/*
* Copyright (c) 2014 Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package org.openjdk.bench.java.util.stream;
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Level;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Param;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import java.util.concurrent.TimeUnit;
import java.util.stream.LongStream;
/**
* This benchmark is the golden benchmark for decompositions.
* There are at least four parameters to juggle:
* - pool parallelism (P), controlled via -Djava.util.concurrent.ForkJoinUtils.pool.parallelism
* - problem size (N), controlled as benchmark param
* - operation cost (Q), controlled as benchmark param
* - number of clients (C), controlled via -t option in harness
*
* @author Aleksey Shipilev (aleksey.shipilev@oracle.com)
*/
@BenchmarkMode(Mode.SampleTime)
@OutputTimeUnit(TimeUnit.MICROSECONDS)
@State(Scope.Thread)
public class Decomposition {
@Param("1000")
private int N;
@Param("1000")
private int Q;
@State(Scope.Thread)
public static class Thinktime {
@Param("10")
private int S;
@Setup(Level.Invocation)
public void sleep() throws InterruptedException {
TimeUnit.MILLISECONDS.sleep(S);
}
}
@Benchmark
public long saturated_sequential() throws InterruptedException {
return LongStream.range(1, N).filter(k -> doWork(k, Q)).sum();
}
@Benchmark
public long thinktime_sequential(Thinktime t) throws InterruptedException {
return LongStream.range(1, N).filter(k -> doWork(k, Q)).sum();
}
@Benchmark
public long saturated_parallel() throws InterruptedException {
return LongStream.range(1, N).parallel().filter(k -> doWork(k, Q)).sum();
}
@Benchmark
public long thinktime_parallel(Thinktime t) throws InterruptedException {
return LongStream.range(1, N).parallel().filter(k -> doWork(k, Q)).sum();
}
/**
* Make some work.
* This method have a couple of distinguishable properties:
* - the run time is linear with Q
* - the computation is dependent on input, preventing common reductions
* - the returned result is dependent on loop result, preventing dead code elimination
* - the returned result is almost always false
*
* This code uses inlined version of ThreadLocalRandom.next() to mitigate the edge effects
* of acquiring TLR every single call.
*
* @param input input
* @return result
*/
public static boolean doWork(long input, long count) {
long t = input;
for (int i = 0; i < count; i++) {
t += (t * 0x5DEECE66DL + 0xBL) & (0xFFFFFFFFFFFFL);
}
return (t == 0);
}
}