6424123: JVM crashes on failed 'strdup' call
Summary: Calling os::malloc()/os::strdup() and new os::strdup_check_oom() instead of ::malloc()/::strdup() for native memory tracking purpose
Reviewed-by: coleenp, ctornqvi, kvn
/*
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012, 2014 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterGenerator.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/interp_masm.hpp"
#include "interpreter/templateTable.hpp"
#include "oops/arrayOop.hpp"
#include "oops/methodData.hpp"
#include "oops/method.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/arguments.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/timer.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/debug.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif
#define __ _masm->
#ifdef PRODUCT
#define BLOCK_COMMENT(str) // nothing
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
int AbstractInterpreter::BasicType_as_index(BasicType type) {
int i = 0;
switch (type) {
case T_BOOLEAN: i = 0; break;
case T_CHAR : i = 1; break;
case T_BYTE : i = 2; break;
case T_SHORT : i = 3; break;
case T_INT : i = 4; break;
case T_LONG : i = 5; break;
case T_VOID : i = 6; break;
case T_FLOAT : i = 7; break;
case T_DOUBLE : i = 8; break;
case T_OBJECT : i = 9; break;
case T_ARRAY : i = 9; break;
default : ShouldNotReachHere();
}
assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
return i;
}
address AbstractInterpreterGenerator::generate_slow_signature_handler() {
// Slow_signature handler that respects the PPC C calling conventions.
//
// We get called by the native entry code with our output register
// area == 8. First we call InterpreterRuntime::get_result_handler
// to copy the pointer to the signature string temporarily to the
// first C-argument and to return the result_handler in
// R3_RET. Since native_entry will copy the jni-pointer to the
// first C-argument slot later on, it is OK to occupy this slot
// temporarilly. Then we copy the argument list on the java
// expression stack into native varargs format on the native stack
// and load arguments into argument registers. Integer arguments in
// the varargs vector will be sign-extended to 8 bytes.
//
// On entry:
// R3_ARG1 - intptr_t* Address of java argument list in memory.
// R15_prev_state - BytecodeInterpreter* Address of interpreter state for
// this method
// R19_method
//
// On exit (just before return instruction):
// R3_RET - contains the address of the result_handler.
// R4_ARG2 - is not updated for static methods and contains "this" otherwise.
// R5_ARG3-R10_ARG8: - When the (i-2)th Java argument is not of type float or double,
// ARGi contains this argument. Otherwise, ARGi is not updated.
// F1_ARG1-F13_ARG13 - contain the first 13 arguments of type float or double.
const int LogSizeOfTwoInstructions = 3;
// FIXME: use Argument:: GL: Argument names different numbers!
const int max_fp_register_arguments = 13;
const int max_int_register_arguments = 6; // first 2 are reserved
const Register arg_java = R21_tmp1;
const Register arg_c = R22_tmp2;
const Register signature = R23_tmp3; // is string
const Register sig_byte = R24_tmp4;
const Register fpcnt = R25_tmp5;
const Register argcnt = R26_tmp6;
const Register intSlot = R27_tmp7;
const Register target_sp = R28_tmp8;
const FloatRegister floatSlot = F0;
address entry = __ function_entry();
__ save_LR_CR(R0);
__ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
// We use target_sp for storing arguments in the C frame.
__ mr(target_sp, R1_SP);
__ push_frame_reg_args_nonvolatiles(0, R11_scratch1);
__ mr(arg_java, R3_ARG1);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), R16_thread, R19_method);
// Signature is in R3_RET. Signature is callee saved.
__ mr(signature, R3_RET);
// Get the result handler.
__ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), R16_thread, R19_method);
{
Label L;
// test if static
// _access_flags._flags must be at offset 0.
// TODO PPC port: requires change in shared code.
