8054834: Modular Source Code
Reviewed-by: alanb, chegar, ihse, mduigou
Contributed-by: alan.bateman@oracle.com, alex.buckley@oracle.com, chris.hegarty@oracle.com, erik.joelsson@oracle.com, jonathan.gibbons@oracle.com, karen.kinnear@oracle.com, magnus.ihse.bursie@oracle.com, mandy.chung@oracle.com, mark.reinhold@oracle.com, paul.sandoz@oracle.com
/*
* Copyright (c) 2007, 2008, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "D3DPipeline.h"
#include "jlong.h"
#include "GraphicsPrimitiveMgr.h"
#include "D3DContext.h"
#include "D3DSurfaceData.h"
#include "D3DBufImgOps.h"
#include "D3DPaints.h"
#include "D3DRenderQueue.h"
#include "D3DShaders.h"
#include "D3DTextRenderer.h"
#include "D3DPipelineManager.h"
#include "D3DGlyphCache.h"
typedef struct {
D3DBLEND src;
D3DBLEND dst;
} D3DBlendRule;
/**
* This table contains the standard blending rules (or Porter-Duff compositing
* factors) used in SetRenderState(), indexed by the rule constants from the
* AlphaComposite class.
*/
D3DBlendRule StdBlendRules[] = {
{ D3DBLEND_ZERO, D3DBLEND_ZERO }, /* 0 - Nothing */
{ D3DBLEND_ZERO, D3DBLEND_ZERO }, /* 1 - RULE_Clear */
{ D3DBLEND_ONE, D3DBLEND_ZERO }, /* 2 - RULE_Src */
{ D3DBLEND_ONE, D3DBLEND_INVSRCALPHA }, /* 3 - RULE_SrcOver */
{ D3DBLEND_INVDESTALPHA, D3DBLEND_ONE }, /* 4 - RULE_DstOver */
{ D3DBLEND_DESTALPHA, D3DBLEND_ZERO }, /* 5 - RULE_SrcIn */
{ D3DBLEND_ZERO, D3DBLEND_SRCALPHA }, /* 6 - RULE_DstIn */
{ D3DBLEND_INVDESTALPHA, D3DBLEND_ZERO }, /* 7 - RULE_SrcOut */
{ D3DBLEND_ZERO, D3DBLEND_INVSRCALPHA }, /* 8 - RULE_DstOut */
{ D3DBLEND_ZERO, D3DBLEND_ONE }, /* 9 - RULE_Dst */
{ D3DBLEND_DESTALPHA, D3DBLEND_INVSRCALPHA }, /*10 - RULE_SrcAtop */
{ D3DBLEND_INVDESTALPHA, D3DBLEND_SRCALPHA }, /*11 - RULE_DstAtop */
{ D3DBLEND_INVDESTALPHA, D3DBLEND_INVSRCALPHA }, /*12 - RULE_AlphaXor*/
};
void
D3DUtils_SetOrthoMatrixOffCenterLH(D3DMATRIX *m,
float width, float height)
{
ZeroMemory(m, sizeof(D3DMATRIX));
m->_11 = 2.0f/width;
m->_22 = -2.0f/height;
m->_33 = 0.5f;
m->_44 = 1.0f;
m->_41 = -1.0f;
m->_42 = 1.0f;
m->_43 = 0.5f;
}
void
D3DUtils_SetIdentityMatrix(D3DMATRIX *m)
{
m->_12 = m->_13 = m->_14 = m->_21 = m->_23 = m->_24 = 0.0f;
m->_31 = m->_32 = m->_34 = m->_41 = m->_42 = m->_43 = 0.0f;
m->_11 = m->_22 = m->_33 = m->_44 = 1.0f;
}
// the following methods are copies of the AffineTransform's class
// corresponding methods, with these changes to the indexes:
// 00 -> 11
// 11 -> 22
// 01 -> 21
// 10 -> 12
// 02 -> 41
// 12 -> 42
void
D3DUtils_2DConcatenateM(D3DMATRIX *m, D3DMATRIX *m1)
{
float M0, M1;
float T00, T10, T01, T11;
float T02, T12;
T00 = m1->_11; T01 = m1->_21; T02 = m1->_41;
T10 = m1->_12; T11 = m1->_22; T12 = m1->_42;
M0 = m->_11;
M1 = m->_21;
m->_11 = T00 * M0 + T10 * M1;
m->_21 = T01 * M0 + T11 * M1;
m->_41 += T02 * M0 + T12 * M1;
M0 = m->_12;
M1 = m->_22;
m->_12 = T00 * M0 + T10 * M1;
m->_22 = T01 * M0 + T11 * M1;
m->_42 += T02 * M0 + T12 * M1;
}
#ifdef UPDATE_TX
void
D3DUtils_2DScaleM(D3DMATRIX *m, float sx, float sy)
{
m->_11 *= sx;
m->_22 *= sy;
}
void
D3DUtils_2DInvertM(D3DMATRIX *m)
{
float M11, M21, M41;
float M12, M22, M42;
float det;
M11 = m->_11; M21 = m->_21; M41 = m->_41;
M12 = m->_12; M22 = m->_22; M42 = m->_42;
det = M11 * M22 - M21 * M12;
if (fabs(det) <= 0.0000000001f) {
memset(m, 0, sizeof(D3DMATRIX));
return;
}
m->_11 = M22 / det;
m->_12 = -M12 / det;
m->_21 = -M21 / det;
m->_22 = M11 / det;
m->_41 = (M21 * M42 - M22 * M41) / det;
m->_42 = (M12 * M41 - M11 * M42) / det;
}
void
D3DUtils_2DTranslateM(D3DMATRIX *m, float tx, float ty)
{
m->_41 = tx * m->_11 + ty * m->_21 + m->_41;
m->_42 = tx * m->_12 + ty * m->_22 + m->_42;
}
void
D3DUtils_2DTransformXY(D3DMATRIX *m, float *px, float *py)
{
float x = *px;
float y = *py;
*px = x * m->_11 + y * m->_21 + m->_41;
*py = x * m->_12 + y * m->_22 + m->_42;
}
void
D3DUtils_2DInverseTransformXY(D3DMATRIX *m, float *px, float *py)
{
float x = *px, y = *py;
x -= m->_41;
y -= m->_42;
float det = m->_11 * m->_22 - m->_21 * m->_12;
if (fabs(det) < 0.0000000001f) {
*px = 0.0f;
*py = 0.0f;
} else {
*px = (x * m->_22 - y * m->_21) / det;
*py = (y * m->_11 - x * m->_12) / det;
}
}
#endif // UPDATE_TX
static void
D3DContext_DisposeShader(jlong programID)
{
IDirect3DPixelShader9 *shader =
(IDirect3DPixelShader9 *)jlong_to_ptr(programID);
J2dTraceLn(J2D_TRACE_INFO, "D3DContext_DisposeShader");
SAFE_RELEASE(shader);
}
// static
HRESULT
D3DContext::CreateInstance(IDirect3D9 *pd3d9, UINT adapter, D3DContext **ppCtx)
{
HRESULT res;
*ppCtx = new D3DContext(pd3d9, adapter);
if (FAILED(res = (*ppCtx)->InitContext())) {
delete *ppCtx;
*ppCtx = NULL;
}
return res;
}
D3DContext::D3DContext(IDirect3D9 *pd3d, UINT adapter)
{
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::D3DContext");
J2dTraceLn1(J2D_TRACE_VERBOSE, " pd3d=0x%x", pd3d);
pd3dObject = pd3d;
pd3dDevice = NULL;
adapterOrdinal = adapter;
pResourceMgr = NULL;
pMaskCache = NULL;
pVCacher = NULL;
pSyncQuery = NULL;
pSyncRTRes = NULL;
pStateBlock = NULL;
D3DC_INIT_SHADER_LIST(convolvePrograms, MAX_CONVOLVE);
D3DC_INIT_SHADER_LIST(rescalePrograms, MAX_RESCALE);
D3DC_INIT_SHADER_LIST(lookupPrograms, MAX_LOOKUP);
D3DC_INIT_SHADER_LIST(basicGradPrograms, 4);
D3DC_INIT_SHADER_LIST(linearGradPrograms, 8);
D3DC_INIT_SHADER_LIST(radialGradPrograms, 8);
pLCDGlyphCache= NULL;
pGrayscaleGlyphCache= NULL;
lcdTextProgram = NULL;
aaPgramProgram = NULL;
contextCaps = CAPS_EMPTY;
bBeginScenePending = FALSE;
ZeroMemory(&devCaps, sizeof(D3DCAPS9));
ZeroMemory(&curParams, sizeof(curParams));
extraAlpha = 1.0f;
}
void D3DContext::ReleaseDefPoolResources()
{
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::ReleaseDefPoolResources");
EndScene();
D3DPipelineManager::NotifyAdapterEventListeners(devCaps.AdapterOrdinal,
DEVICE_RESET);
contextCaps = CAPS_EMPTY;
SAFE_RELEASE(pSyncQuery);
SAFE_RELEASE(pStateBlock);
if (pVCacher != NULL) {
pVCacher->ReleaseDefPoolResources();
}
if (pMaskCache != NULL) {
pMaskCache->ReleaseDefPoolResources();
}
if (pLCDGlyphCache != NULL) {
pLCDGlyphCache->ReleaseDefPoolResources();
}
if (pGrayscaleGlyphCache != NULL) {
pGrayscaleGlyphCache->ReleaseDefPoolResources();
}
if (pResourceMgr != NULL) {
if (pSyncRTRes != NULL) {
pResourceMgr->ReleaseResource(pSyncRTRes);
pSyncRTRes = NULL;
}
pResourceMgr->ReleaseDefPoolResources();
}
ZeroMemory(lastTexture, sizeof(lastTexture));
ZeroMemory(lastTextureColorState, sizeof(lastTextureColorState));
}
void D3DContext::ReleaseContextResources()
{
J2dTraceLn1(J2D_TRACE_INFO,
"D3DContext::ReleaseContextResources: pd3dDevice = 0x%x",
pd3dDevice);
ReleaseDefPoolResources();
D3DPipelineManager::NotifyAdapterEventListeners(devCaps.AdapterOrdinal,
DEVICE_DISPOSED);
// dispose shader lists
ShaderList_Dispose(&convolvePrograms);
ShaderList_Dispose(&rescalePrograms);
ShaderList_Dispose(&lookupPrograms);
ShaderList_Dispose(&basicGradPrograms);
