
rorq(x_xstart, 32); // convert big-endian to little-endian
bind(L_first_loop);
decrementl(idx);
jcc(Assembler::negative, L_first_loop_exit);
decrementl(idx);
jcc(Assembler::negative, L_one_y);
movq(y_idx, Address(y, idx, Address::times_4, 0));
rorq(y_idx, 32); // convert big-endian to little-endian
bind(L_multiply);
movq(product, x_xstart);
mulq(y_idx); // product(rax) * y_idx -> rdx:rax
addq(product, carry);
adcq(rdx, 0);
subl(kdx, 2);
movl(Address(z, kdx, Address::times_4, 4), product);
shrq(product, 32);
movl(Address(z, kdx, Address::times_4, 0), product);
movq(carry, rdx);
jmp(L_first_loop);
bind(L_one_y);
movl(y_idx, Address(y, 0));
jmp(L_multiply);
bind(L_one_x);
movl(x_xstart, Address(x, 0));
jmp(L_first_loop);
bind(L_first_loop_exit);
}
/**
* Multiply 64 bit by 64 bit and add 128 bit.
*/
void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
Register yz_idx, Register idx,
Register carry, Register product, int offset) {
// huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
// z[kdx] = (jlong)product;
movq(yz_idx, Address(y, idx, Address::times_4, offset));
rorq(yz_idx, 32); // convert big-endian to little-endian
movq(product, x_xstart);
mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
movq(yz_idx, Address(z, idx, Address::times_4, offset));
rorq(yz_idx, 32); // convert big-endian to little-endian
add2_with_carry(rdx, product, carry, yz_idx);
movl(Address(z, idx, Address::times_4, offset+4), product);
shrq(product, 32);
movl(Address(z, idx, Address::times_4, offset), product);
}
/**
* Multiply 128 bit by 128 bit. Unrolled inner loop.
*/
void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
Register yz_idx, Register idx, Register jdx,
Register carry, Register product,
Register carry2) {
// jlong carry, x[], y[], z[];
// int kdx = ystart+1;
// for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
// huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
// z[kdx+idx+1] = (jlong)product;
// jlong carry2 = (jlong)(product >>> 64);
// product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
// z[kdx+idx] = (jlong)product;
// carry = (jlong)(product >>> 64);
// }
// idx += 2;
// if (idx > 0) {
// product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
// z[kdx+idx] = (jlong)product;
// carry = (jlong)(product >>> 64);
// }
//
Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
movl(jdx, idx);
andl(jdx, 0xFFFFFFFC);
shrl(jdx, 2);
bind(L_third_loop);
subl(jdx, 1);
jcc(Assembler::negative, L_third_loop_exit);
subl(idx, 4);
multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
movq(carry2, rdx);
multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
movq(carry, rdx);
jmp(L_third_loop);
bind (L_third_loop_exit);
andl (idx, 0x3);
jcc(Assembler::zero, L_post_third_loop_done);
Label L_check_1;
subl(idx, 2);
jcc(Assembler::negative, L_check_1);
multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
movq(carry, rdx);
bind (L_check_1);
addl (idx, 0x2);
andl (idx, 0x1);
subl(idx, 1);
jcc(Assembler::negative, L_post_third_loop_done);
movl(yz_idx, Address(y, idx, Address::times_4, 0));
movq(product, x_xstart);
mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
movl(yz_idx, Address(z, idx, Address::times_4, 0));
add2_with_carry(rdx, product, yz_idx, carry);
movl(Address(z, idx, Address::times_4, 0), product);
shrq(product, 32);
shlq(rdx, 32);
orq(product, rdx);
movq(carry, product);
bind(L_post_third_loop_done);
}
/**
* Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
*
*/
void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
Register carry, Register carry2,
Register idx, Register jdx,
Register yz_idx1, Register yz_idx2,
Register tmp, Register tmp3, Register tmp4) {
assert(UseBMI2Instructions, "should be used only when BMI2 is available");
// jlong carry, x[], y[], z[];
// int kdx = ystart+1;
// for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
// huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
// jlong carry2 = (jlong)(tmp3 >>> 64);
// huge_128 tmp4 = (y[idx] * rdx) + z[kdx+idx] + carry2;
// carry = (jlong)(tmp4 >>> 64);