//assert(in_bytes(AccessFlags::flags_offset()) == 0,
// "MethodDesc._access_flags == MethodDesc._access_flags._flags");
// _access_flags must be a 32 bit value.
assert(sizeof(AccessFlags) == 4, "wrong size");
__ lwa(R11_scratch1/*access_flags*/, method_(access_flags));
// testbit with condition register.
__ testbitdi(CCR0, R0, R11_scratch1/*access_flags*/, JVM_ACC_STATIC_BIT);
__ btrue(CCR0, L);
// For non-static functions, pass "this" in R4_ARG2 and copy it
// to 2nd C-arg slot.
// We need to box the Java object here, so we use arg_java
// (address of current Java stack slot) as argument and don't
// dereference it as in case of ints, floats, etc.
__ mr(R4_ARG2, arg_java);
__ addi(arg_java, arg_java, -BytesPerWord);
__ std(R4_ARG2, _abi(carg_2), target_sp);
__ bind(L);
}
// Will be incremented directly after loop_start. argcnt=0
// corresponds to 3rd C argument.
__ li(argcnt, -1);
// arg_c points to 3rd C argument
__ addi(arg_c, target_sp, _abi(carg_3));
// no floating-point args parsed so far
__ li(fpcnt, 0);
Label move_intSlot_to_ARG, move_floatSlot_to_FARG;
Label loop_start, loop_end;
Label do_int, do_long, do_float, do_double, do_dontreachhere, do_object, do_array, do_boxed;
// signature points to '(' at entry
#ifdef ASSERT
__ lbz(sig_byte, 0, signature);
__ cmplwi(CCR0, sig_byte, '(');
__ bne(CCR0, do_dontreachhere);
#endif
__ bind(loop_start);
__ addi(argcnt, argcnt, 1);
__ lbzu(sig_byte, 1, signature);
__ cmplwi(CCR0, sig_byte, ')'); // end of signature
__ beq(CCR0, loop_end);
__ cmplwi(CCR0, sig_byte, 'B'); // byte
__ beq(CCR0, do_int);
__ cmplwi(CCR0, sig_byte, 'C'); // char
__ beq(CCR0, do_int);
__ cmplwi(CCR0, sig_byte, 'D'); // double
__ beq(CCR0, do_double);
__ cmplwi(CCR0, sig_byte, 'F'); // float
__ beq(CCR0, do_float);
__ cmplwi(CCR0, sig_byte, 'I'); // int
__ beq(CCR0, do_int);
__ cmplwi(CCR0, sig_byte, 'J'); // long
__ beq(CCR0, do_long);
__ cmplwi(CCR0, sig_byte, 'S'); // short
__ beq(CCR0, do_int);
__ cmplwi(CCR0, sig_byte, 'Z'); // boolean
__ beq(CCR0, do_int);
__ cmplwi(CCR0, sig_byte, 'L'); // object
__ beq(CCR0, do_object);
__ cmplwi(CCR0, sig_byte, '['); // array
__ beq(CCR0, do_array);
// __ cmplwi(CCR0, sig_byte, 'V'); // void cannot appear since we do not parse the return type
// __ beq(CCR0, do_void);
__ bind(do_dontreachhere);
__ unimplemented("ShouldNotReachHere in slow_signature_handler", 120);
__ bind(do_array);
{
Label start_skip, end_skip;
__ bind(start_skip);
__ lbzu(sig_byte, 1, signature);
__ cmplwi(CCR0, sig_byte, '[');
__ beq(CCR0, start_skip); // skip further brackets
__ cmplwi(CCR0, sig_byte, '9');
__ bgt(CCR0, end_skip); // no optional size
__ cmplwi(CCR0, sig_byte, '0');
__ bge(CCR0, start_skip); // skip optional size
__ bind(end_skip);
__ cmplwi(CCR0, sig_byte, 'L');
__ beq(CCR0, do_object); // for arrays of objects, the name of the object must be skipped
__ b(do_boxed); // otherwise, go directly to do_boxed
}
__ bind(do_object);
{
Label L;
__ bind(L);
__ lbzu(sig_byte, 1, signature);
__ cmplwi(CCR0, sig_byte, ';');
__ bne(CCR0, L);
}
// Need to box the Java object here, so we use arg_java (address of
// current Java stack slot) as argument and don't dereference it as
// in case of ints, floats, etc.