ShaderList_Dispose(&linearGradPrograms);
ShaderList_Dispose(&radialGradPrograms);
SAFE_DELETE(pLCDGlyphCache);
SAFE_DELETE(pGrayscaleGlyphCache);
SAFE_RELEASE(lcdTextProgram);
SAFE_RELEASE(aaPgramProgram);
SAFE_DELETE(pVCacher);
SAFE_DELETE(pMaskCache);
SAFE_DELETE(pResourceMgr);
}
D3DContext::~D3DContext() {
J2dTraceLn2(J2D_TRACE_INFO,
"~D3DContext: pd3dDevice=0x%x, pd3dObject =0x%x",
pd3dDevice, pd3dObject);
ReleaseContextResources();
SAFE_RELEASE(pd3dDevice);
}
HRESULT
D3DContext::InitDevice(IDirect3DDevice9 *pd3dDevice)
{
HRESULT res = S_OK;
pd3dDevice->GetDeviceCaps(&devCaps);
J2dRlsTraceLn1(J2D_TRACE_INFO,
"D3DContext::InitDevice: device %d", adapterOrdinal);
// disable some of the unneeded and costly d3d functionality
pd3dDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
pd3dDevice->SetRenderState(D3DRS_SPECULARENABLE, FALSE);
pd3dDevice->SetRenderState(D3DRS_LIGHTING, FALSE);
pd3dDevice->SetRenderState(D3DRS_CLIPPING, FALSE);
pd3dDevice->SetRenderState(D3DRS_ZENABLE, D3DZB_FALSE);
pd3dDevice->SetRenderState(D3DRS_ZWRITEENABLE, D3DZB_FALSE);
pd3dDevice->SetRenderState(D3DRS_COLORVERTEX, FALSE);
pd3dDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE);
// set the default texture addressing mode
pd3dDevice->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP);
pd3dDevice->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP);
// REMIND: check supported filters with
// IDirect3D9::CheckDeviceFormat with D3DUSAGE_QUERY_FILTER
pd3dDevice->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_POINT);
pd3dDevice->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_POINT);
// these states never change
pd3dDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_MODULATE);
pd3dDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE);
pd3dDevice->SetTextureStageState(0, D3DTSS_ALPHAARG2, D3DTA_DIFFUSE);
pd3dDevice->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_DIFFUSE);
pd3dDevice->SetTextureStageState(1, D3DTSS_ALPHAOP, D3DTOP_MODULATE);
pd3dDevice->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_MODULATE);
pd3dDevice->SetTextureStageState(1, D3DTSS_ALPHAARG2, D3DTA_CURRENT);
pd3dDevice->SetTextureStageState(1, D3DTSS_COLORARG2, D3DTA_CURRENT);
// init the array of latest textures
ZeroMemory(lastTexture, sizeof(lastTexture));
ZeroMemory(lastTextureColorState, sizeof(lastTextureColorState));
opState = STATE_CHANGE;
if (pResourceMgr == NULL) {
res = D3DResourceManager::CreateInstance(this, &pResourceMgr);
} else {
res = pResourceMgr->Init(this);
}
RETURN_STATUS_IF_FAILED(res);
if (pVCacher == NULL) {
res = D3DVertexCacher::CreateInstance(this, &pVCacher);
} else {
res = pVCacher->Init(this);
}
RETURN_STATUS_IF_FAILED(res);
if (pMaskCache == NULL) {
res = D3DMaskCache::CreateInstance(this, &pMaskCache);
} else{
res = pMaskCache->Init(this);
}
RETURN_STATUS_IF_FAILED(res);
if (pLCDGlyphCache != NULL) {
if (FAILED(res = pLCDGlyphCache->Init(this))) {
// we can live without the cache
SAFE_DELETE(pLCDGlyphCache);
res = S_OK;
}
}
if (pGrayscaleGlyphCache != NULL) {
if (FAILED(res = pGrayscaleGlyphCache->Init(this))) {
// we can live without the cache
SAFE_DELETE(pGrayscaleGlyphCache);
res = S_OK;
}
}
D3DMATRIX tx;
D3DUtils_SetIdentityMatrix(&tx);
pd3dDevice->SetTransform(D3DTS_WORLD, &tx);
bIsIdentityTx = TRUE;
if (pSyncQuery == NULL) {
// this is allowed to fail, do not propagate the error
if (FAILED(pd3dDevice->CreateQuery(D3DQUERYTYPE_EVENT, &pSyncQuery))) {
J2dRlsTraceLn(J2D_TRACE_WARNING,
"D3DContext::InitDevice: sync query not available");
pSyncQuery = NULL;
}
}
if (pSyncRTRes == NULL) {
D3DFORMAT format;
if (FAILED(GetResourceManager()->
CreateRTSurface(32, 32, TRUE, TRUE, &format, &pSyncRTRes))) {
J2dRlsTraceLn(J2D_TRACE_WARNING,
"D3DContext::InitDevice: "
"error creating sync surface");
}
}
bBeginScenePending = FALSE;
J2dRlsTraceLn1(J2D_TRACE_INFO,
"D3DContext::InitDefice: successfully initialized device %d",
adapterOrdinal);
return res;
}
HRESULT
D3DContext::CheckAndResetDevice()
{
HRESULT res = E_FAIL;
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::CheckAndResetDevice");
if (pd3dDevice != NULL) {
if (FAILED(res = pd3dDevice->TestCooperativeLevel())) {
if (res == D3DERR_DEVICELOST) {
J2dTraceLn1(J2D_TRACE_VERBOSE, " device %d is still lost",
adapterOrdinal);
// nothing to be done here, wait for D3DERR_DEVICENOTRESET
return res;
} else if (res == D3DERR_DEVICENOTRESET) {
J2dTraceLn1(J2D_TRACE_VERBOSE, " device %d needs to be reset",
adapterOrdinal);
res = ResetContext();
} else {
// some unexpected error
DebugPrintD3DError(res, "D3DContext::CheckAndResetDevice: "\
"unknown error %x from TestCooperativeLevel");
}
} else {
J2dTraceLn1(J2D_TRACE_VERBOSE, " device %d is not lost",
adapterOrdinal);
}
} else {
J2dTraceLn(J2D_TRACE_VERBOSE, " null device");
}
return res;
}
HRESULT
D3DContext::ResetContext()
{
HRESULT res = E_FAIL;
J2dRlsTraceLn(J2D_TRACE_INFO, "D3DContext::ResetContext");
if (pd3dDevice != NULL) {
D3DPRESENT_PARAMETERS newParams;
newParams = curParams;
if (newParams.Windowed) {
// reset to the current display mode if we're windowed,
// otherwise to the display mode we were in when the device
// was lost
newParams.BackBufferFormat = D3DFMT_UNKNOWN;
newParams.FullScreen_RefreshRateInHz = 0;
newParams.BackBufferWidth = 0;
newParams.BackBufferHeight = 0;
}
res = ConfigureContext(&newParams);
}
return res;
}
HRESULT
D3DContext::ConfigureContext(D3DPRESENT_PARAMETERS *pNewParams)
{
J2dRlsTraceLn1(J2D_TRACE_INFO, "D3DContext::ConfigureContext device %d",
adapterOrdinal);
HRESULT res = S_OK;
D3DFORMAT stencilFormat;
HWND focusHWND = D3DPipelineManager::GetInstance()->GetCurrentFocusWindow();
D3DDEVTYPE devType = D3DPipelineManager::GetInstance()->GetDeviceType();
// this is needed so that we can find the stencil buffer format
if (pNewParams->BackBufferFormat == D3DFMT_UNKNOWN) {
D3DDISPLAYMODE dm;
pd3dObject->GetAdapterDisplayMode(adapterOrdinal, &dm);
pNewParams->BackBufferFormat = dm.Format;
}
stencilFormat =
D3DPipelineManager::GetInstance()->GetMatchingDepthStencilFormat(
adapterOrdinal,
pNewParams->BackBufferFormat, pNewParams->BackBufferFormat);
pNewParams->EnableAutoDepthStencil = TRUE;
pNewParams->AutoDepthStencilFormat = stencilFormat;
// do not set device window in the windowed mode, we use additional
// swap chains for rendering, the default chain is not used. otherwise
// our scratch focus window will be made visible
J2dTraceLn1(J2D_TRACE_VERBOSE, " windowed=%d",pNewParams->Windowed);
if (pNewParams->Windowed) {
pNewParams->hDeviceWindow = (HWND)0;
}
// The focus window may change when we're entering/exiting the full-screen
// mode. It may either be set to the default focus window (when there are
// no more devices in fs mode), or to fs window for another device
// in fs mode. See D3DPipelineManager::GetCurrentFocusWindow.
