8161720: Better byte behavior for off-heap data
Summary: Normalize boolean values read with Unsafe.
Reviewed-by: aph, simonis, jrose, psandoz
/*
* Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/ad.hpp"
#include "opto/block.hpp"
#include "opto/c2compiler.hpp"
#include "opto/callnode.hpp"
#include "opto/cfgnode.hpp"
#include "opto/machnode.hpp"
#include "opto/runtime.hpp"
#include "opto/chaitin.hpp"
#include "runtime/sharedRuntime.hpp"
// Optimization - Graph Style
// Check whether val is not-null-decoded compressed oop,
// i.e. will grab into the base of the heap if it represents NULL.
static bool accesses_heap_base_zone(Node *val) {
if (Universe::narrow_oop_base() > 0) { // Implies UseCompressedOops.
if (val && val->is_Mach()) {
if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
// This assumes all Decodes with TypePtr::NotNull are matched to nodes that
// decode NULL to point to the heap base (Decode_NN).
if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
return true;
}
}
// Must recognize load operation with Decode matched in memory operand.
// We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
// returns true everywhere else. On PPC, no such memory operands
// exist, therefore we did not yet implement a check for such operands.
NOT_AIX(Unimplemented());
}
}
return false;
}
static bool needs_explicit_null_check_for_read(Node *val) {
// On some OSes (AIX) the page at address 0 is only write protected.
// If so, only Store operations will trap.
if (os::zero_page_read_protected()) {
return false; // Implicit null check will work.
}
// Also a read accessing the base of a heap-based compressed heap will trap.
if (accesses_heap_base_zone(val) && // Hits the base zone page.
Universe::narrow_oop_use_implicit_null_checks()) { // Base zone page is protected.
return false;
}
return true;
}
//------------------------------implicit_null_check----------------------------
// Detect implicit-null-check opportunities. Basically, find NULL checks
// with suitable memory ops nearby. Use the memory op to do the NULL check.
// I can generate a memory op if there is not one nearby.
// The proj is the control projection for the not-null case.
// The val is the pointer being checked for nullness or
// decodeHeapOop_not_null node if it did not fold into address.
void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
// Assume if null check need for 0 offset then always needed
// Intel solaris doesn't support any null checks yet and no
// mechanism exists (yet) to set the switches at an os_cpu level
if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
// Make sure the ptr-is-null path appears to be uncommon!
float f = block->end()->as_MachIf()->_prob;
if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
if( f > PROB_UNLIKELY_MAG(4) ) return;
uint bidx = 0; // Capture index of value into memop
bool was_store; // Memory op is a store op
// Get the successor block for if the test ptr is non-null
Block* not_null_block; // this one goes with the proj
Block* null_block;
if (block->get_node(block->number_of_nodes()-1) == proj) {
null_block = block->_succs[0];
not_null_block = block->_succs[1];
} else {
assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
not_null_block = block->_succs[0];
null_block = block->_succs[1];
}
while (null_block->is_Empty() == Block::empty_with_goto) {
null_block = null_block->_succs[0];
}
// Search the exception block for an uncommon trap.
// (See Parse::do_if and Parse::do_ifnull for the reason
// we need an uncommon trap. Briefly, we need a way to
// detect failure of this optimization, as in 6366351.)
{
bool found_trap = false;
for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
Node* nn = null_block->get_node(i1);
if (nn->is_MachCall() &&
nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
if (trtype->isa_int() && trtype->is_int()->is_con()) {
jint tr_con = trtype->is_int()->get_con();
Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
assert((int)reason < (int)BitsPerInt, "recode bit map");
if (is_set_nth_bit(allowed_reasons, (int) reason)
&& action != Deoptimization::Action_none) {
// This uncommon trap is sure to recompile, eventually.
// When that happens, C->too_many_traps will prevent
// this transformation from happening again.
found_trap = true;
}
}
break;
}
}
if (!found_trap) {
// We did not find an uncommon trap.
return;
}
}
// Check for decodeHeapOop_not_null node which did not fold into address
bool is_decoden = ((intptr_t)val) & 1;
val = (Node*)(((intptr_t)val) & ~1);
assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
(val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
// Search the successor block for a load or store who's base value is also
// the tested value. There may be several.
Node_List *out = new Node_List(Thread::current()->resource_area());
MachNode *best = NULL; // Best found so far
for (DUIterator i = val->outs(); val->has_out(i); i++) {
Node *m = val->out(i);
if( !m->is_Mach() ) continue;
MachNode *mach = m->as_Mach();
was_store = false;
int iop = mach->ideal_Opcode();
switch( iop ) {
case Op_LoadB:
case Op_LoadUB:
case Op_LoadUS:
case Op_LoadD:
case Op_LoadF:
case Op_LoadI:
case Op_LoadL:
case Op_LoadP:
case Op_LoadN:
case Op_LoadS:
case Op_LoadKlass:
case Op_LoadNKlass:
case Op_LoadRange:
case Op_LoadD_unaligned:
case Op_LoadL_unaligned:
assert(mach->in(2) == val, "should be address");
break;
case Op_StoreB:
case Op_StoreC:
case Op_StoreCM:
case Op_StoreD:
case Op_StoreF:
case Op_StoreI:
case Op_StoreL:
case Op_StoreP:
case Op_StoreN:
case Op_StoreNKlass:
was_store = true; // Memory op is a store op
// Stores will have their address in slot 2 (memory in slot 1).