Label do_null;
__ bind(do_boxed);
__ ld(R0,0, arg_java);
__ cmpdi(CCR0, R0, 0);
__ li(intSlot,0);
__ beq(CCR0, do_null);
__ mr(intSlot, arg_java);
__ bind(do_null);
__ std(intSlot, 0, arg_c);
__ addi(arg_java, arg_java, -BytesPerWord);
__ addi(arg_c, arg_c, BytesPerWord);
__ cmplwi(CCR0, argcnt, max_int_register_arguments);
__ blt(CCR0, move_intSlot_to_ARG);
__ b(loop_start);
__ bind(do_int);
__ lwa(intSlot, 0, arg_java);
__ std(intSlot, 0, arg_c);
__ addi(arg_java, arg_java, -BytesPerWord);
__ addi(arg_c, arg_c, BytesPerWord);
__ cmplwi(CCR0, argcnt, max_int_register_arguments);
__ blt(CCR0, move_intSlot_to_ARG);
__ b(loop_start);
__ bind(do_long);
__ ld(intSlot, -BytesPerWord, arg_java);
__ std(intSlot, 0, arg_c);
__ addi(arg_java, arg_java, - 2 * BytesPerWord);
__ addi(arg_c, arg_c, BytesPerWord);
__ cmplwi(CCR0, argcnt, max_int_register_arguments);
__ blt(CCR0, move_intSlot_to_ARG);
__ b(loop_start);
__ bind(do_float);
__ lfs(floatSlot, 0, arg_java);
#if defined(LINUX)
__ stfs(floatSlot, 4, arg_c);
#elif defined(AIX)
__ stfs(floatSlot, 0, arg_c);
#else
#error "unknown OS"
#endif
__ addi(arg_java, arg_java, -BytesPerWord);
__ addi(arg_c, arg_c, BytesPerWord);
__ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
__ blt(CCR0, move_floatSlot_to_FARG);
__ b(loop_start);
__ bind(do_double);
__ lfd(floatSlot, - BytesPerWord, arg_java);
__ stfd(floatSlot, 0, arg_c);
__ addi(arg_java, arg_java, - 2 * BytesPerWord);
__ addi(arg_c, arg_c, BytesPerWord);
__ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
__ blt(CCR0, move_floatSlot_to_FARG);
__ b(loop_start);
__ bind(loop_end);
__ pop_frame();
__ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
__ restore_LR_CR(R0);
__ blr();
Label move_int_arg, move_float_arg;