if (pd3dDevice != NULL) {
D3DDEVICE_CREATION_PARAMETERS cParams;
pd3dDevice->GetCreationParameters(&cParams);
if (cParams.hFocusWindow != focusHWND) {
J2dTraceLn(J2D_TRACE_VERBOSE,
" focus window changed, need to recreate the device");
// if fs -> windowed, first exit fs, then recreate, otherwise
// the screen might be left in a different display mode
if (pNewParams->Windowed && !curParams.Windowed) {
J2dTraceLn(J2D_TRACE_VERBOSE,
" exiting full-screen mode, reset the device");
curParams.Windowed = FALSE;
ReleaseDefPoolResources();
res = pd3dDevice->Reset(&curParams);
if (FAILED(res)) {
DebugPrintD3DError(res, "D3DContext::ConfigureContext: "\
"cound not reset the device");
}
}
// note that here we should release all device resources, not only
// thos in the default pool since the device is released
ReleaseContextResources();
SAFE_RELEASE(pd3dDevice);
}
}
if (pd3dDevice != NULL) {
J2dTraceLn(J2D_TRACE_VERBOSE, " resetting the device");
ReleaseDefPoolResources();
if (pNewParams->PresentationInterval == D3DPRESENT_INTERVAL_IMMEDIATE &&
!IsImmediateIntervalSupported())
{
pNewParams->PresentationInterval = D3DPRESENT_INTERVAL_DEFAULT;
}
res = pd3dDevice->Reset(pNewParams);
if (FAILED(res)) {
DebugPrintD3DError(res,
"D3DContext::ConfigureContext: cound not reset the device");
return res;
}
J2dRlsTraceLn1(J2D_TRACE_INFO,
"D3DContext::ConfigureContext: successfully reset device: %d",
adapterOrdinal);
} else {
D3DCAPS9 d3dCaps;
DWORD dwBehaviorFlags;
J2dTraceLn(J2D_TRACE_VERBOSE, " creating a new device");
if (FAILED(res = pd3dObject->GetDeviceCaps(adapterOrdinal,
devType, &d3dCaps)))
{
DebugPrintD3DError(res,
"D3DContext::ConfigureContext: failed to get caps");
return res;
}
if (pNewParams->PresentationInterval == D3DPRESENT_INTERVAL_IMMEDIATE &&
!(d3dCaps.PresentationIntervals & D3DPRESENT_INTERVAL_IMMEDIATE))
{
pNewParams->PresentationInterval = D3DPRESENT_INTERVAL_DEFAULT;
}
// not preserving fpu control word could cause issues (4860749)
dwBehaviorFlags = D3DCREATE_FPU_PRESERVE;
J2dRlsTrace(J2D_TRACE_VERBOSE,
"[V] dwBehaviorFlags=D3DCREATE_FPU_PRESERVE|");
if (d3dCaps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT) {
J2dRlsTrace(J2D_TRACE_VERBOSE,
"D3DCREATE_HARDWARE_VERTEXPROCESSING");
dwBehaviorFlags |= D3DCREATE_HARDWARE_VERTEXPROCESSING;
} else {
J2dRlsTrace(J2D_TRACE_VERBOSE,
"D3DCREATE_SOFTWARE_VERTEXPROCESSING");
dwBehaviorFlags |= D3DCREATE_SOFTWARE_VERTEXPROCESSING;
}
// Handling focus changes by ourselves proved to be problematic,
// so we're reverting back to D3D handling
// dwBehaviorFlags |= D3DCREATE_NOWINDOWCHANGES;
J2dRlsTrace(J2D_TRACE_VERBOSE,"\n");
if (FAILED(res = pd3dObject->CreateDevice(adapterOrdinal, devType,
focusHWND,
dwBehaviorFlags,
pNewParams, &pd3dDevice)))
{
DebugPrintD3DError(res,
"D3DContext::ConfigureContext: error creating d3d device");
return res;
}
J2dRlsTraceLn1(J2D_TRACE_INFO,
"D3DContext::ConfigureContext: successfully created device: %d",
adapterOrdinal);
bIsHWRasterizer = (devType == D3DDEVTYPE_HAL);
}
curParams = *pNewParams;
// during the creation of the device d3d modifies this field, we reset
// it back to 0
curParams.Flags = 0;
if (FAILED(res = InitDevice(pd3dDevice))) {
ReleaseContextResources();
return res;
}
res = InitContextCaps();
return res;
}
HRESULT
D3DContext::InitContext()
{
J2dRlsTraceLn1(J2D_TRACE_INFO, "D3DContext::InitContext device %d",
adapterOrdinal);
D3DPRESENT_PARAMETERS params;
ZeroMemory(¶ms, sizeof(D3DPRESENT_PARAMETERS));
params.hDeviceWindow = 0;
params.Windowed = TRUE;
params.BackBufferCount = 1;
params.BackBufferFormat = D3DFMT_UNKNOWN;
params.SwapEffect = D3DSWAPEFFECT_DISCARD;
params.PresentationInterval = D3DPRESENT_INTERVAL_DEFAULT;
return ConfigureContext(¶ms);
}
HRESULT
D3DContext::Sync()
{
HRESULT res = S_OK;
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::Sync");
if (pSyncQuery != NULL) {
J2dTrace(J2D_TRACE_VERBOSE, " flushing the device queue..");
while (S_FALSE ==
(res = pSyncQuery->GetData(NULL, 0, D3DGETDATA_FLUSH))) ;
J2dTrace(J2D_TRACE_VERBOSE, ".. done\n");
}
if (pSyncRTRes != NULL) {
D3DLOCKED_RECT lr;
IDirect3DSurface9 *pSurface = pSyncRTRes->GetSurface();
if (SUCCEEDED(pSurface->LockRect(&lr, NULL, D3DLOCK_NOSYSLOCK))) {
pSurface->UnlockRect();
}
}
return res;
}
HRESULT
D3DContext::SaveState()
{
HRESULT res;
RETURN_STATUS_IF_NULL(pd3dDevice, S_OK);
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::SaveState");
FlushVertexQueue();
UpdateState(STATE_CHANGE);
if (pStateBlock != NULL) {
J2dTraceLn(J2D_TRACE_WARNING,
"D3DContext::SaveState: existing state block!");
SAFE_RELEASE(pStateBlock);
}
if (SUCCEEDED(res =
pd3dDevice->CreateStateBlock(D3DSBT_ALL, &pStateBlock)))
{
J2dTraceLn(J2D_TRACE_VERBOSE, " created state block");
} else {
J2dTraceLn(J2D_TRACE_WARNING,
"D3DContext::SaveState: failed to create state block");
}
ZeroMemory(lastTexture, sizeof(lastTexture));
return res;
}
HRESULT
D3DContext::RestoreState()
{
HRESULT res = S_OK;
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::RestoreState");
FlushVertexQueue();
UpdateState(STATE_CHANGE);
if (pStateBlock != NULL) {
if (SUCCEEDED(res = pStateBlock->Apply())) {
J2dTraceLn(J2D_TRACE_VERBOSE, " restored device state");
} else {
J2dTraceLn(J2D_TRACE_WARNING,
"D3DContext::RestoreState: failed to restore state");