// If the value being nul-checked is in another slot, it means we
// are storing the checked value, which does NOT check the value!
if( mach->in(2) != val ) continue;
break; // Found a memory op?
case Op_StrComp:
case Op_StrEquals:
case Op_StrIndexOf:
case Op_StrIndexOfChar:
case Op_AryEq:
case Op_StrInflatedCopy:
case Op_StrCompressedCopy:
case Op_EncodeISOArray:
case Op_HasNegatives:
// Not a legit memory op for implicit null check regardless of
// embedded loads
continue;
default: // Also check for embedded loads
if( !mach->needs_anti_dependence_check() )
continue; // Not an memory op; skip it
if( must_clone[iop] ) {
// Do not move nodes which produce flags because
// RA will try to clone it to place near branch and
// it will cause recompilation, see clone_node().
continue;
}
{
// Check that value is used in memory address in
// instructions with embedded load (CmpP val1,(val2+off)).
Node* base;
Node* index;
const MachOper* oper = mach->memory_inputs(base, index);
if (oper == NULL || oper == (MachOper*)-1) {
continue; // Not an memory op; skip it
}
if (val == base ||
val == index && val->bottom_type()->isa_narrowoop()) {
break; // Found it
} else {
continue; // Skip it
}
}
break;
}
// On some OSes (AIX) the page at address 0 is only write protected.
// If so, only Store operations will trap.
// But a read accessing the base of a heap-based compressed heap will trap.
if (!was_store && needs_explicit_null_check_for_read(val)) {
continue;
}
// Check that node's control edge is not-null block's head or dominates it,
// otherwise we can't hoist it because there are other control dependencies.
Node* ctrl = mach->in(0);
if (ctrl != NULL && !(ctrl == not_null_block->head() ||
get_block_for_node(ctrl)->dominates(not_null_block))) {
continue;
}
// check if the offset is not too high for implicit exception
{
intptr_t offset = 0;
const TypePtr *adr_type = NULL; // Do not need this return value here
const Node* base = mach->get_base_and_disp(offset, adr_type);
if (base == NULL || base == NodeSentinel) {
// Narrow oop address doesn't have base, only index
if( val->bottom_type()->isa_narrowoop() &&
MacroAssembler::needs_explicit_null_check(offset) )
continue; // Give up if offset is beyond page size
// cannot reason about it; is probably not implicit null exception
} else {
const TypePtr* tptr;
if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
Universe::narrow_klass_shift() == 0)) {
// 32-bits narrow oop can be the base of address expressions
tptr = base->get_ptr_type();
} else {
// only regular oops are expected here
tptr = base->bottom_type()->is_ptr();
}
// Give up if offset is not a compile-time constant
if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
continue;
offset += tptr->_offset; // correct if base is offseted
if( MacroAssembler::needs_explicit_null_check(offset) )
continue; // Give up is reference is beyond 4K page size
}
}
// Check ctrl input to see if the null-check dominates the memory op
Block *cb = get_block_for_node(mach);
cb = cb->_idom; // Always hoist at least 1 block
if( !was_store ) { // Stores can be hoisted only one block
while( cb->_dom_depth > (block->_dom_depth + 1))
cb = cb->_idom; // Hoist loads as far as we want
// The non-null-block should dominate the memory op, too. Live
// range spilling will insert a spill in the non-null-block if it is
// needs to spill the memory op for an implicit null check.
if (cb->_dom_depth == (block->_dom_depth + 1)) {
if (cb != not_null_block) continue;
cb = cb->_idom;
}
}
if( cb != block ) continue;
// Found a memory user; see if it can be hoisted to check-block
uint vidx = 0; // Capture index of value into memop
uint j;
for( j = mach->req()-1; j > 0; j-- ) {
if( mach->in(j) == val ) {
vidx = j;
// Ignore DecodeN val which could be hoisted to where needed.
if( is_decoden ) continue;
}
// Block of memory-op input
Block *inb = get_block_for_node(mach->in(j));
Block *b = block; // Start from nul check
while( b != inb && b->_dom_depth > inb->_dom_depth )
b = b->_idom; // search upwards for input
// See if input dominates null check
if( b != inb )
break;
}
if( j > 0 )
continue;
Block *mb = get_block_for_node(mach);
// Hoisting stores requires more checks for the anti-dependence case.
// Give up hoisting if we have to move the store past any load.
if( was_store ) {
Block *b = mb; // Start searching here for a local load
// mach use (faulting) trying to hoist
// n might be blocker to hoisting
while( b != block ) {
uint k;
for( k = 1; k < b->number_of_nodes(); k++ ) {
Node *n = b->get_node(k);
if( n->needs_anti_dependence_check() &&
n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
break; // Found anti-dependent load
}
if( k < b->number_of_nodes() )
break; // Found anti-dependent load
// Make sure control does not do a merge (would have to check allpaths)
if( b->num_preds() != 2 ) break;
b = get_block_for_node(b->pred(1)); // Move up to predecessor block
}
if( b != block ) continue;
}
// Make sure this memory op is not already being used for a NullCheck
Node *e = mb->end();
if( e->is_MachNullCheck() && e->in(1) == mach )
continue; // Already being used as a NULL check
// Found a candidate! Pick one with least dom depth - the highest
// in the dom tree should be closest to the null check.
if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
best = mach;
bidx = vidx;
}
}
// No candidate!
if (best == NULL) {
return;
}
// ---- Found an implicit null check
#ifndef PRODUCT
extern int implicit_null_checks;
implicit_null_checks++;
#endif
if( is_decoden ) {
// Check if we need to hoist decodeHeapOop_not_null first.