__ bind(move_int_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
__ mr(R5_ARG3, intSlot); __ b(loop_start);
__ mr(R6_ARG4, intSlot); __ b(loop_start);
__ mr(R7_ARG5, intSlot); __ b(loop_start);
__ mr(R8_ARG6, intSlot); __ b(loop_start);
__ mr(R9_ARG7, intSlot); __ b(loop_start);
__ mr(R10_ARG8, intSlot); __ b(loop_start);
__ bind(move_float_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
__ fmr(F1_ARG1, floatSlot); __ b(loop_start);
__ fmr(F2_ARG2, floatSlot); __ b(loop_start);
__ fmr(F3_ARG3, floatSlot); __ b(loop_start);
__ fmr(F4_ARG4, floatSlot); __ b(loop_start);
__ fmr(F5_ARG5, floatSlot); __ b(loop_start);
__ fmr(F6_ARG6, floatSlot); __ b(loop_start);
__ fmr(F7_ARG7, floatSlot); __ b(loop_start);
__ fmr(F8_ARG8, floatSlot); __ b(loop_start);
__ fmr(F9_ARG9, floatSlot); __ b(loop_start);
__ fmr(F10_ARG10, floatSlot); __ b(loop_start);
__ fmr(F11_ARG11, floatSlot); __ b(loop_start);
__ fmr(F12_ARG12, floatSlot); __ b(loop_start);
__ fmr(F13_ARG13, floatSlot); __ b(loop_start);
__ bind(move_intSlot_to_ARG);
__ sldi(R0, argcnt, LogSizeOfTwoInstructions);
__ load_const(R11_scratch1, move_int_arg); // Label must be bound here.
__ add(R11_scratch1, R0, R11_scratch1);
__ mtctr(R11_scratch1/*branch_target*/);
__ bctr();
__ bind(move_floatSlot_to_FARG);
__ sldi(R0, fpcnt, LogSizeOfTwoInstructions);
__ addi(fpcnt, fpcnt, 1);
__ load_const(R11_scratch1, move_float_arg); // Label must be bound here.
__ add(R11_scratch1, R0, R11_scratch1);
__ mtctr(R11_scratch1/*branch_target*/);
__ bctr();
return entry;
}
address AbstractInterpreterGenerator::generate_result_handler_for(BasicType type) {
//
// Registers alive
// R3_RET
// LR
//
// Registers updated
// R3_RET
//
Label done;
address entry = __ pc();
switch (type) {
case T_BOOLEAN:
// convert !=0 to 1
__ neg(R0, R3_RET);
__ orr(R0, R3_RET, R0);
__ srwi(R3_RET, R0, 31);
break;
case T_BYTE:
// sign extend 8 bits
__ extsb(R3_RET, R3_RET);
break;
case T_CHAR:
// zero extend 16 bits
__ clrldi(R3_RET, R3_RET, 48);
break;
case T_SHORT:
// sign extend 16 bits
__ extsh(R3_RET, R3_RET);
break;
case T_INT:
// sign extend 32 bits
__ extsw(R3_RET, R3_RET);
break;
case T_LONG:
break;
case T_OBJECT:
// unbox result if not null
__ cmpdi(CCR0, R3_RET, 0);
__ beq(CCR0, done);
__ ld(R3_RET, 0, R3_RET);
__ verify_oop(R3_RET);
break;
case T_FLOAT:
break;
case T_DOUBLE:
break;
case T_VOID:
break;
default: ShouldNotReachHere();
}
__ BIND(done);
__ blr();
return entry;
}
// Abstract method entry.
//
address InterpreterGenerator::generate_abstract_entry(void) {
address entry = __ pc();
//
// Registers alive
// R16_thread - JavaThread*
// R19_method - callee's method (method to be invoked)
// R1_SP - SP prepared such that caller's outgoing args are near top
// LR - return address to caller
//
// Stack layout at this point:
//
// 0 [TOP_IJAVA_FRAME_ABI] <-- R1_SP
// alignment (optional)
// [outgoing Java arguments]
// ...
// PARENT [PARENT_IJAVA_FRAME_ABI]
// ...
//
// Can't use call_VM here because we have not set up a new
// interpreter state. Make the call to the vm and make it look like
// our caller set up the JavaFrameAnchor.
__ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
// Push a new C frame and save LR.
__ save_LR_CR(R0);
__ push_frame_reg_args(0, R11_scratch1);
// This is not a leaf but we have a JavaFrameAnchor now and we will
// check (create) exceptions afterward so this is ok.
__ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
// Pop the C frame and restore LR.
__ pop_frame();
__ restore_LR_CR(R0);
// Reset JavaFrameAnchor from call_VM_leaf above.
__ reset_last_Java_frame();
#ifdef CC_INTERP
// Return to frame manager, it will handle the pending exception.