}
SAFE_RELEASE(pStateBlock);
} else {
J2dTraceLn(J2D_TRACE_WARNING,
"D3DContext::RestoreState: empty state block!");
}
ZeroMemory(lastTexture, sizeof(lastTexture));
return res;
}
#define POINT_FILTER_CAP (D3DPTFILTERCAPS_MAGFPOINT|D3DPTFILTERCAPS_MINFPOINT)
#define LINEAR_FILTER_CAP (D3DPTFILTERCAPS_MAGFLINEAR|D3DPTFILTERCAPS_MINFLINEAR)
BOOL
D3DContext::IsStretchRectFilteringSupported(D3DTEXTUREFILTERTYPE fType)
{
if (fType == D3DTEXF_POINT) {
return ((devCaps.StretchRectFilterCaps & POINT_FILTER_CAP) != 0);
}
if (fType == D3DTEXF_LINEAR) {
return ((devCaps.StretchRectFilterCaps & LINEAR_FILTER_CAP) != 0);
}
return FALSE;
}
BOOL
D3DContext::IsTextureFilteringSupported(D3DTEXTUREFILTERTYPE fType)
{
if (fType == D3DTEXF_POINT) {
return ((devCaps.TextureFilterCaps & POINT_FILTER_CAP) != 0);
}
if (fType == D3DTEXF_LINEAR) {
return ((devCaps.TextureFilterCaps & LINEAR_FILTER_CAP) != 0);
}
return FALSE;
}
BOOL
D3DContext::IsTextureFormatSupported(D3DFORMAT format, DWORD usage)
{
HRESULT hr = pd3dObject->CheckDeviceFormat(adapterOrdinal,
devCaps.DeviceType,
curParams.BackBufferFormat,
usage,
D3DRTYPE_TEXTURE,
format);
return SUCCEEDED( hr );
}
BOOL
D3DContext::IsDepthStencilBufferOk(D3DSURFACE_DESC *pTargetDesc)
{
IDirect3DSurface9 *pStencil;
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::IsDepthStencilBufferOk");
if (SUCCEEDED(pd3dDevice->GetDepthStencilSurface(&pStencil))) {
D3DSURFACE_DESC descStencil;
pStencil->GetDesc(&descStencil);
pStencil->Release();
D3DDISPLAYMODE dm;
return
(SUCCEEDED(pd3dDevice->GetDisplayMode(0, &dm)) &&
pTargetDesc->Width <= descStencil.Width &&
pTargetDesc->Height <= descStencil.Height &&
SUCCEEDED(pd3dObject->CheckDepthStencilMatch(
adapterOrdinal,
devCaps.DeviceType,
dm.Format, pTargetDesc->Format,
descStencil.Format)));
}
J2dTraceLn(J2D_TRACE_VERBOSE,
" current stencil buffer is not compatible with new Render Target");
return false;
}
HRESULT
D3DContext::InitDepthStencilBuffer(D3DSURFACE_DESC *pTargetDesc)
{
HRESULT res;
IDirect3DSurface9 *pBB;
D3DDISPLAYMODE dm;
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::InitDepthStencilBuffer");
if (FAILED(res = pd3dDevice->GetDisplayMode(0, &dm))) {
return res;
}
D3DFORMAT newFormat =
D3DPipelineManager::GetInstance()->GetMatchingDepthStencilFormat(
adapterOrdinal, dm.Format, pTargetDesc->Format);
res = pd3dDevice->CreateDepthStencilSurface(
pTargetDesc->Width, pTargetDesc->Height,
newFormat, D3DMULTISAMPLE_NONE, 0, false, &pBB, 0);
if (SUCCEEDED(res)) {
res = pd3dDevice->SetDepthStencilSurface(pBB);
pBB->Release();
}
return res;
}
HRESULT
D3DContext::SetRenderTarget(IDirect3DSurface9 *pSurface)
{
static D3DMATRIX tx;
HRESULT res;
D3DSURFACE_DESC descNew;
IDirect3DSurface9 *pCurrentTarget;
J2dTraceLn1(J2D_TRACE_INFO,
"D3DContext::SetRenderTarget: pSurface=0x%x",
pSurface);
RETURN_STATUS_IF_NULL(pd3dDevice, E_FAIL);
RETURN_STATUS_IF_NULL(pSurface, E_FAIL);
pSurface->GetDesc(&descNew);
if (SUCCEEDED(res = pd3dDevice->GetRenderTarget(0, &pCurrentTarget))) {
if (pCurrentTarget != pSurface) {
FlushVertexQueue();
if (FAILED(res = pd3dDevice->SetRenderTarget(0, pSurface))) {
DebugPrintD3DError(res, "D3DContext::SetRenderTarget: "\
"error setting render target");
SAFE_RELEASE(pCurrentTarget);
return res;
}
if (!IsDepthStencilBufferOk(&descNew)) {
if (FAILED(res = InitDepthStencilBuffer(&descNew))) {
SAFE_RELEASE(pCurrentTarget);
return res;
}
}
}
SAFE_RELEASE(pCurrentTarget);
}
// we set the transform even if the render target didn't change;
// this is because in some cases (fs mode) we use the default SwapChain of
// the device, and its render target will be the same as the device's, and
// we have to set the matrix correctly. This shouldn't be a performance
// issue as render target changes are relatively rare
D3DUtils_SetOrthoMatrixOffCenterLH(&tx,
(float)descNew.Width,
(float)descNew.Height);
pd3dDevice->SetTransform(D3DTS_PROJECTION, &tx);
J2dTraceLn1(J2D_TRACE_VERBOSE, " current render target=0x%x", pSurface);
return res;
}
HRESULT
D3DContext::ResetTransform()
{
HRESULT res = S_OK;
D3DMATRIX tx;
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::ResetTransform");
if (pd3dDevice == NULL) {
return E_FAIL;
}
// no need for state change, just flush the queue
FlushVertexQueue();
D3DUtils_SetIdentityMatrix(&tx);
if (FAILED(res = pd3dDevice->SetTransform(D3DTS_WORLD, &tx))) {
DebugPrintD3DError(res, "D3DContext::SetTransform failed");
}
bIsIdentityTx = TRUE;
return res;
}
HRESULT
D3DContext::SetTransform(jdouble m00, jdouble m10,
jdouble m01, jdouble m11,
jdouble m02, jdouble m12)
{
HRESULT res = S_OK;
D3DMATRIX tx, tx1;
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::SetTransform");
if (pd3dDevice == NULL) {
return E_FAIL;
}
// no need for state change, just flush the queue
FlushVertexQueue();
// In order to correctly map texels to pixels we need to
// adjust geometry by -0.5f in the transformed space.
// In order to do that we first create a translated matrix
// and then concatenate it with the world transform.
//
// Note that we only use non-id transform with DrawTexture,
// the rest is rendered pre-transformed.
//
// The identity transform for textures is handled in
// D3DVertexCacher::DrawTexture() because shifting by -0.5 for id
// transform breaks lines rendering.