Block *valb = get_block_for_node(val);
if( block != valb && block->_dom_depth < valb->_dom_depth ) {
// Hoist it up to the end of the test block.
valb->find_remove(val);
block->add_inst(val);
map_node_to_block(val, block);
// DecodeN on x86 may kill flags. Check for flag-killing projections
// that also need to be hoisted.
for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
Node* n = val->fast_out(j);
if( n->is_MachProj() ) {
get_block_for_node(n)->find_remove(n);
block->add_inst(n);
map_node_to_block(n, block);
}
}
}
}
// Hoist the memory candidate up to the end of the test block.
Block *old_block = get_block_for_node(best);
old_block->find_remove(best);
block->add_inst(best);
map_node_to_block(best, block);
// Move the control dependence if it is pinned to not-null block.
// Don't change it in other cases: NULL or dominating control.
if (best->in(0) == not_null_block->head()) {
// Set it to control edge of null check.
best->set_req(0, proj->in(0)->in(0));
}
// Check for flag-killing projections that also need to be hoisted
// Should be DU safe because no edge updates.
for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
Node* n = best->fast_out(j);
if( n->is_MachProj() ) {
get_block_for_node(n)->find_remove(n);
block->add_inst(n);
map_node_to_block(n, block);
}
}
// proj==Op_True --> ne test; proj==Op_False --> eq test.
// One of two graph shapes got matched:
// (IfTrue (If (Bool NE (CmpP ptr NULL))))
// (IfFalse (If (Bool EQ (CmpP ptr NULL))))
// NULL checks are always branch-if-eq. If we see a IfTrue projection
// then we are replacing a 'ne' test with a 'eq' NULL check test.
// We need to flip the projections to keep the same semantics.
if( proj->Opcode() == Op_IfTrue ) {
// Swap order of projections in basic block to swap branch targets
Node *tmp1 = block->get_node(block->end_idx()+1);
Node *tmp2 = block->get_node(block->end_idx()+2);
block->map_node(tmp2, block->end_idx()+1);
block->map_node(tmp1, block->end_idx()+2);
Node *tmp = new Node(C->top()); // Use not NULL input
tmp1->replace_by(tmp);
tmp2->replace_by(tmp1);
tmp->replace_by(tmp2);
tmp->destruct();
}
// Remove the existing null check; use a new implicit null check instead.
// Since schedule-local needs precise def-use info, we need to correct
// it as well.
Node *old_tst = proj->in(0);
MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx);
block->map_node(nul_chk, block->end_idx());
map_node_to_block(nul_chk, block);
// Redirect users of old_test to nul_chk
for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
old_tst->last_out(i2)->set_req(0, nul_chk);
// Clean-up any dead code
for (uint i3 = 0; i3 < old_tst->req(); i3++) {
Node* in = old_tst->in(i3);
old_tst->set_req(i3, NULL);
if (in->outcnt() == 0) {
// Remove dead input node
in->disconnect_inputs(NULL, C);
block->find_remove(in);
}
}
latency_from_uses(nul_chk);
latency_from_uses(best);
// insert anti-dependences to defs in this block
if (! best->needs_anti_dependence_check()) {
for (uint k = 1; k < block->number_of_nodes(); k++) {
Node *n = block->get_node(k);
if (n->needs_anti_dependence_check() &&
n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) {
// Found anti-dependent load
insert_anti_dependences(block, n);
}
}
}
}
//------------------------------select-----------------------------------------
// Select a nice fellow from the worklist to schedule next. If there is only
// one choice, then use it. Projections take top priority for correctness
// reasons - if I see a projection, then it is next. There are a number of
// other special cases, for instructions that consume condition codes, et al.
// These are chosen immediately. Some instructions are required to immediately
// precede the last instruction in the block, and these are taken last. Of the
// remaining cases (most), choose the instruction with the greatest latency
// (that is, the most number of pseudo-cycles required to the end of the
// routine). If there is a tie, choose the instruction with the most inputs.
Node* PhaseCFG::select(
Block* block,
Node_List &worklist,
GrowableArray<int> &ready_cnt,
VectorSet &next_call,
uint sched_slot,
intptr_t* recalc_pressure_nodes) {
// If only a single entry on the stack, use it
uint cnt = worklist.size();
if (cnt == 1) {
Node *n = worklist[0];
worklist.map(0,worklist.pop());
return n;
}
uint choice = 0; // Bigger is most important
uint latency = 0; // Bigger is scheduled first
uint score = 0; // Bigger is better
int idx = -1; // Index in worklist
int cand_cnt = 0; // Candidate count
bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
// Order in worklist is used to break ties.
// See caller for how this is used to delay scheduling
// of induction variable increments to after the other
// uses of the phi are scheduled.
Node *n = worklist[i]; // Get Node on worklist
int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
if( n->is_Proj() || // Projections always win
n->Opcode()== Op_Con || // So does constant 'Top'
iop == Op_CreateEx || // Create-exception must start block
iop == Op_CheckCastPP
) {
worklist.map(i,worklist.pop());
return n;
}
// Final call in a block must be adjacent to 'catch'
Node *e = block->end();
if( e->is_Catch() && e->in(0)->in(0) == n )
continue;
// Memory op for an implicit null check has to be at the end of the block
if( e->is_MachNullCheck() && e->in(1) == n )
continue;
// Schedule IV increment last.
if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd) {
// Cmp might be matched into CountedLoopEnd node.