// z[kdx+idx+1] = (jlong)tmp3;
// z[kdx+idx] = (jlong)tmp4;
// }
// idx += 2;
// if (idx > 0) {
// yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
// z[kdx+idx] = (jlong)yz_idx1;
// carry = (jlong)(yz_idx1 >>> 64);
// }
//
Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
movl(jdx, idx);
andl(jdx, 0xFFFFFFFC);
shrl(jdx, 2);
bind(L_third_loop);
subl(jdx, 1);
jcc(Assembler::negative, L_third_loop_exit);
subl(idx, 4);
movq(yz_idx1, Address(y, idx, Address::times_4, 8));
rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
movq(yz_idx2, Address(y, idx, Address::times_4, 0));
rorxq(yz_idx2, yz_idx2, 32);
mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3
mulxq(carry2, tmp, yz_idx2); // yz_idx2 * rdx -> carry2:tmp
movq(yz_idx1, Address(z, idx, Address::times_4, 8));
rorxq(yz_idx1, yz_idx1, 32);
movq(yz_idx2, Address(z, idx, Address::times_4, 0));
rorxq(yz_idx2, yz_idx2, 32);
if (VM_Version::supports_adx()) {
adcxq(tmp3, carry);
adoxq(tmp3, yz_idx1);
adcxq(tmp4, tmp);
adoxq(tmp4, yz_idx2);
movl(carry, 0); // does not affect flags
adcxq(carry2, carry);
adoxq(carry2, carry);
} else {
add2_with_carry(tmp4, tmp3, carry, yz_idx1);
add2_with_carry(carry2, tmp4, tmp, yz_idx2);
}
movq(carry, carry2);
movl(Address(z, idx, Address::times_4, 12), tmp3);
shrq(tmp3, 32);
movl(Address(z, idx, Address::times_4, 8), tmp3);
movl(Address(z, idx, Address::times_4, 4), tmp4);
shrq(tmp4, 32);
movl(Address(z, idx, Address::times_4, 0), tmp4);
jmp(L_third_loop);
bind (L_third_loop_exit);
andl (idx, 0x3);
jcc(Assembler::zero, L_post_third_loop_done);
Label L_check_1;
subl(idx, 2);
jcc(Assembler::negative, L_check_1);
movq(yz_idx1, Address(y, idx, Address::times_4, 0));
rorxq(yz_idx1, yz_idx1, 32);
mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3
movq(yz_idx2, Address(z, idx, Address::times_4, 0));
rorxq(yz_idx2, yz_idx2, 32);
add2_with_carry(tmp4, tmp3, carry, yz_idx2);
movl(Address(z, idx, Address::times_4, 4), tmp3);
shrq(tmp3, 32);
movl(Address(z, idx, Address::times_4, 0), tmp3);
movq(carry, tmp4);
bind (L_check_1);
addl (idx, 0x2);
andl (idx, 0x1);
subl(idx, 1);
jcc(Assembler::negative, L_post_third_loop_done);
movl(tmp4, Address(y, idx, Address::times_4, 0));
mulxq(carry2, tmp3, tmp4); // tmp4 * rdx -> carry2:tmp3
movl(tmp4, Address(z, idx, Address::times_4, 0));
add2_with_carry(carry2, tmp3, tmp4, carry);
movl(Address(z, idx, Address::times_4, 0), tmp3);
shrq(tmp3, 32);
shlq(carry2, 32);
orq(tmp3, carry2);
movq(carry, tmp3);
bind(L_post_third_loop_done);
}
/**
* Code for BigInteger::multiplyToLen() instrinsic.
*
* rdi: x
* rax: xlen
* rsi: y
* rcx: ylen
* r8: z
* r11: zlen
* r12: tmp1
* r13: tmp2
* r14: tmp3
* r15: tmp4
* rbx: tmp5
*
*/
void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
ShortBranchVerifier sbv(this);
assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
push(tmp1);
push(tmp2);
push(tmp3);
push(tmp4);
push(tmp5);
push(xlen);
push(zlen);
const Register idx = tmp1;
const Register kdx = tmp2;
const Register xstart = tmp3;
const Register y_idx = tmp4;
const Register carry = tmp5;
const Register product = xlen;
const Register x_xstart = zlen; // reuse register
// First Loop.
//
// final static long LONG_MASK = 0xffffffffL;
// int xstart = xlen - 1;
// int ystart = ylen - 1;
// long carry = 0;
// for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
// long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
// z[kdx] = (int)product;
// carry = product >>> 32;
// }
// z[xstart] = (int)carry;
//
movl(idx, ylen); // idx = ylen;
movl(kdx, zlen); // kdx = xlen+ylen;
xorq(carry, carry); // carry = 0;
Label L_done;
movl(xstart, xlen);
decrementl(xstart);
jcc(Assembler::negative, L_done);
multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
Label L_second_loop;
testl(kdx, kdx);
jcc(Assembler::zero, L_second_loop);
Label L_carry;
subl(kdx, 1);
jcc(Assembler::zero, L_carry);
movl(Address(z, kdx, Address::times_4, 0), carry);
shrq(carry, 32);
subl(kdx, 1);
bind(L_carry);
movl(Address(z, kdx, Address::times_4, 0), carry);
// Second and third (nested) loops.