ZeroMemory(&tx1, sizeof(D3DMATRIX));
tx1._11 = (float)m00;
tx1._12 = (float)m10;
tx1._21 = (float)m01;
tx1._22 = (float)m11;
tx1._41 = (float)m02;
tx1._42 = (float)m12;
tx1._33 = 1.0f;
tx1._44 = 1.0f;
D3DUtils_SetIdentityMatrix(&tx);
tx._41 = -0.5f;
tx._42 = -0.5f;
D3DUtils_2DConcatenateM(&tx, &tx1);
J2dTraceLn4(J2D_TRACE_VERBOSE,
" %5f %5f %5f %5f", tx._11, tx._12, tx._13, tx._14);
J2dTraceLn4(J2D_TRACE_VERBOSE,
" %5f %5f %5f %5f", tx._21, tx._22, tx._23, tx._24);
J2dTraceLn4(J2D_TRACE_VERBOSE,
" %5f %5f %5f %5f", tx._31, tx._32, tx._33, tx._34);
J2dTraceLn4(J2D_TRACE_VERBOSE,
" %5f %5f %5f %5f", tx._41, tx._42, tx._43, tx._44);
if (FAILED(res = pd3dDevice->SetTransform(D3DTS_WORLD, &tx))) {
DebugPrintD3DError(res, "D3DContext::SetTransform failed");
}
bIsIdentityTx = FALSE;
return res;
}
HRESULT
D3DContext::SetRectClip(int x1, int y1, int x2, int y2)
{
HRESULT res = S_OK;
D3DSURFACE_DESC desc;
IDirect3DSurface9 *pCurrentTarget;
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::SetRectClip");
J2dTraceLn4(J2D_TRACE_VERBOSE,
" x1=%-4d y1=%-4d x2=%-4d y2=%-4d",
x1, y1, x2, y2);
RETURN_STATUS_IF_NULL(pd3dDevice, E_FAIL);
// no need for state change, just flush the queue
FlushVertexQueue();
pd3dDevice->SetRenderState(D3DRS_ZENABLE, D3DZB_FALSE);
res = pd3dDevice->GetRenderTarget(0, &pCurrentTarget);
RETURN_STATUS_IF_FAILED(res);
pCurrentTarget->GetDesc(&desc);
SAFE_RELEASE(pCurrentTarget);
if (x1 <= 0 && y1 <= 0 &&
(UINT)x2 >= desc.Width && (UINT)y2 >= desc.Height)
{
J2dTraceLn(J2D_TRACE_VERBOSE,
" disabling clip (== render target dimensions)");
return pd3dDevice->SetRenderState(D3DRS_SCISSORTESTENABLE, FALSE);
}
// clip to the dimensions of the target surface, otherwise
// SetScissorRect will fail
if (x1 < 0) x1 = 0;
if (y1 < 0) y1 = 0;
if ((UINT)x2 > desc.Width) x2 = desc.Width;
if ((UINT)y2 > desc.Height) y2 = desc.Height;
if (x1 > x2) x2 = x1 = 0;
if (y1 > y2) y2 = y1 = 0;
RECT newRect = { x1, y1, x2, y2 };
if (SUCCEEDED(res = pd3dDevice->SetScissorRect(&newRect))) {
res = pd3dDevice->SetRenderState(D3DRS_SCISSORTESTENABLE, TRUE);
} else {
DebugPrintD3DError(res, "Error setting scissor rect");
J2dRlsTraceLn4(J2D_TRACE_ERROR,
" x1=%-4d y1=%-4d x2=%-4d y2=%-4d",
x1, y1, x2, y2);
}
return res;
}
HRESULT
D3DContext::ResetClip()
{
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::ResetClip");
// no need for state change, just flush the queue
FlushVertexQueue();
pd3dDevice->SetRenderState(D3DRS_SCISSORTESTENABLE, FALSE);
return pd3dDevice->SetRenderState(D3DRS_ZENABLE, D3DZB_FALSE);
}
ClipType
D3DContext::GetClipType()
{
// REMIND: this method could be optimized: we could keep the
// clip state around when re/setting the clip instead of asking
// every time.
DWORD zEnabled = 0;
DWORD stEnabled = 0;
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::GetClipType");
pd3dDevice->GetRenderState(D3DRS_SCISSORTESTENABLE, &stEnabled);
if (stEnabled) {
return CLIP_RECT;
}
pd3dDevice->GetRenderState(D3DRS_ZENABLE, &zEnabled);
if (zEnabled) {
return CLIP_SHAPE;
}
return CLIP_NONE;
}
/**
* This method assumes that ::SetRenderTarget has already
* been called. SetRenderTarget creates and attaches a
* depth buffer to the target surface prior to setting it
* as target surface to the device.
*/
DWORD dwAlphaSt, dwSrcBlendSt, dwDestBlendSt;
D3DMATRIX tx, idTx;
HRESULT
D3DContext::BeginShapeClip()
{
HRESULT res = S_OK;
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::BeginShapeClip");
UpdateState(STATE_CHANGE);
pd3dDevice->SetRenderState(D3DRS_SCISSORTESTENABLE, FALSE);
// save alpha blending state
pd3dDevice->GetRenderState(D3DRS_ALPHABLENDENABLE, &dwAlphaSt);
pd3dDevice->GetRenderState(D3DRS_SRCBLEND, &dwSrcBlendSt);
pd3dDevice->GetRenderState(D3DRS_DESTBLEND, &dwDestBlendSt);
pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pd3dDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ZERO);
pd3dDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);
pd3dDevice->GetTransform(D3DTS_WORLD, &tx);
D3DUtils_SetIdentityMatrix(&idTx);
// translate the clip spans by 1.0f in z direction so that the
// clip spans are rendered to the z buffer
idTx._43 = 1.0f;
pd3dDevice->SetTransform(D3DTS_WORLD, &idTx);
// The depth buffer is first cleared with zeroes, which is the farthest
// plane from the viewer (our projection matrix is an inversed orthogonal
// transform).
// To set the clip we'll render the clip spans with Z coordinates of 1.0f
// (the closest to the viewer). Since all rendering primitives
// have their vertices' Z coordinate set to 0.0, they will effectively be
// clipped because the Z depth test for them will fail (vertex with 1.0
// depth is closer than the one with 0.0f)
pd3dDevice->SetRenderState(D3DRS_ZENABLE, D3DZB_TRUE);
pd3dDevice->SetRenderState(D3DRS_ZWRITEENABLE, TRUE);
pd3dDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS);
pd3dDevice->Clear(0, NULL, D3DCLEAR_ZBUFFER, 0L, 0.0f, 0x0L);
//res = BeginScene(STATE_SHAPE_CLIPOP);
return res;
}
HRESULT
D3DContext::EndShapeClip()
{
HRESULT res;
// no need for state change, just flush the queue
res = FlushVertexQueue();
// restore alpha blending state
pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, dwAlphaSt);
pd3dDevice->SetRenderState(D3DRS_SRCBLEND, dwSrcBlendSt);
pd3dDevice->SetRenderState(D3DRS_DESTBLEND, dwDestBlendSt);
// resore the transform
pd3dDevice->SetTransform(D3DTS_WORLD, &tx);
// Enable the depth buffer.
// We disable further updates to the depth buffer: it should only
// be updated in SetClip method.