Node *cmp = (e->in(1)->ideal_reg() == Op_RegFlags) ? e->in(1) : e;
if (cmp->req() > 1 && cmp->in(1) == n && n->is_iteratively_computed()) {
continue;
}
}
uint n_choice = 2;
// See if this instruction is consumed by a branch. If so, then (as the
// branch is the last instruction in the basic block) force it to the
// end of the basic block
if ( must_clone[iop] ) {
// See if any use is a branch
bool found_machif = false;
for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
Node* use = n->fast_out(j);
// The use is a conditional branch, make them adjacent
if (use->is_MachIf() && get_block_for_node(use) == block) {
found_machif = true;
break;
}
// More than this instruction pending for successor to be ready,
// don't choose this if other opportunities are ready
if (ready_cnt.at(use->_idx) > 1)
n_choice = 1;
}
// loop terminated, prefer not to use this instruction
if (found_machif)
continue;
}
// See if this has a predecessor that is "must_clone", i.e. sets the
// condition code. If so, choose this first
for (uint j = 0; j < n->req() ; j++) {
Node *inn = n->in(j);
if (inn) {
if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
n_choice = 3;
break;
}
}
}
// MachTemps should be scheduled last so they are near their uses
if (n->is_MachTemp()) {
n_choice = 1;
}
uint n_latency = get_latency_for_node(n);
uint n_score = n->req(); // Many inputs get high score to break ties
if (OptoRegScheduling && block_size_threshold_ok) {
if (recalc_pressure_nodes[n->_idx] == 0x7fff7fff) {
_regalloc->_scratch_int_pressure.init(_regalloc->_sched_int_pressure.high_pressure_limit());
_regalloc->_scratch_float_pressure.init(_regalloc->_sched_float_pressure.high_pressure_limit());
// simulate the notion that we just picked this node to schedule
n->add_flag(Node::Flag_is_scheduled);
// now caculate its effect upon the graph if we did
adjust_register_pressure(n, block, recalc_pressure_nodes, false);
// return its state for finalize in case somebody else wins
n->remove_flag(Node::Flag_is_scheduled);
// now save the two final pressure components of register pressure, limiting pressure calcs to short size
short int_pressure = (short)_regalloc->_scratch_int_pressure.current_pressure();
short float_pressure = (short)_regalloc->_scratch_float_pressure.current_pressure();
recalc_pressure_nodes[n->_idx] = int_pressure;
recalc_pressure_nodes[n->_idx] |= (float_pressure << 16);
}
if (_scheduling_for_pressure) {
latency = n_latency;
if (n_choice != 3) {
// Now evaluate each register pressure component based on threshold in the score.
// In general the defining register type will dominate the score, ergo we will not see register pressure grow on both banks
// on a single instruction, but we might see it shrink on both banks.
// For each use of register that has a register class that is over the high pressure limit, we build n_score up for
// live ranges that terminate on this instruction.
if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
short int_pressure = (short)recalc_pressure_nodes[n->_idx];
n_score = (int_pressure < 0) ? ((score + n_score) - int_pressure) : (int_pressure > 0) ? 1 : n_score;
}
if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
short float_pressure = (short)(recalc_pressure_nodes[n->_idx] >> 16);
n_score = (float_pressure < 0) ? ((score + n_score) - float_pressure) : (float_pressure > 0) ? 1 : n_score;
}
} else {
// make sure we choose these candidates
score = 0;
}
}
}
// Keep best latency found
cand_cnt++;
if (choice < n_choice ||
(choice == n_choice &&
((StressLCM && Compile::randomized_select(cand_cnt)) ||
(!StressLCM &&
(latency < n_latency ||
(latency == n_latency &&
(score < n_score))))))) {
choice = n_choice;
latency = n_latency;
score = n_score;
idx = i; // Also keep index in worklist
}
} // End of for all ready nodes in worklist
assert(idx >= 0, "index should be set");
Node *n = worklist[(uint)idx]; // Get the winner
worklist.map((uint)idx, worklist.pop()); // Compress worklist
return n;
}
//-------------------------adjust_register_pressure----------------------------
void PhaseCFG::adjust_register_pressure(Node* n, Block* block, intptr_t* recalc_pressure_nodes, bool finalize_mode) {
PhaseLive* liveinfo = _regalloc->get_live();
IndexSet* liveout = liveinfo->live(block);
// first adjust the register pressure for the sources
for (uint i = 1; i < n->req(); i++) {
bool lrg_ends = false;
Node *src_n = n->in(i);
if (src_n == NULL) continue;
if (!src_n->is_Mach()) continue;
uint src = _regalloc->_lrg_map.find(src_n);
if (src == 0) continue;
LRG& lrg_src = _regalloc->lrgs(src);
// detect if the live range ends or not
if (liveout->member(src) == false) {
lrg_ends = true;
for (DUIterator_Fast jmax, j = src_n->fast_outs(jmax); j < jmax; j++) {
Node* m = src_n->fast_out(j); // Get user
if (m == n) continue;
if (!m->is_Mach()) continue;
MachNode *mach = m->as_Mach();
bool src_matches = false;
int iop = mach->ideal_Opcode();
switch (iop) {
case Op_StoreB:
case Op_StoreC:
case Op_StoreCM:
case Op_StoreD:
case Op_StoreF:
case Op_StoreI:
case Op_StoreL:
case Op_StoreP:
case Op_StoreN:
case Op_StoreVector:
case Op_StoreNKlass:
for (uint k = 1; k < m->req(); k++) {
Node *in = m->in(k);
if (in == src_n) {
src_matches = true;
break;
}
}
break;
default:
src_matches = true;
break;
}
// If we have a store as our use, ignore the non source operands
if (src_matches == false) continue;
// Mark every unscheduled use which is not n with a recalculation
if ((get_block_for_node(m) == block) && (!m->is_scheduled())) {
if (finalize_mode && !m->is_Phi()) {