//
// for (int i = xstart-1; i >= 0; i--) { // Second loop
// carry = 0;
// for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
// long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
// (z[k] & LONG_MASK) + carry;
// z[k] = (int)product;
// carry = product >>> 32;
// }
// z[i] = (int)carry;
// }
//
// i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
const Register jdx = tmp1;
bind(L_second_loop);
xorl(carry, carry); // carry = 0;
movl(jdx, ylen); // j = ystart+1
subl(xstart, 1); // i = xstart-1;
jcc(Assembler::negative, L_done);
push (z);
Label L_last_x;
lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
subl(xstart, 1); // i = xstart-1;
jcc(Assembler::negative, L_last_x);
if (UseBMI2Instructions) {
movq(rdx, Address(x, xstart, Address::times_4, 0));
rorxq(rdx, rdx, 32); // convert big-endian to little-endian
} else {
movq(x_xstart, Address(x, xstart, Address::times_4, 0));
rorq(x_xstart, 32); // convert big-endian to little-endian
}
Label L_third_loop_prologue;
bind(L_third_loop_prologue);
push (x);
push (xstart);
push (ylen);
if (UseBMI2Instructions) {
multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
} else { // !UseBMI2Instructions
multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
}
pop(ylen);
pop(xlen);
pop(x);
pop(z);
movl(tmp3, xlen);
addl(tmp3, 1);
movl(Address(z, tmp3, Address::times_4, 0), carry);
subl(tmp3, 1);
jccb(Assembler::negative, L_done);
shrq(carry, 32);
movl(Address(z, tmp3, Address::times_4, 0), carry);
jmp(L_second_loop);
// Next infrequent code is moved outside loops.
bind(L_last_x);
if (UseBMI2Instructions) {
movl(rdx, Address(x, 0));
} else {
movl(x_xstart, Address(x, 0));
}
jmp(L_third_loop_prologue);
bind(L_done);
pop(zlen);
pop(xlen);
pop(tmp5);
pop(tmp4);
pop(tmp3);
pop(tmp2);
pop(tmp1);
}
#endif
/**
* Emits code to update CRC-32 with a byte value according to constants in table
*
* @param [in,out]crc Register containing the crc.
* @param [in]val Register containing the byte to fold into the CRC.
* @param [in]table Register containing the table of crc constants.
*
* uint32_t crc;
* val = crc_table[(val ^ crc) & 0xFF];
* crc = val ^ (crc >> 8);
*
*/
void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
xorl(val, crc);
andl(val, 0xFF);
shrl(crc, 8); // unsigned shift
xorl(crc, Address(table, val, Address::times_4, 0));
}
/**
* Fold 128-bit data chunk
*/
void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
if (UseAVX > 0) {
vpclmulhdq(xtmp, xK, xcrc); // [123:64]
vpclmulldq(xcrc, xK, xcrc); // [63:0]
vpxor(xcrc, xcrc, Address(buf, offset), false /* vector256 */);
pxor(xcrc, xtmp);
} else {
movdqa(xtmp, xcrc);
pclmulhdq(xtmp, xK); // [123:64]
pclmulldq(xcrc, xK); // [63:0]
pxor(xcrc, xtmp);
movdqu(xtmp, Address(buf, offset));
pxor(xcrc, xtmp);
}
}
void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
if (UseAVX > 0) {
vpclmulhdq(xtmp, xK, xcrc);
vpclmulldq(xcrc, xK, xcrc);
pxor(xcrc, xbuf);
pxor(xcrc, xtmp);
} else {
movdqa(xtmp, xcrc);
pclmulhdq(xtmp, xK);
pclmulldq(xcrc, xK);
pxor(xcrc, xbuf);
pxor(xcrc, xtmp);
}
}
/**
* 8-bit folds to compute 32-bit CRC
*
* uint64_t xcrc;
* timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
*/
void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
movdl(tmp, xcrc);
andl(tmp, 0xFF);
movdl(xtmp, Address(table, tmp, Address::times_4, 0));
psrldq(xcrc, 1); // unsigned shift one byte
pxor(xcrc, xtmp);
}
/**
* uint32_t crc;
* timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
*/
void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
movl(tmp, crc);
andl(tmp, 0xFF);
shrl(crc, 8);
xorl(crc, Address(table, tmp, Address::times_4, 0));
}
/**
* @param crc register containing existing CRC (32-bit)
* @param buf register pointing to input byte buffer (byte*)
* @param len register containing number of bytes
* @param table register that will contain address of CRC table
* @param tmp scratch register
*/
void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
assert_different_registers(crc, buf, len, table, tmp, rax);
Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
notl(crc); // ~crc
cmpl(len, 16);
jcc(Assembler::less, L_tail);
// Align buffer to 16 bytes
movl(tmp, buf);
andl(tmp, 0xF);
jccb(Assembler::zero, L_aligned);
subl(tmp, 16);
addl(len, tmp);
align(4);
BIND(L_align_loop);
movsbl(rax, Address(buf, 0)); // load byte with sign extension
update_byte_crc32(crc, rax, table);
increment(buf);
incrementl(tmp);
jccb(Assembler::less, L_align_loop);
BIND(L_aligned);
movl(tmp, len); // save
shrl(len, 4);
jcc(Assembler::zero, L_tail_restore);
// Fold crc into first bytes of vector
movdqa(xmm1, Address(buf, 0));
movdl(rax, xmm1);
xorl(crc, rax);
pinsrd(xmm1, crc, 0);
addptr(buf, 16);
subl(len, 4); // len > 0
jcc(Assembler::less, L_fold_tail);
movdqa(xmm2, Address(buf, 0));
movdqa(xmm3, Address(buf, 16));
movdqa(xmm4, Address(buf, 32));
addptr(buf, 48);
subl(len, 3);
jcc(Assembler::lessEqual, L_fold_512b);
// Fold total 512 bits of polynomial on each iteration,
// 128 bits per each of 4 parallel streams.
movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
align(32);
BIND(L_fold_512b_loop);
fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0);
fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
addptr(buf, 64);
subl(len, 4);
jcc(Assembler::greater, L_fold_512b_loop);
// Fold 512 bits to 128 bits.
BIND(L_fold_512b);
movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
// Fold the rest of 128 bits data chunks
BIND(L_fold_tail);
addl(len, 3);
jccb(Assembler::lessEqual, L_fold_128b);
movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
BIND(L_fold_tail_loop);
fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0);
addptr(buf, 16);
decrementl(len);
jccb(Assembler::greater, L_fold_tail_loop);
// Fold 128 bits in xmm1 down into 32 bits in crc register.
BIND(L_fold_128b);
movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
if (UseAVX > 0) {
vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
vpand(xmm3, xmm0, xmm2, false /* vector256 */);
vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
} else {
movdqa(xmm2, xmm0);
pclmulqdq(xmm2, xmm1, 0x1);
movdqa(xmm3, xmm0);
pand(xmm3, xmm2);
pclmulqdq(xmm0, xmm3, 0x1);
}
psrldq(xmm1, 8);
psrldq(xmm2, 4);
pxor(xmm0, xmm1);
pxor(xmm0, xmm2);
// 8 8-bit folds to compute 32-bit CRC.
for (int j = 0; j < 4; j++) {
fold_8bit_crc32(xmm0, table, xmm1, rax);
}
movdl(crc, xmm0); // mov 32 bits to general register
for (int j = 0; j < 4; j++) {
fold_8bit_crc32(crc, table, rax);
}
BIND(L_tail_restore);
movl(len, tmp); // restore
BIND(L_tail);
andl(len, 0xf);
jccb(Assembler::zero, L_exit);
// Fold the rest of bytes
align(4);
BIND(L_tail_loop);
movsbl(rax, Address(buf, 0)); // load byte with sign extension
update_byte_crc32(crc, rax, table);
increment(buf);
decrementl(len);
jccb(Assembler::greater, L_tail_loop);
BIND(L_exit);
notl(crc); // ~c
}
#undef BIND
#undef BLOCK_COMMENT
Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
switch (cond) {
// Note some conditions are synonyms for others
case Assembler::zero: return Assembler::notZero;
case Assembler::notZero: return Assembler::zero;
case Assembler::less: return Assembler::greaterEqual;
case Assembler::lessEqual: return Assembler::greater;
case Assembler::greater: return Assembler::lessEqual;
case Assembler::greaterEqual: return Assembler::less;
case Assembler::below: return Assembler::aboveEqual;
case Assembler::belowEqual: return Assembler::above;
case Assembler::above: return Assembler::belowEqual;
case Assembler::aboveEqual: return Assembler::below;
case Assembler::overflow: return Assembler::noOverflow;
case Assembler::noOverflow: return Assembler::overflow;
case Assembler::negative: return Assembler::positive;
case Assembler::positive: return Assembler::negative;
case Assembler::parity: return Assembler::noParity;
case Assembler::noParity: return Assembler::parity;
}
ShouldNotReachHere(); return Assembler::overflow;
}
SkipIfEqual::SkipIfEqual(
MacroAssembler* masm, const bool* flag_addr, bool value) {
_masm = masm;
_masm->cmp8(ExternalAddress((address)flag_addr), value);
_masm->jcc(Assembler::equal, _label);
}
SkipIfEqual::~SkipIfEqual() {
_masm->bind(_label);
}