pd3dDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE);
pd3dDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_LESS);
return res;
}
HRESULT
D3DContext::UploadTileToTexture(D3DResource *pTextureRes, void *pixels,
jint dstx, jint dsty,
jint srcx, jint srcy,
jint srcWidth, jint srcHeight,
jint srcStride,
TileFormat srcFormat,
jint *pPixelsTouchedL,
jint* pPixelsTouchedR)
{
#ifndef PtrAddBytes
#define PtrAddBytes(p, b) ((void *) (((intptr_t) (p)) + (b)))
#define PtrCoord(p, x, xinc, y, yinc) PtrAddBytes(p, (y)*(yinc) + (x)*(xinc))
#endif // PtrAddBytes
HRESULT res = S_OK;
IDirect3DTexture9 *pTexture = pTextureRes->GetTexture();
D3DSURFACE_DESC *pDesc = pTextureRes->GetDesc();
RECT r = { dstx, dsty, dstx+srcWidth, dsty+srcHeight };
RECT *pR = &r;
D3DLOCKED_RECT lockedRect;
DWORD dwLockFlags = D3DLOCK_NOSYSLOCK;
// these are only counted for LCD glyph uploads
jint pixelsTouchedL = 0, pixelsTouchedR = 0;
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::UploadTileToTexture");
J2dTraceLn4(J2D_TRACE_VERBOSE,
" rect={%-4d, %-4d, %-4d, %-4d}",
r.left, r.top, r.right, r.bottom);
if (pDesc->Usage == D3DUSAGE_DYNAMIC) {
// it is safe to lock with discard because we don't care about the
// contents of dynamic textures and dstx,dsty for this case is
// always 0,0 because we are uploading into a tile texture
dwLockFlags |= D3DLOCK_DISCARD;
pR = NULL;
}
if (FAILED(res = pTexture->LockRect(0, &lockedRect, pR, dwLockFlags))) {
DebugPrintD3DError(res,
"D3DContext::UploadImageToTexture: could "\
"not lock texture");
return res;
}
if (srcFormat == TILEFMT_1BYTE_ALPHA) {
// either a MaskFill tile, or a grayscale glyph
if (pDesc->Format == D3DFMT_A8) {
void *pSrcPixels = PtrCoord(pixels, srcx, 1, srcy, srcStride);
void *pDstPixels = lockedRect.pBits;
do {
memcpy(pDstPixels, pSrcPixels, srcWidth);
pSrcPixels = PtrAddBytes(pSrcPixels, srcStride);
pDstPixels = PtrAddBytes(pDstPixels, lockedRect.Pitch);
} while (--srcHeight > 0);
}
else if (pDesc->Format == D3DFMT_A8R8G8B8) {
jubyte *pSrcPixels = (jubyte*)
PtrCoord(pixels, srcx, 1, srcy, srcStride);
jint *pDstPixels = (jint*)lockedRect.pBits;
for (int yy = 0; yy < srcHeight; yy++) {
for (int xx = 0; xx < srcWidth; xx++) {
// only need to set the alpha channel (the D3D texture
// state will be setup in this case to replicate the
// alpha channel as needed)
pDstPixels[xx] = pSrcPixels[xx] << 24;
}
pSrcPixels = (jubyte*)PtrAddBytes(pSrcPixels, srcStride);
pDstPixels = (jint*)PtrAddBytes(pDstPixels, lockedRect.Pitch);
}
}
} else if (srcFormat == TILEFMT_3BYTE_RGB) {
// LCD glyph with RGB order
if (pDesc->Format == D3DFMT_R8G8B8) {
jubyte *pSrcPixels = (jubyte*)
PtrCoord(pixels, srcx, 3, srcy, srcStride);
jubyte *pDstPixels = (jubyte*)lockedRect.pBits;
for (int yy = 0; yy < srcHeight; yy++) {
for (int xx = 0; xx < srcWidth*3; xx+=3) {
// alpha channel is ignored in this case
// (note that this is backwards from what one might
// expect; it appears that D3DFMT_R8G8B8 is actually
// laid out in BGR order in memory)
pDstPixels[xx+0] = pSrcPixels[xx+2];
pDstPixels[xx+1] = pSrcPixels[xx+1];
pDstPixels[xx+2] = pSrcPixels[xx+0];
}
pixelsTouchedL +=
(pDstPixels[0+0]|pDstPixels[0+1]|pDstPixels[0+2]) ? 1 : 0;
jint i = 3*(srcWidth-1);
pixelsTouchedR +=
(pDstPixels[i+0]|pDstPixels[i+1]|pDstPixels[i+2]) ? 1 : 0;
pSrcPixels = (jubyte*)PtrAddBytes(pSrcPixels, srcStride);
pDstPixels = (jubyte*)PtrAddBytes(pDstPixels, lockedRect.Pitch);
}
}
else if (pDesc->Format == D3DFMT_A8R8G8B8) {
jubyte *pSrcPixels = (jubyte*)
PtrCoord(pixels, srcx, 3, srcy, srcStride);
jint *pDstPixels = (jint*)lockedRect.pBits;
for (int yy = 0; yy < srcHeight; yy++) {
for (int dx = 0, sx = 0; dx < srcWidth; dx++, sx+=3) {
// alpha channel is ignored in this case
jubyte r = pSrcPixels[sx+0];
jubyte g = pSrcPixels[sx+1];
jubyte b = pSrcPixels[sx+2];
pDstPixels[dx] = (r << 16) | (g << 8) | (b);
}
pixelsTouchedL += (pDstPixels[0] ? 1 : 0);
pixelsTouchedR += (pDstPixels[srcWidth-1] ? 1 : 0);
pSrcPixels = (jubyte*)PtrAddBytes(pSrcPixels, srcStride);
pDstPixels = (jint*)PtrAddBytes(pDstPixels, lockedRect.Pitch);
}
}
} else if (srcFormat == TILEFMT_3BYTE_BGR) {
// LCD glyph with BGR order
if (pDesc->Format == D3DFMT_R8G8B8) {
void *pSrcPixels = PtrCoord(pixels, srcx, 3, srcy, srcStride);
void *pDstPixels = lockedRect.pBits;
jubyte *pbDst;
do {
// alpha channel is ignored in this case
// (note that this is backwards from what one might
// expect; it appears that D3DFMT_R8G8B8 is actually
// laid out in BGR order in memory)
memcpy(pDstPixels, pSrcPixels, srcWidth * 3);
pbDst = (jubyte*)pDstPixels;
pixelsTouchedL +=(pbDst[0+0]|pbDst[0+1]|pbDst[0+2]) ? 1 : 0;
jint i = 3*(srcWidth-1);
pixelsTouchedR +=(pbDst[i+0]|pbDst[i+1]|pbDst[i+2]) ? 1 : 0;
pSrcPixels = PtrAddBytes(pSrcPixels, srcStride);
pDstPixels = PtrAddBytes(pDstPixels, lockedRect.Pitch);
} while (--srcHeight > 0);
}
else if (pDesc->Format == D3DFMT_A8R8G8B8) {
jubyte *pSrcPixels = (jubyte*)
PtrCoord(pixels, srcx, 3, srcy, srcStride);
jint *pDstPixels = (jint*)lockedRect.pBits;
for (int yy = 0; yy < srcHeight; yy++) {
for (int dx = 0, sx = 0; dx < srcWidth; dx++, sx+=3) {
// alpha channel is ignored in this case
jubyte b = pSrcPixels[sx+0];
jubyte g = pSrcPixels[sx+1];
jubyte r = pSrcPixels[sx+2];
pDstPixels[dx] = (r << 16) | (g << 8) | (b);
}
pixelsTouchedL += (pDstPixels[0] ? 1 : 0);
pixelsTouchedR += (pDstPixels[srcWidth-1] ? 1 : 0);
pSrcPixels = (jubyte*)PtrAddBytes(pSrcPixels, srcStride);
pDstPixels = (jint*)PtrAddBytes(pDstPixels, lockedRect.Pitch);
}
}
} else if (srcFormat == TILEFMT_4BYTE_ARGB_PRE) {
// MaskBlit tile
if (pDesc->Format == D3DFMT_A8R8G8B8) {
void *pSrcPixels = PtrCoord(pixels, srcx, 4, srcy, srcStride);
void *pDstPixels = lockedRect.pBits;
do {
memcpy(pDstPixels, pSrcPixels, srcWidth * 4);
pSrcPixels = PtrAddBytes(pSrcPixels, srcStride);
pDstPixels = PtrAddBytes(pDstPixels, lockedRect.Pitch);
} while (--srcHeight > 0);
}
} else {
// should not happen, no-op just in case...
}
if (pPixelsTouchedL) {
*pPixelsTouchedL = pixelsTouchedL;
}
if (pPixelsTouchedR) {
*pPixelsTouchedR = pixelsTouchedR;
}
return pTexture->UnlockRect(0);
}
HRESULT
D3DContext::InitLCDGlyphCache()
{
if (pLCDGlyphCache == NULL) {
return D3DGlyphCache::CreateInstance(this, CACHE_LCD, &pLCDGlyphCache);
}
return S_OK;
}
HRESULT
D3DContext::InitGrayscaleGlyphCache()
{
if (pGrayscaleGlyphCache == NULL) {
return D3DGlyphCache::CreateInstance(this, CACHE_GRAY,
&pGrayscaleGlyphCache);
}
return S_OK;
}
HRESULT
D3DContext::ResetComposite()
{
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::ResetComposite");
RETURN_STATUS_IF_NULL(pd3dDevice, E_FAIL);
HRESULT res = UpdateState(STATE_CHANGE);
pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
extraAlpha = 1.0f;
return res;
}
HRESULT
D3DContext::SetAlphaComposite(jint rule, jfloat ea, jint flags)
{
HRESULT res;
J2dTraceLn3(J2D_TRACE_INFO,
"D3DContext::SetAlphaComposite: rule=%-1d ea=%f flags=%d",
rule, ea, flags);
RETURN_STATUS_IF_NULL(pd3dDevice, E_FAIL);
res = UpdateState(STATE_CHANGE);
// we can safely disable blending when:
// - comp is SrcNoEa or SrcOverNoEa, and
// - the source is opaque
// (turning off blending can have a large positive impact on performance)
if ((rule == RULE_Src || rule == RULE_SrcOver) &&
(ea == 1.0f) &&
(flags & D3DC_SRC_IS_OPAQUE))
{
J2dTraceLn1(J2D_TRACE_VERBOSE,
" disabling alpha comp rule=%-1d ea=1.0 src=opq)", rule);
pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
} else {
J2dTraceLn2(J2D_TRACE_VERBOSE,
" enabling alpha comp (rule=%-1d ea=%f)", rule, ea);
pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pd3dDevice->SetRenderState(D3DRS_SRCBLEND,
StdBlendRules[rule].src);
pd3dDevice->SetRenderState(D3DRS_DESTBLEND,
StdBlendRules[rule].dst);
}
extraAlpha = ea;
return res;
}
#ifdef UPDATE_TX
// Note: this method of adjusting pixel to texel mapping proved to be
// difficult to perfect. The current variation works great for id,
// scale (including all kinds of flips) transforms, but not still not
// for generic transforms.