recalc_pressure_nodes[m->_idx] = 0x7fff7fff;
}
lrg_ends = false;
}
}
}
// if none, this live range ends and we can adjust register pressure
if (lrg_ends) {
if (finalize_mode) {
_regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
} else {
_regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
}
}
}
// now add the register pressure from the dest and evaluate which heuristic we should use:
// 1.) The default, latency scheduling
// 2.) Register pressure scheduling based on the high pressure limit threshold for int or float register stacks
uint dst = _regalloc->_lrg_map.find(n);
if (dst != 0) {
LRG& lrg_dst = _regalloc->lrgs(dst);
if (finalize_mode) {
_regalloc->raise_pressure(block, lrg_dst, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
// check to see if we fall over the register pressure cliff here
if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
_scheduling_for_pressure = true;
} else if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
_scheduling_for_pressure = true;
} else {
// restore latency scheduling mode
_scheduling_for_pressure = false;
}
} else {
_regalloc->raise_pressure(block, lrg_dst, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
}
}
}
//------------------------------set_next_call----------------------------------
void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
if( next_call.test_set(n->_idx) ) return;
for( uint i=0; i<n->len(); i++ ) {
Node *m = n->in(i);
if( !m ) continue; // must see all nodes in block that precede call
if (get_block_for_node(m) == block) {
set_next_call(block, m, next_call);
}
}
}
//------------------------------needed_for_next_call---------------------------
// Set the flag 'next_call' for each Node that is needed for the next call to
// be scheduled. This flag lets me bias scheduling so Nodes needed for the
// next subroutine call get priority - basically it moves things NOT needed
// for the next call till after the call. This prevents me from trying to
// carry lots of stuff live across a call.
void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
// Find the next control-defining Node in this block
Node* call = NULL;
for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
Node* m = this_call->fast_out(i);
if (get_block_for_node(m) == block && // Local-block user
m != this_call && // Not self-start node
m->is_MachCall()) {
call = m;
break;
}
}
if (call == NULL) return; // No next call (e.g., block end is near)
// Set next-call for all inputs to this call
set_next_call(block, call, next_call);
}
//------------------------------add_call_kills-------------------------------------
// helper function that adds caller save registers to MachProjNode
static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
// Fill in the kill mask for the call
for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
if( !regs.Member(r) ) { // Not already defined by the call
// Save-on-call register?
if ((save_policy[r] == 'C') ||
(save_policy[r] == 'A') ||
((save_policy[r] == 'E') && exclude_soe)) {
proj->_rout.Insert(r);
}
}
}
}
//------------------------------sched_call-------------------------------------
uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
RegMask regs;
// Schedule all the users of the call right now. All the users are
// projection Nodes, so they must be scheduled next to the call.
// Collect all the defined registers.
for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
Node* n = mcall->fast_out(i);
assert( n->is_MachProj(), "" );
int n_cnt = ready_cnt.at(n->_idx)-1;
ready_cnt.at_put(n->_idx, n_cnt);
assert( n_cnt == 0, "" );
// Schedule next to call
block->map_node(n, node_cnt++);
// Collect defined registers
regs.OR(n->out_RegMask());
// Check for scheduling the next control-definer
if( n->bottom_type() == Type::CONTROL )
// Warm up next pile of heuristic bits
needed_for_next_call(block, n, next_call);
// Children of projections are now all ready
for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
Node* m = n->fast_out(j); // Get user
if(get_block_for_node(m) != block) {
continue;
}
if( m->is_Phi() ) continue;
int m_cnt = ready_cnt.at(m->_idx) - 1;
ready_cnt.at_put(m->_idx, m_cnt);
if( m_cnt == 0 )
worklist.push(m);
}
}
// Act as if the call defines the Frame Pointer.
// Certainly the FP is alive and well after the call.
regs.Insert(_matcher.c_frame_pointer());
// Set all registers killed and not already defined by the call.
uint r_cnt = mcall->tf()->range()->cnt();
int op = mcall->ideal_Opcode();
MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
map_node_to_block(proj, block);
block->insert_node(proj, node_cnt++);
// Select the right register save policy.
const char *save_policy = NULL;
switch (op) {
case Op_CallRuntime:
case Op_CallLeaf:
case Op_CallLeafNoFP:
// Calling C code so use C calling convention
save_policy = _matcher._c_reg_save_policy;
break;
case Op_CallStaticJava:
case Op_CallDynamicJava:
// Calling Java code so use Java calling convention
save_policy = _matcher._register_save_policy;
break;
default:
ShouldNotReachHere();
}
// When using CallRuntime mark SOE registers as killed by the call
// so values that could show up in the RegisterMap aren't live in a
// callee saved register since the register wouldn't know where to
// find them. CallLeaf and CallLeafNoFP are ok because they can't
// have debug info on them. Strictly speaking this only needs to be
// done for oops since idealreg2debugmask takes care of debug info
// references but there no way to handle oops differently than other
// pointers as far as the kill mask goes.