__ blr();
#else
// We don't know our caller, so jump to the general forward exception stub,
// which will also pop our full frame off. Satisfy the interface of
// SharedRuntime::generate_forward_exception()
__ load_const_optimized(R11_scratch1, StubRoutines::forward_exception_entry(), R0);
__ mtctr(R11_scratch1);
__ bctr();
#endif
return entry;
}
// Call an accessor method (assuming it is resolved, otherwise drop into
// vanilla (slow path) entry.
address InterpreterGenerator::generate_accessor_entry(void) {
if (!UseFastAccessorMethods && (!FLAG_IS_ERGO(UseFastAccessorMethods))) {
return NULL;
}
Label Lslow_path, Lacquire;
const Register
Rclass_or_obj = R3_ARG1,
Rconst_method = R4_ARG2,
Rcodes = Rconst_method,
Rcpool_cache = R5_ARG3,
Rscratch = R11_scratch1,
Rjvmti_mode = Rscratch,
Roffset = R12_scratch2,
Rflags = R6_ARG4,
Rbtable = R7_ARG5;
static address branch_table[number_of_states];
address entry = __ pc();
// Check for safepoint:
// Ditch this, real man don't need safepoint checks.
// Also check for JVMTI mode
// Check for null obj, take slow path if so.
__ ld(Rclass_or_obj, Interpreter::stackElementSize, CC_INTERP_ONLY(R17_tos) NOT_CC_INTERP(R15_esp));
__ lwz(Rjvmti_mode, thread_(interp_only_mode));
__ cmpdi(CCR1, Rclass_or_obj, 0);
__ cmpwi(CCR0, Rjvmti_mode, 0);
__ crorc(/*CCR0 eq*/2, /*CCR1 eq*/4+2, /*CCR0 eq*/2);
__ beq(CCR0, Lslow_path); // this==null or jvmti_mode!=0
// Do 2 things in parallel:
// 1. Load the index out of the first instruction word, which looks like this:
// <0x2a><0xb4><index (2 byte, native endianess)>.
// 2. Load constant pool cache base.
__ ld(Rconst_method, in_bytes(Method::const_offset()), R19_method);
__ ld(Rcpool_cache, in_bytes(ConstMethod::constants_offset()), Rconst_method);
__ lhz(Rcodes, in_bytes(ConstMethod::codes_offset()) + 2, Rconst_method); // Lower half of 32 bit field.
__ ld(Rcpool_cache, ConstantPool::cache_offset_in_bytes(), Rcpool_cache);
// Get the const pool entry by means of <index>.
const int codes_shift = exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord);
__ slwi(Rscratch, Rcodes, codes_shift); // (codes&0xFFFF)<<codes_shift
__ add(Rcpool_cache, Rscratch, Rcpool_cache);
// Check if cpool cache entry is resolved.
// We are resolved if the indices offset contains the current bytecode.
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
// Big Endian:
__ lbz(Rscratch, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::indices_offset()) + 7 - 2, Rcpool_cache);
__ cmpwi(CCR0, Rscratch, Bytecodes::_getfield);
__ bne(CCR0, Lslow_path);
__ isync(); // Order succeeding loads wrt. load of _indices field from cpool_cache.
// Finally, start loading the value: Get cp cache entry into regs.
__ ld(Rflags, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcpool_cache);
__ ld(Roffset, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f2_offset()), Rcpool_cache);
// Following code is from templateTable::getfield_or_static
// Load pointer to branch table
__ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
// Get volatile flag
__ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // extract volatile bit
// note: sync is needed before volatile load on PPC64
// Check field type
__ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
#ifdef ASSERT
Label LFlagInvalid;
__ cmpldi(CCR0, Rflags, number_of_states);
__ bge(CCR0, LFlagInvalid);
__ ld(R9_ARG7, 0, R1_SP);
__ ld(R10_ARG8, 0, R21_sender_SP);
__ cmpd(CCR0, R9_ARG7, R10_ARG8);
__ asm_assert_eq("backlink", 0x543);
#endif // ASSERT
__ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
// Load from branch table and dispatch (volatile case: one instruction ahead)