//
// Since we currently only do DrawTexture with non-id transform we instead
// adjust the geometry (see D3DVertexCacher::DrawTexture(), SetTransform())
//
// In order to enable this code path UpdateTextureTransforms needs to
// be called in SetTexture(), SetTransform() and ResetTranform().
HRESULT
D3DContext::UpdateTextureTransforms(DWORD dwSamplerToUpdate)
{
HRESULT res = S_OK;
DWORD dwSampler, dwMaxSampler;
if (dwSamplerToUpdate == -1) {
// update all used samplers, dwMaxSampler will be set to max
dwSampler = 0;
dwSampler = MAX_USED_TEXTURE_SAMPLER;
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::UpdateTextureTransforms: "\
"updating all samplers");
} else {
// update only given sampler, dwMaxSampler will be set to it as well
dwSampler = dwSamplerToUpdate;
dwMaxSampler = dwSamplerToUpdate;
J2dTraceLn1(J2D_TRACE_INFO, "D3DContext::UpdateTextureTransforms: "\
"updating sampler %d", dwSampler);
}
do {
D3DTRANSFORMSTATETYPE state =
(D3DTRANSFORMSTATETYPE)(D3DTS_TEXTURE0 + dwSampler);
IDirect3DTexture9 *pTexture = lastTexture[dwSampler];
if (pTexture != NULL) {
D3DMATRIX mt, tx;
D3DSURFACE_DESC texDesc;
pd3dDevice->GetTransform(D3DTS_WORLD, &tx);
J2dTraceLn4(10,
" %5f %5f %5f %5f", tx._11, tx._12, tx._13, tx._14);
J2dTraceLn4(10,
" %5f %5f %5f %5f", tx._21, tx._22, tx._23, tx._24);
J2dTraceLn4(10,
" %5f %5f %5f %5f", tx._31, tx._32, tx._33, tx._34);
J2dTraceLn4(10,
" %5f %5f %5f %5f", tx._41, tx._42, tx._43, tx._44);
// this formula works for scales and flips
if (tx._11 == 0.0f) {
tx._11 = tx._12;
}
if (tx._22 == 0.0f) {
tx._22 = tx._21;
}
pTexture->GetLevelDesc(0, &texDesc);
// shift by .5 texel, but take into account
// the scale factor of the device transform
// REMIND: this approach is not entirely correct,
// as it only takes into account the scale of the device
// transform.
mt._31 = (1.0f / (2.0f * texDesc.Width * tx._11));
mt._32 = (1.0f / (2.0f * texDesc.Height * tx._22));
J2dTraceLn2(J2D_TRACE_VERBOSE, " offsets: tx=%f ty=%f",
mt._31, mt._32);
pd3dDevice->SetTextureStageState(dwSampler,
D3DTSS_TEXTURETRANSFORMFLAGS,
D3DTTFF_COUNT2);
res = pd3dDevice->SetTransform(state, &mt);
} else {
res = pd3dDevice->SetTextureStageState(dwSampler,
D3DTSS_TEXTURETRANSFORMFLAGS,
D3DTTFF_DISABLE);
}
dwSampler++;
} while (dwSampler <= dwMaxSampler);
return res;
}
#endif // UPDATE_TX
/**
* We go into the pains of maintaining the list of set textures
* instead of just calling GetTexture() and comparing the old one
* with the new one because it's actually noticeably slower to call
* GetTexture() (note that we'd have to then call Release() on the
* texture since GetTexture() increases texture's ref. count).
*/
HRESULT
D3DContext::SetTexture(IDirect3DTexture9 *pTexture, DWORD dwSampler)
{
HRESULT res = S_OK;
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::SetTexture");
if (dwSampler < 0 || dwSampler > MAX_USED_TEXTURE_SAMPLER) {
J2dTraceLn1(J2D_TRACE_ERROR,
"D3DContext::SetTexture: incorrect sampler: %d", dwSampler);
return E_FAIL;
}
if (lastTexture[dwSampler] != pTexture) {
if (FAILED(res = FlushVertexQueue())) {
return res;
}
J2dTraceLn2(J2D_TRACE_VERBOSE,
" new texture=0x%x on sampler %d", pTexture, dwSampler);
res = pd3dDevice->SetTexture(dwSampler, pTexture);
if (SUCCEEDED(res)) {
lastTexture[dwSampler] = pTexture;
// REMIND: see comment at UpdateTextureTransforms
#ifdef UPDATE_TX
res = UpdateTextureTransforms(dwSampler);
#endif
} else {
lastTexture[dwSampler] = NULL;
}
}
return res;
}
HRESULT
D3DContext::UpdateTextureColorState(DWORD dwState, DWORD dwSampler)
{
HRESULT res = S_OK;
if (dwState != lastTextureColorState[dwSampler]) {
res = pd3dDevice->SetTextureStageState(dwSampler,
D3DTSS_ALPHAARG1, dwState);
res = pd3dDevice->SetTextureStageState(dwSampler,
D3DTSS_COLORARG1, dwState);
lastTextureColorState[dwSampler] = dwState;
}
return res;
}
HRESULT /*NOLOCK*/
D3DContext::UpdateState(jbyte newState)
{
HRESULT res = S_OK;
if (opState == newState) {
// The op is the same as last time, so we can return immediately.
return res;
} else if (opState != STATE_CHANGE) {
res = FlushVertexQueue();
}
switch (opState) {
case STATE_MASKOP:
pMaskCache->Disable();
break;
case STATE_GLYPHOP:
D3DTR_DisableGlyphVertexCache(this);
break;
case STATE_TEXTUREOP:
// optimization: certain state changes (those marked STATE_CHANGE)
// are allowed while texturing is enabled.
// In this case, we can allow previousOp to remain as it is and
// then return early.
if (newState == STATE_CHANGE) {
return res;
}
// REMIND: not necessary if we are switching to MASKOP or GLYPHOP
// (or a complex paint, for that matter), but would that be a
// worthwhile optimization?
SetTexture(NULL);
break;
case STATE_AAPGRAMOP:
res = DisableAAParallelogramProgram();
break;
default:
break;
}
switch (newState) {
case STATE_MASKOP:
pMaskCache->Enable();
UpdateTextureColorState(D3DTA_TEXTURE | D3DTA_ALPHAREPLICATE);
break;
case STATE_GLYPHOP:
D3DTR_EnableGlyphVertexCache(this);
UpdateTextureColorState(D3DTA_TEXTURE | D3DTA_ALPHAREPLICATE);
break;
case STATE_TEXTUREOP:
UpdateTextureColorState(D3DTA_TEXTURE);
break;
case STATE_AAPGRAMOP:
res = EnableAAParallelogramProgram();
break;
default:
break;
}
opState = newState;
return res;
}
HRESULT D3DContext::FlushVertexQueue()
{
if (pVCacher != NULL) {
return pVCacher->Render();
}
return E_FAIL;
}
HRESULT D3DContext::BeginScene(jbyte newState)
{
if (!pd3dDevice) {
return E_FAIL;
} else {
UpdateState(newState);
if (!bBeginScenePending) {
bBeginScenePending = TRUE;
HRESULT res = pd3dDevice->BeginScene();
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::BeginScene");
if (FAILED(res)) {
// this will cause context reinitialization
opState = STATE_CHANGE;
}
return res;
}
return S_OK;
}
}
HRESULT D3DContext::EndScene() {
if (bBeginScenePending) {
FlushVertexQueue();
bBeginScenePending = FALSE;
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::EndScene");
return pd3dDevice->EndScene();
}
return S_OK;
}
/**
* Compiles and links the given fragment shader program. If
* successful, this function returns a handle to the newly created shader
* program; otherwise returns 0.
*/
IDirect3DPixelShader9 *D3DContext::CreateFragmentProgram(DWORD **shaders,
ShaderList *programs,
jint flags)
{
DWORD *sourceCode;
IDirect3DPixelShader9 *pProgram;
J2dTraceLn1(J2D_TRACE_INFO,
"D3DContext::CreateFragmentProgram: flags=%d",
flags);
sourceCode = shaders[flags];
if (FAILED(pd3dDevice->CreatePixelShader(sourceCode, &pProgram))) {
J2dRlsTraceLn(J2D_TRACE_ERROR,
"D3DContext::CreateFragmentProgram: error creating program");
return NULL;
}
// add it to the cache
ShaderList_AddProgram(programs, ptr_to_jlong(pProgram),
0 /*unused*/, 0 /*unused*/, flags);
return pProgram;
}
/**
* Locates and enables a fragment program given a list of shader programs
* (ShaderInfos), using this context's state and flags as search
* parameters. The "flags" parameter is a bitwise-or'd value that helps
* differentiate one program for another; the interpretation of this value
* varies depending on the type of shader (BufImgOp, Paint, etc) but here
* it is only used to find another ShaderInfo with that same "flags" value.