bool exclude_soe = op == Op_CallRuntime;
// If the call is a MethodHandle invoke, we need to exclude the
// register which is used to save the SP value over MH invokes from
// the mask. Otherwise this register could be used for
// deoptimization information.
if (op == Op_CallStaticJava) {
MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
if (mcallstaticjava->_method_handle_invoke)
proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
}
add_call_kills(proj, regs, save_policy, exclude_soe);
return node_cnt;
}
//------------------------------schedule_local---------------------------------
// Topological sort within a block. Someday become a real scheduler.
bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t *recalc_pressure_nodes) {
// Already "sorted" are the block start Node (as the first entry), and
// the block-ending Node and any trailing control projections. We leave
// these alone. PhiNodes and ParmNodes are made to follow the block start
// Node. Everything else gets topo-sorted.
#ifndef PRODUCT
if (trace_opto_pipelining()) {
tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
for (uint i = 0;i < block->number_of_nodes(); i++) {
tty->print("# ");
block->get_node(i)->fast_dump();
}
tty->print_cr("#");
}
#endif
// RootNode is already sorted
if (block->number_of_nodes() == 1) {
return true;
}
bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
// We track the uses of local definitions as input dependences so that
// we know when a given instruction is avialable to be scheduled.
uint i;
if (OptoRegScheduling && block_size_threshold_ok) {
for (i = 1; i < block->number_of_nodes(); i++) { // setup nodes for pressure calc
Node *n = block->get_node(i);
n->remove_flag(Node::Flag_is_scheduled);
if (!n->is_Phi()) {
recalc_pressure_nodes[n->_idx] = 0x7fff7fff;
}
}
}
// Move PhiNodes and ParmNodes from 1 to cnt up to the start
uint node_cnt = block->end_idx();
uint phi_cnt = 1;
for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
Node *n = block->get_node(i);
if( n->is_Phi() || // Found a PhiNode or ParmNode
(n->is_Proj() && n->in(0) == block->head()) ) {
// Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
block->map_node(block->get_node(phi_cnt), i);
block->map_node(n, phi_cnt++); // swap Phi/Parm up front
if (OptoRegScheduling && block_size_threshold_ok) {
// mark n as scheduled
n->add_flag(Node::Flag_is_scheduled);
}
} else { // All others
// Count block-local inputs to 'n'
uint cnt = n->len(); // Input count
uint local = 0;
for( uint j=0; j<cnt; j++ ) {
Node *m = n->in(j);
if( m && get_block_for_node(m) == block && !m->is_top() )
local++; // One more block-local input
}
ready_cnt.at_put(n->_idx, local); // Count em up
#ifdef ASSERT
if( UseConcMarkSweepGC || UseG1GC ) {
if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
// Check the precedence edges
for (uint prec = n->req(); prec < n->len(); prec++) {
Node* oop_store = n->in(prec);
if (oop_store != NULL) {
assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
}
}
}
}
#endif
// A few node types require changing a required edge to a precedence edge
// before allocation.
if( n->is_Mach() && n->req() > TypeFunc::Parms &&
(n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
// MemBarAcquire could be created without Precedent edge.
// del_req() replaces the specified edge with the last input edge
// and then removes the last edge. If the specified edge > number of
// edges the last edge will be moved outside of the input edges array
// and the edge will be lost. This is why this code should be
// executed only when Precedent (== TypeFunc::Parms) edge is present.
Node *x = n->in(TypeFunc::Parms);
if (x != NULL && get_block_for_node(x) == block && n->find_prec_edge(x) != -1) {
// Old edge to node within same block will get removed, but no precedence
// edge will get added because it already exists. Update ready count.
int cnt = ready_cnt.at(n->_idx);
assert(cnt > 1, "MemBar node %d must not get ready here", n->_idx);
ready_cnt.at_put(n->_idx, cnt-1);
}
n->del_req(TypeFunc::Parms);
n->add_prec(x);
}
}
}
for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
ready_cnt.at_put(block->get_node(i2)->_idx, 0);
// All the prescheduled guys do not hold back internal nodes
uint i3;
for (i3 = 0; i3 < phi_cnt; i3++) { // For all pre-scheduled
Node *n = block->get_node(i3); // Get pre-scheduled
for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
Node* m = n->fast_out(j);
if (get_block_for_node(m) == block) { // Local-block user
int m_cnt = ready_cnt.at(m->_idx)-1;
if (OptoRegScheduling && block_size_threshold_ok) {
// mark m as scheduled
if (m_cnt < 0) {
m->add_flag(Node::Flag_is_scheduled);
}
}
ready_cnt.at_put(m->_idx, m_cnt); // Fix ready count
}
}
}
Node_List delay;
// Make a worklist
Node_List worklist;
for(uint i4=i3; i4<node_cnt; i4++ ) { // Put ready guys on worklist
Node *m = block->get_node(i4);
if( !ready_cnt.at(m->_idx) ) { // Zero ready count?
if (m->is_iteratively_computed()) {
// Push induction variable increments last to allow other uses
// of the phi to be scheduled first. The select() method breaks
// ties in scheduling by worklist order.
delay.push(m);
} else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
// Force the CreateEx to the top of the list so it's processed
// first and ends up at the start of the block.
worklist.insert(0, m);
} else {
worklist.push(m); // Then on to worklist!