__ sldi(Rflags, Rflags, LogBytesPerWord);
__ cmpwi(CCR6, Rscratch, 1); // volatile?
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
__ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // volatile ? size of 1 instruction : 0
}
__ ldx(Rbtable, Rbtable, Rflags);
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
__ subf(Rbtable, Rscratch, Rbtable); // point to volatile/non-volatile entry point
}
__ mtctr(Rbtable);
__ bctr();
#ifdef ASSERT
__ bind(LFlagInvalid);
__ stop("got invalid flag", 0x6541);
bool all_uninitialized = true,
all_initialized = true;
for (int i = 0; i<number_of_states; ++i) {
all_uninitialized = all_uninitialized && (branch_table[i] == NULL);
all_initialized = all_initialized && (branch_table[i] != NULL);
}
assert(all_uninitialized != all_initialized, "consistency"); // either or
__ fence(); // volatile entry point (one instruction before non-volatile_entry point)
if (branch_table[vtos] == 0) branch_table[vtos] = __ pc(); // non-volatile_entry point
if (branch_table[dtos] == 0) branch_table[dtos] = __ pc(); // non-volatile_entry point
if (branch_table[ftos] == 0) branch_table[ftos] = __ pc(); // non-volatile_entry point
__ stop("unexpected type", 0x6551);
#endif
if (branch_table[itos] == 0) { // generate only once
__ align(32, 28, 28); // align load
__ fence(); // volatile entry point (one instruction before non-volatile_entry point)
branch_table[itos] = __ pc(); // non-volatile_entry point
__ lwax(R3_RET, Rclass_or_obj, Roffset);
__ beq(CCR6, Lacquire);
__ blr();
}
if (branch_table[ltos] == 0) { // generate only once
__ align(32, 28, 28); // align load
__ fence(); // volatile entry point (one instruction before non-volatile_entry point)
branch_table[ltos] = __ pc(); // non-volatile_entry point
__ ldx(R3_RET, Rclass_or_obj, Roffset);
__ beq(CCR6, Lacquire);
__ blr();
}
if (branch_table[btos] == 0) { // generate only once
__ align(32, 28, 28); // align load
__ fence(); // volatile entry point (one instruction before non-volatile_entry point)
branch_table[btos] = __ pc(); // non-volatile_entry point
__ lbzx(R3_RET, Rclass_or_obj, Roffset);
__ extsb(R3_RET, R3_RET);
__ beq(CCR6, Lacquire);
__ blr();
}
if (branch_table[ctos] == 0) { // generate only once
__ align(32, 28, 28); // align load
__ fence(); // volatile entry point (one instruction before non-volatile_entry point)
branch_table[ctos] = __ pc(); // non-volatile_entry point
__ lhzx(R3_RET, Rclass_or_obj, Roffset);
__ beq(CCR6, Lacquire);
__ blr();
}
if (branch_table[stos] == 0) { // generate only once
__ align(32, 28, 28); // align load
__ fence(); // volatile entry point (one instruction before non-volatile_entry point)
branch_table[stos] = __ pc(); // non-volatile_entry point
__ lhax(R3_RET, Rclass_or_obj, Roffset);
__ beq(CCR6, Lacquire);
__ blr();
}
if (branch_table[atos] == 0) { // generate only once
__ align(32, 28, 28); // align load
__ fence(); // volatile entry point (one instruction before non-volatile_entry point)
branch_table[atos] = __ pc(); // non-volatile_entry point
__ load_heap_oop(R3_RET, (RegisterOrConstant)Roffset, Rclass_or_obj);
__ verify_oop(R3_RET);
//__ dcbt(R3_RET); // prefetch
__ beq(CCR6, Lacquire);
__ blr();
}
__ align(32, 12);
__ bind(Lacquire);
__ twi_0(R3_RET);
__ isync(); // acquire
__ blr();
#ifdef ASSERT
for (int i = 0; i<number_of_states; ++i) {
assert(branch_table[i], "accessor_entry initialization");
//tty->print_cr("accessor_entry: branch_table[%d] = 0x%llx (opcode 0x%llx)", i, branch_table[i], *((unsigned int*)branch_table[i]));
}
#endif
__ bind(Lslow_path);
__ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), Rscratch);
__ flush();
return entry;
}
// Interpreter intrinsic for WeakReference.get().