*/
HRESULT D3DContext::EnableFragmentProgram(DWORD **shaders,
ShaderList *programList,
jint flags)
{
HRESULT res;
jlong programID;
IDirect3DPixelShader9 *pProgram;
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::EnableFragmentProgram");
programID =
ShaderList_FindProgram(programList,
0 /*unused*/, 0 /*unused*/, flags);
pProgram = (IDirect3DPixelShader9 *)jlong_to_ptr(programID);
if (pProgram == NULL) {
pProgram = CreateFragmentProgram(shaders, programList, flags);
if (pProgram == NULL) {
return E_FAIL;
}
}
if (FAILED(res = pd3dDevice->SetPixelShader(pProgram))) {
J2dRlsTraceLn(J2D_TRACE_ERROR,
"D3DContext::EnableFragmentProgram: error setting pixel shader");
return res;
}
return S_OK;
}
HRESULT D3DContext::EnableBasicGradientProgram(jint flags)
{
return EnableFragmentProgram((DWORD **)gradShaders,
&basicGradPrograms, flags);
}
HRESULT D3DContext::EnableLinearGradientProgram(jint flags)
{
return EnableFragmentProgram((DWORD **)linearShaders,
&linearGradPrograms, flags);
}
HRESULT D3DContext::EnableRadialGradientProgram(jint flags)
{
return EnableFragmentProgram((DWORD **)radialShaders,
&radialGradPrograms, flags);
}
HRESULT D3DContext::EnableConvolveProgram(jint flags)
{
return EnableFragmentProgram((DWORD **)convolveShaders,
&convolvePrograms, flags);
}
HRESULT D3DContext::EnableRescaleProgram(jint flags)
{
return EnableFragmentProgram((DWORD **)rescaleShaders,
&rescalePrograms, flags);
}
HRESULT D3DContext::EnableLookupProgram(jint flags)
{
return EnableFragmentProgram((DWORD **)lookupShaders,
&lookupPrograms, flags);
}
HRESULT D3DContext::EnableLCDTextProgram()
{
HRESULT res;
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::EnableLCDTextProgram");
if (lcdTextProgram == NULL) {
if (FAILED(res = pd3dDevice->CreatePixelShader(lcdtext0,
&lcdTextProgram)))
{
return res;
}
}
if (FAILED(res = pd3dDevice->SetPixelShader(lcdTextProgram))) {
J2dRlsTraceLn(J2D_TRACE_ERROR,
"D3DContext::EnableLCDTextProgram: error setting pixel shader");
return res;
}
return S_OK;
}
HRESULT D3DContext::EnableAAParallelogramProgram()
{
HRESULT res;
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::EnableAAParallelogramProgram");
if (aaPgramProgram == NULL) {
if (FAILED(res = pd3dDevice->CreatePixelShader(aapgram0,
&aaPgramProgram))) {
DebugPrintD3DError(res, "D3DContext::EnableAAParallelogramProgram: "
"error creating pixel shader");
return res;
}
}
if (FAILED(res = pd3dDevice->SetPixelShader(aaPgramProgram))) {
DebugPrintD3DError(res, "D3DContext::EnableAAParallelogramProgram: "
"error setting pixel shader");
return res;
}
return S_OK;
}
HRESULT D3DContext::DisableAAParallelogramProgram()
{
HRESULT res;
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::DisableAAParallelogramProgram");
if (aaPgramProgram != NULL) {
if (FAILED(res = pd3dDevice->SetPixelShader(NULL))) {
DebugPrintD3DError(res,
"D3DContext::DisableAAParallelogramProgram: "
"error clearing pixel shader");
return res;
}
}
return S_OK;
}
BOOL D3DContext::IsAlphaRTSurfaceSupported()
{
HRESULT res = pd3dObject->CheckDeviceFormat(adapterOrdinal,
devCaps.DeviceType,
curParams.BackBufferFormat,
D3DUSAGE_RENDERTARGET,
D3DRTYPE_SURFACE,
D3DFMT_A8R8G8B8);
return SUCCEEDED(res);
}
BOOL D3DContext::IsAlphaRTTSupported()
{
HRESULT res = pd3dObject->CheckDeviceFormat(adapterOrdinal,
devCaps.DeviceType,
curParams.BackBufferFormat,
D3DUSAGE_RENDERTARGET,
D3DRTYPE_TEXTURE,
D3DFMT_A8R8G8B8);
return SUCCEEDED(res);
}
BOOL D3DContext::IsOpaqueRTTSupported()
{
HRESULT res = pd3dObject->CheckDeviceFormat(adapterOrdinal,
devCaps.DeviceType,
curParams.BackBufferFormat,
D3DUSAGE_RENDERTARGET,
D3DRTYPE_TEXTURE,
curParams.BackBufferFormat);
return SUCCEEDED(res);
}
HRESULT D3DContext::InitContextCaps() {
J2dTraceLn(J2D_TRACE_INFO, "D3DContext::InitContextCaps");
J2dTraceLn1(J2D_TRACE_VERBOSE, " caps for adapter %d :", adapterOrdinal);
if (pd3dDevice == NULL || pd3dObject == NULL) {
contextCaps = CAPS_EMPTY;
J2dRlsTraceLn(J2D_TRACE_VERBOSE, " | CAPS_EMPTY");
return E_FAIL;
}
contextCaps = CAPS_DEVICE_OK;
J2dRlsTraceLn(J2D_TRACE_VERBOSE, " | CAPS_DEVICE_OK");
if (IsAlphaRTSurfaceSupported()) {
contextCaps |= CAPS_RT_PLAIN_ALPHA;
J2dRlsTraceLn(J2D_TRACE_VERBOSE, " | CAPS_RT_PLAIN_ALPHA");
}
if (IsAlphaRTTSupported()) {
contextCaps |= CAPS_RT_TEXTURE_ALPHA;
J2dRlsTraceLn(J2D_TRACE_VERBOSE, " | CAPS_RT_TEXTURE_ALPHA");
}
if (IsOpaqueRTTSupported()) {
contextCaps |= CAPS_RT_TEXTURE_OPAQUE;
J2dRlsTraceLn(J2D_TRACE_VERBOSE, " | CAPS_RT_TEXTURE_OPAQUE");
}
if (IsPixelShader20Supported()) {
contextCaps |= CAPS_LCD_SHADER | CAPS_BIOP_SHADER | CAPS_PS20;
J2dRlsTraceLn(J2D_TRACE_VERBOSE,
" | CAPS_LCD_SHADER | CAPS_BIOP_SHADER | CAPS_PS20");
// Pre-PS3.0 video boards are very slow with the AA shader, so
// we will require PS30 hw even though the shader is compiled for 2.0a
// if (IsGradientInstructionExtensionSupported()) {
// contextCaps |= CAPS_AA_SHADER;
// J2dRlsTraceLn(J2D_TRACE_VERBOSE, " | CAPS_AA_SHADER");
// }
}
if (IsPixelShader30Supported()) {
if ((contextCaps & CAPS_AA_SHADER) == 0) {
// This flag was not already mentioned above...
J2dRlsTraceLn(J2D_TRACE_VERBOSE, " | CAPS_AA_SHADER");
}
contextCaps |= CAPS_PS30 | CAPS_AA_SHADER;
J2dRlsTraceLn(J2D_TRACE_VERBOSE, " | CAPS_PS30");
}
if (IsMultiTexturingSupported()) {
contextCaps |= CAPS_MULTITEXTURE;
J2dRlsTraceLn(J2D_TRACE_VERBOSE, " | CAPS_MULTITEXTURE");
}
if (!IsPow2TexturesOnly()) {
contextCaps |= CAPS_TEXNONPOW2;
J2dRlsTraceLn(J2D_TRACE_VERBOSE, " | CAPS_TEXNONPOW2");
}
if (!IsSquareTexturesOnly()) {
contextCaps |= CAPS_TEXNONSQUARE;
J2dRlsTraceLn(J2D_TRACE_VERBOSE, " | CAPS_TEXNONSQUARE");
}
return S_OK;
}