}
}
}
while (delay.size()) {
Node* d = delay.pop();
worklist.push(d);
}
if (OptoRegScheduling && block_size_threshold_ok) {
// To stage register pressure calculations we need to examine the live set variables
// breaking them up by register class to compartmentalize the calculations.
uint float_pressure = Matcher::float_pressure(FLOATPRESSURE);
_regalloc->_sched_int_pressure.init(INTPRESSURE);
_regalloc->_sched_float_pressure.init(float_pressure);
_regalloc->_scratch_int_pressure.init(INTPRESSURE);
_regalloc->_scratch_float_pressure.init(float_pressure);
_regalloc->compute_entry_block_pressure(block);
}
// Warm up the 'next_call' heuristic bits
needed_for_next_call(block, block->head(), next_call);
#ifndef PRODUCT
if (trace_opto_pipelining()) {
for (uint j=0; j< block->number_of_nodes(); j++) {
Node *n = block->get_node(j);
int idx = n->_idx;
tty->print("# ready cnt:%3d ", ready_cnt.at(idx));
tty->print("latency:%3d ", get_latency_for_node(n));
tty->print("%4d: %s\n", idx, n->Name());
}
}
#endif
uint max_idx = (uint)ready_cnt.length();
// Pull from worklist and schedule
while( worklist.size() ) { // Worklist is not ready
#ifndef PRODUCT
if (trace_opto_pipelining()) {
tty->print("# ready list:");
for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
Node *n = worklist[i]; // Get Node on worklist
tty->print(" %d", n->_idx);
}
tty->cr();
}
#endif
// Select and pop a ready guy from worklist
Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt, recalc_pressure_nodes);
block->map_node(n, phi_cnt++); // Schedule him next
if (OptoRegScheduling && block_size_threshold_ok) {
n->add_flag(Node::Flag_is_scheduled);
// Now adjust the resister pressure with the node we selected
if (!n->is_Phi()) {
adjust_register_pressure(n, block, recalc_pressure_nodes, true);
}
}
#ifndef PRODUCT
if (trace_opto_pipelining()) {
tty->print("# select %d: %s", n->_idx, n->Name());
tty->print(", latency:%d", get_latency_for_node(n));
n->dump();
if (Verbose) {
tty->print("# ready list:");
for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
Node *n = worklist[i]; // Get Node on worklist
tty->print(" %d", n->_idx);
}
tty->cr();
}
}
#endif
if( n->is_MachCall() ) {
MachCallNode *mcall = n->as_MachCall();
phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
continue;
}
if (n->is_Mach() && n->as_Mach()->has_call()) {
RegMask regs;
regs.Insert(_matcher.c_frame_pointer());
regs.OR(n->out_RegMask());
MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
map_node_to_block(proj, block);
block->insert_node(proj, phi_cnt++);
add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
}
// Children are now all ready
for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
Node* m = n->fast_out(i5); // Get user
if (get_block_for_node(m) != block) {
continue;
}
if( m->is_Phi() ) continue;
if (m->_idx >= max_idx) { // new node, skip it
assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
continue;
}
int m_cnt = ready_cnt.at(m->_idx) - 1;
ready_cnt.at_put(m->_idx, m_cnt);
if( m_cnt == 0 )
worklist.push(m);
}
}
if( phi_cnt != block->end_idx() ) {
// did not schedule all. Retry, Bailout, or Die
if (C->subsume_loads() == true && !C->failing()) {
// Retry with subsume_loads == false
// If this is the first failure, the sentinel string will "stick"
// to the Compile object, and the C2Compiler will see it and retry.
C->record_failure(C2Compiler::retry_no_subsuming_loads());
}
// assert( phi_cnt == end_idx(), "did not schedule all" );
return false;
}
if (OptoRegScheduling && block_size_threshold_ok) {
_regalloc->compute_exit_block_pressure(block);
block->_reg_pressure = _regalloc->_sched_int_pressure.final_pressure();
block->_freg_pressure = _regalloc->_sched_float_pressure.final_pressure();
}
#ifndef PRODUCT
if (trace_opto_pipelining()) {
tty->print_cr("#");
tty->print_cr("# after schedule_local");
for (uint i = 0;i < block->number_of_nodes();i++) {
tty->print("# ");
block->get_node(i)->fast_dump();
}
tty->print_cr("# ");
if (OptoRegScheduling && block_size_threshold_ok) {
tty->print_cr("# pressure info : %d", block->_pre_order);
_regalloc->print_pressure_info(_regalloc->_sched_int_pressure, "int register info");
_regalloc->print_pressure_info(_regalloc->_sched_float_pressure, "float register info");
}
tty->cr();
}
#endif
return true;
}
//--------------------------catch_cleanup_fix_all_inputs-----------------------
static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
for (uint l = 0; l < use->len(); l++) {
if (use->in(l) == old_def) {
if (l < use->req()) {
use->set_req(l, new_def);
} else {
use->rm_prec(l);
use->add_prec(new_def);
l--;
}
}
}
}
//------------------------------catch_cleanup_find_cloned_def------------------
Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
assert( use_blk != def_blk, "Inter-block cleanup only");
// The use is some block below the Catch. Find and return the clone of the def
// that dominates the use. If there is no clone in a dominating block, then
// create a phi for the def in a dominating block.
