7119027: G1: use atomics to update RS length / predict time of inc CSet
Summary: Make sure that the updates to the RS length and inc CSet predicted time are updated in an MT-safe way.
Reviewed-by: brutisso, iveresov
/*
* Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/g1/g1MonitoringSupport.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
G1GenerationCounters::G1GenerationCounters(G1MonitoringSupport* g1mm,
const char* name,
int ordinal, int spaces,
size_t min_capacity,
size_t max_capacity,
size_t curr_capacity)
: GenerationCounters(name, ordinal, spaces, min_capacity,
max_capacity, curr_capacity), _g1mm(g1mm) { }
// We pad the capacity three times given that the young generation
// contains three spaces (eden and two survivors).
G1YoungGenerationCounters::G1YoungGenerationCounters(G1MonitoringSupport* g1mm,
const char* name)
: G1GenerationCounters(g1mm, name, 0 /* ordinal */, 3 /* spaces */,
G1MonitoringSupport::pad_capacity(0, 3) /* min_capacity */,
G1MonitoringSupport::pad_capacity(g1mm->young_gen_max(), 3),
G1MonitoringSupport::pad_capacity(0, 3) /* curr_capacity */) {
update_all();
}
G1OldGenerationCounters::G1OldGenerationCounters(G1MonitoringSupport* g1mm,
const char* name)
: G1GenerationCounters(g1mm, name, 1 /* ordinal */, 1 /* spaces */,
G1MonitoringSupport::pad_capacity(0) /* min_capacity */,
G1MonitoringSupport::pad_capacity(g1mm->old_gen_max()),
G1MonitoringSupport::pad_capacity(0) /* curr_capacity */) {
update_all();
}
void G1YoungGenerationCounters::update_all() {
size_t committed =
G1MonitoringSupport::pad_capacity(_g1mm->young_gen_committed(), 3);
_current_size->set_value(committed);
}
void G1OldGenerationCounters::update_all() {
size_t committed =
G1MonitoringSupport::pad_capacity(_g1mm->old_gen_committed());
_current_size->set_value(committed);
}
G1MonitoringSupport::G1MonitoringSupport(G1CollectedHeap* g1h) :
_g1h(g1h),
_incremental_collection_counters(NULL),
_full_collection_counters(NULL),
_old_collection_counters(NULL),
_old_space_counters(NULL),
_young_collection_counters(NULL),
_eden_counters(NULL),
_from_counters(NULL),
_to_counters(NULL),
_overall_reserved(0),
_overall_committed(0), _overall_used(0),
_young_region_num(0),
_young_gen_committed(0),
_eden_committed(0), _eden_used(0),
_survivor_committed(0), _survivor_used(0),
_old_committed(0), _old_used(0) {
_overall_reserved = g1h->max_capacity();
recalculate_sizes();
// Counters for GC collections
//
// name "collector.0". In a generational collector this would be the
// young generation collection.
_incremental_collection_counters =
new CollectorCounters("G1 incremental collections", 0);
// name "collector.1". In a generational collector this would be the
// old generation collection.
_full_collection_counters =
new CollectorCounters("G1 stop-the-world full collections", 1);
// timer sampling for all counters supporting sampling only update the
// used value. See the take_sample() method. G1 requires both used and
// capacity updated so sampling is not currently used. It might
// be sufficient to update all counters in take_sample() even though
// take_sample() only returns "used". When sampling was used, there
// were some anomolous values emitted which may have been the consequence
// of not updating all values simultaneously (i.e., see the calculation done
// in eden_space_used(), is it possbile that the values used to
// calculate either eden_used or survivor_used are being updated by
// the collector when the sample is being done?).
const bool sampled = false;
// "Generation" and "Space" counters.
//
// name "generation.1" This is logically the old generation in
// generational GC terms. The "1, 1" parameters are for
// the n-th generation (=1) with 1 space.
// Counters are created from minCapacity, maxCapacity, and capacity
_old_collection_counters = new G1OldGenerationCounters(this, "old");
// name "generation.1.space.0"
// Counters are created from maxCapacity, capacity, initCapacity,
// and used.
_old_space_counters = new HSpaceCounters("space", 0 /* ordinal */,
pad_capacity(overall_reserved()) /* max_capacity */,
pad_capacity(old_space_committed()) /* init_capacity */,
_old_collection_counters);
// Young collection set
// name "generation.0". This is logically the young generation.
// The "0, 3" are paremeters for the n-th genertaion (=0) with 3 spaces.
// See _old_collection_counters for additional counters
_young_collection_counters = new G1YoungGenerationCounters(this, "young");
// name "generation.0.space.0"
// See _old_space_counters for additional counters
_eden_counters = new HSpaceCounters("eden", 0 /* ordinal */,
pad_capacity(overall_reserved()) /* max_capacity */,
pad_capacity(eden_space_committed()) /* init_capacity */,
_young_collection_counters);
// name "generation.0.space.1"
// See _old_space_counters for additional counters
// Set the arguments to indicate that this survivor space is not used.