// 1. Don't push a full blown frame and go on dispatching, but fetch the value
// into R8 and return quickly
// 2. If G1 is active we *must* execute this intrinsic for corrrectness:
// It contains a GC barrier which puts the reference into the satb buffer
// to indicate that someone holds a strong reference to the object the
// weak ref points to!
address InterpreterGenerator::generate_Reference_get_entry(void) {
// Code: _aload_0, _getfield, _areturn
// parameter size = 1
//
// The code that gets generated by this routine is split into 2 parts:
// 1. the "intrinsified" code for G1 (or any SATB based GC),
// 2. the slow path - which is an expansion of the regular method entry.
//
// Notes:
// * In the G1 code we do not check whether we need to block for
// a safepoint. If G1 is enabled then we must execute the specialized
// code for Reference.get (except when the Reference object is null)
// so that we can log the value in the referent field with an SATB
// update buffer.
// If the code for the getfield template is modified so that the
// G1 pre-barrier code is executed when the current method is
// Reference.get() then going through the normal method entry
// will be fine.
// * The G1 code can, however, check the receiver object (the instance
// of java.lang.Reference) and jump to the slow path if null. If the
// Reference object is null then we obviously cannot fetch the referent
// and so we don't need to call the G1 pre-barrier. Thus we can use the
// regular method entry code to generate the NPE.
//
// This code is based on generate_accessor_enty.
address entry = __ pc();
const int referent_offset = java_lang_ref_Reference::referent_offset;
guarantee(referent_offset > 0, "referent offset not initialized");
if (UseG1GC) {
Label slow_path;
// Debugging not possible, so can't use __ skip_if_jvmti_mode(slow_path, GR31_SCRATCH);
// In the G1 code we don't check if we need to reach a safepoint. We
// continue and the thread will safepoint at the next bytecode dispatch.
// If the receiver is null then it is OK to jump to the slow path.
__ ld(R3_RET, Interpreter::stackElementSize, CC_INTERP_ONLY(R17_tos) NOT_CC_INTERP(R15_esp)); // get receiver
// Check if receiver == NULL and go the slow path.
__ cmpdi(CCR0, R3_RET, 0);
__ beq(CCR0, slow_path);
// Load the value of the referent field.
__ load_heap_oop(R3_RET, referent_offset, R3_RET);
// Generate the G1 pre-barrier code to log the value of
// the referent field in an SATB buffer. Note with
// these parameters the pre-barrier does not generate
// the load of the previous value.
// Restore caller sp for c2i case.
#ifdef ASSERT
__ ld(R9_ARG7, 0, R1_SP);
__ ld(R10_ARG8, 0, R21_sender_SP);
__ cmpd(CCR0, R9_ARG7, R10_ARG8);
__ asm_assert_eq("backlink", 0x544);
#endif // ASSERT
__ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
__ g1_write_barrier_pre(noreg, // obj
noreg, // offset
R3_RET, // pre_val
R11_scratch1, // tmp
R12_scratch2, // tmp
true); // needs_frame
__ blr();
// Generate regular method entry.
__ bind(slow_path);
__ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
__ flush();
return entry;
} else {
return generate_accessor_entry();
}
}
void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
// This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
// the days we had adapter frames. When we deoptimize a situation where a
// compiled caller calls a compiled caller will have registers it expects
// to survive the call to the callee. If we deoptimize the callee the only
// way we can restore these registers is to have the oldest interpreter
// frame that we create restore these values. That is what this routine
// will accomplish.
// At the moment we have modified c2 to not have any callee save registers
// so this problem does not exist and this routine is just a place holder.
assert(f->is_interpreted_frame(), "must be interpreted");
}