// Find which successor block dominates this use. The successor
// blocks must all be single-entry (from the Catch only; I will have
// split blocks to make this so), hence they all dominate.
while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
use_blk = use_blk->_idom;
// Find the successor
Node *fixup = NULL;
uint j;
for( j = 0; j < def_blk->_num_succs; j++ )
if( use_blk == def_blk->_succs[j] )
break;
if( j == def_blk->_num_succs ) {
// Block at same level in dom-tree is not a successor. It needs a
// PhiNode, the PhiNode uses from the def and IT's uses need fixup.
Node_Array inputs = new Node_List(Thread::current()->resource_area());
for(uint k = 1; k < use_blk->num_preds(); k++) {
Block* block = get_block_for_node(use_blk->pred(k));
inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
}
// Check to see if the use_blk already has an identical phi inserted.
// If it exists, it will be at the first position since all uses of a
// def are processed together.
Node *phi = use_blk->get_node(1);
if( phi->is_Phi() ) {
fixup = phi;
for (uint k = 1; k < use_blk->num_preds(); k++) {
if (phi->in(k) != inputs[k]) {
// Not a match
fixup = NULL;
break;
}
}
}
// If an existing PhiNode was not found, make a new one.
if (fixup == NULL) {
Node *new_phi = PhiNode::make(use_blk->head(), def);
use_blk->insert_node(new_phi, 1);
map_node_to_block(new_phi, use_blk);
for (uint k = 1; k < use_blk->num_preds(); k++) {
new_phi->set_req(k, inputs[k]);
}
fixup = new_phi;
}
} else {
// Found the use just below the Catch. Make it use the clone.
fixup = use_blk->get_node(n_clone_idx);
}
return fixup;
}
//--------------------------catch_cleanup_intra_block--------------------------
// Fix all input edges in use that reference "def". The use is in the same
// block as the def and both have been cloned in each successor block.
static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
// Both the use and def have been cloned. For each successor block,
// get the clone of the use, and make its input the clone of the def
// found in that block.
uint use_idx = blk->find_node(use);
uint offset_idx = use_idx - beg;
for( uint k = 0; k < blk->_num_succs; k++ ) {
// Get clone in each successor block
Block *sb = blk->_succs[k];
Node *clone = sb->get_node(offset_idx+1);
assert( clone->Opcode() == use->Opcode(), "" );
// Make use-clone reference the def-clone
catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
}
}
//------------------------------catch_cleanup_inter_block---------------------
// Fix all input edges in use that reference "def". The use is in a different
// block than the def.
void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
if( !use_blk ) return; // Can happen if the use is a precedence edge
Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
catch_cleanup_fix_all_inputs(use, def, new_def);
}
//------------------------------call_catch_cleanup-----------------------------
// If we inserted any instructions between a Call and his CatchNode,
// clone the instructions on all paths below the Catch.
void PhaseCFG::call_catch_cleanup(Block* block) {
// End of region to clone
uint end = block->end_idx();
if( !block->get_node(end)->is_Catch() ) return;
// Start of region to clone
uint beg = end;
while(!block->get_node(beg-1)->is_MachProj() ||
!block->get_node(beg-1)->in(0)->is_MachCall() ) {
beg--;
assert(beg > 0,"Catch cleanup walking beyond block boundary");
}
// Range of inserted instructions is [beg, end)
if( beg == end ) return;
// Clone along all Catch output paths. Clone area between the 'beg' and
// 'end' indices.
for( uint i = 0; i < block->_num_succs; i++ ) {
Block *sb = block->_succs[i];
// Clone the entire area; ignoring the edge fixup for now.
for( uint j = end; j > beg; j-- ) {
Node *clone = block->get_node(j-1)->clone();
sb->insert_node(clone, 1);
map_node_to_block(clone, sb);
if (clone->needs_anti_dependence_check()) {
insert_anti_dependences(sb, clone);
}
}
}
// Fixup edges. Check the def-use info per cloned Node
for(uint i2 = beg; i2 < end; i2++ ) {
uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
Node *n = block->get_node(i2); // Node that got cloned
// Need DU safe iterator because of edge manipulation in calls.
Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
out->push(n->fast_out(j1));
}
uint max = out->size();
for (uint j = 0; j < max; j++) {// For all users
Node *use = out->pop();
Block *buse = get_block_for_node(use);
if( use->is_Phi() ) {
for( uint k = 1; k < use->req(); k++ )
if( use->in(k) == n ) {
Block* b = get_block_for_node(buse->pred(k));
Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
use->set_req(k, fixup);
}
} else {
if (block == buse) {
catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
} else {
catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
}
}
} // End for all users
} // End of for all Nodes in cloned area
// Remove the now-dead cloned ops
for(uint i3 = beg; i3 < end; i3++ ) {
block->get_node(beg)->disconnect_inputs(NULL, C);
block->remove_node(beg);
}
// If the successor blocks have a CreateEx node, move it back to the top
for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
Block *sb = block->_succs[i4];
uint new_cnt = end - beg;
// Remove any newly created, but dead, nodes.
for( uint j = new_cnt; j > 0; j-- ) {
Node *n = sb->get_node(j);
if (n->outcnt() == 0 &&
(!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
n->disconnect_inputs(NULL, C);
sb->remove_node(j);
new_cnt--;
}
}
// If any newly created nodes remain, move the CreateEx node to the top
if (new_cnt > 0) {
Node *cex = sb->get_node(1+new_cnt);
if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
sb->remove_node(1+new_cnt);
sb->insert_node(cex, 1);
}
}
}
}