_from_counters = new HSpaceCounters("s0", 1 /* ordinal */,
pad_capacity(0) /* max_capacity */,
pad_capacity(0) /* init_capacity */,
_young_collection_counters);
// Given that this survivor space is not used, we update it here
// once to reflect that its used space is 0 so that we don't have to
// worry about updating it again later.
_from_counters->update_used(0);
// name "generation.0.space.2"
// See _old_space_counters for additional counters
_to_counters = new HSpaceCounters("s1", 2 /* ordinal */,
pad_capacity(overall_reserved()) /* max_capacity */,
pad_capacity(survivor_space_committed()) /* init_capacity */,
_young_collection_counters);
}
void G1MonitoringSupport::recalculate_sizes() {
G1CollectedHeap* g1 = g1h();
// Recalculate all the sizes from scratch. We assume that this is
// called at a point where no concurrent updates to the various
// values we read here are possible (i.e., at a STW phase at the end
// of a GC).
size_t young_list_length = g1->young_list()->length();
size_t survivor_list_length = g1->g1_policy()->recorded_survivor_regions();
assert(young_list_length >= survivor_list_length, "invariant");
size_t eden_list_length = young_list_length - survivor_list_length;
// Max length includes any potential extensions to the young gen
// we'll do when the GC locker is active.
size_t young_list_max_length = g1->g1_policy()->young_list_max_length();
assert(young_list_max_length >= survivor_list_length, "invariant");
size_t eden_list_max_length = young_list_max_length - survivor_list_length;
_overall_used = g1->used_unlocked();
_eden_used = eden_list_length * HeapRegion::GrainBytes;
_survivor_used = survivor_list_length * HeapRegion::GrainBytes;
_young_region_num = young_list_length;
_old_used = subtract_up_to_zero(_overall_used, _eden_used + _survivor_used);
// First calculate the committed sizes that can be calculated independently.
_survivor_committed = _survivor_used;
_old_committed = HeapRegion::align_up_to_region_byte_size(_old_used);
// Next, start with the overall committed size.
_overall_committed = g1->capacity();
size_t committed = _overall_committed;
// Remove the committed size we have calculated so far (for the
// survivor and old space).
assert(committed >= (_survivor_committed + _old_committed), "sanity");
committed -= _survivor_committed + _old_committed;
// Next, calculate and remove the committed size for the eden.
_eden_committed = eden_list_max_length * HeapRegion::GrainBytes;
// Somewhat defensive: be robust in case there are inaccuracies in
// the calculations
_eden_committed = MIN2(_eden_committed, committed);
committed -= _eden_committed;
// Finally, give the rest to the old space...
_old_committed += committed;
// ..and calculate the young gen committed.
_young_gen_committed = _eden_committed + _survivor_committed;
assert(_overall_committed ==
(_eden_committed + _survivor_committed + _old_committed),
"the committed sizes should add up");
// Somewhat defensive: cap the eden used size to make sure it
// never exceeds the committed size.
_eden_used = MIN2(_eden_used, _eden_committed);
// _survivor_committed and _old_committed are calculated in terms of
// the corresponding _*_used value, so the next two conditions
// should hold.
assert(_survivor_used <= _survivor_committed, "post-condition");
assert(_old_used <= _old_committed, "post-condition");
}
void G1MonitoringSupport::recalculate_eden_size() {
G1CollectedHeap* g1 = g1h();
// When a new eden region is allocated, only the eden_used size is
// affected (since we have recalculated everything else at the last GC).
size_t young_region_num = g1h()->young_list()->length();
if (young_region_num > _young_region_num) {
size_t diff = young_region_num - _young_region_num;
_eden_used += diff * HeapRegion::GrainBytes;
// Somewhat defensive: cap the eden used size to make sure it
// never exceeds the committed size.
_eden_used = MIN2(_eden_used, _eden_committed);
_young_region_num = young_region_num;
}
}
void G1MonitoringSupport::update_sizes() {
recalculate_sizes();
if (UsePerfData) {
eden_counters()->update_capacity(pad_capacity(eden_space_committed()));
eden_counters()->update_used(eden_space_used());
// only the to survivor space (s1) is active, so we don't need to
// update the counteres for the from survivor space (s0)
to_counters()->update_capacity(pad_capacity(survivor_space_committed()));
to_counters()->update_used(survivor_space_used());
old_space_counters()->update_capacity(pad_capacity(old_space_committed()));
old_space_counters()->update_used(old_space_used());
old_collection_counters()->update_all();
young_collection_counters()->update_all();
}
}
void G1MonitoringSupport::update_eden_size() {
recalculate_eden_size();
if (UsePerfData) {
eden_counters()->update_used(eden_space_used());
}
}