8153713: aarch64: improve short array clearing using store pair
Summary: aarch64: generate store pair instruction to clear short arrays
Reviewed-by: aph
/*
* Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "c1/c1_Runtime1.hpp"
#include "classfile/systemDictionary.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "interpreter/interpreter.hpp"
#include "oops/arrayOop.hpp"
#include "oops/markOop.hpp"
#include "runtime/basicLock.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/os.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
void C1_MacroAssembler::float_cmp(bool is_float, int unordered_result,
FloatRegister f0, FloatRegister f1,
Register result)
{
Label done;
if (is_float) {
fcmps(f0, f1);
} else {
fcmpd(f0, f1);
}
if (unordered_result < 0) {
// we want -1 for unordered or less than, 0 for equal and 1 for
// greater than.
cset(result, NE); // Not equal or unordered
cneg(result, result, LT); // Less than or unordered
} else {
// we want -1 for less than, 0 for equal and 1 for unordered or
// greater than.
cset(result, NE); // Not equal or unordered
cneg(result, result, LO); // Less than
}
}
int C1_MacroAssembler::lock_object(Register hdr, Register obj, Register disp_hdr, Register scratch, Label& slow_case) {
const int aligned_mask = BytesPerWord -1;
const int hdr_offset = oopDesc::mark_offset_in_bytes();
assert(hdr != obj && hdr != disp_hdr && obj != disp_hdr, "registers must be different");
Label done, fail;
int null_check_offset = -1;
verify_oop(obj);
// save object being locked into the BasicObjectLock
str(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes()));
if (UseBiasedLocking) {
assert(scratch != noreg, "should have scratch register at this point");
null_check_offset = biased_locking_enter(disp_hdr, obj, hdr, scratch, false, done, &slow_case);
} else {
null_check_offset = offset();
}
// Load object header
ldr(hdr, Address(obj, hdr_offset));
// and mark it as unlocked
orr(hdr, hdr, markOopDesc::unlocked_value);
// save unlocked object header into the displaced header location on the stack
str(hdr, Address(disp_hdr, 0));
// test if object header is still the same (i.e. unlocked), and if so, store the
// displaced header address in the object header - if it is not the same, get the
// object header instead
lea(rscratch2, Address(obj, hdr_offset));
cmpxchgptr(hdr, disp_hdr, rscratch2, rscratch1, done, /*fallthough*/NULL);
// if the object header was the same, we're done
// if the object header was not the same, it is now in the hdr register
// => test if it is a stack pointer into the same stack (recursive locking), i.e.:
//
// 1) (hdr & aligned_mask) == 0
// 2) sp <= hdr
// 3) hdr <= sp + page_size
//
// these 3 tests can be done by evaluating the following expression:
//
// (hdr - sp) & (aligned_mask - page_size)
//
// assuming both the stack pointer and page_size have their least
// significant 2 bits cleared and page_size is a power of 2
mov(rscratch1, sp);
sub(hdr, hdr, rscratch1);
ands(hdr, hdr, aligned_mask - os::vm_page_size());
// for recursive locking, the result is zero => save it in the displaced header
// location (NULL in the displaced hdr location indicates recursive locking)
str(hdr, Address(disp_hdr, 0));
// otherwise we don't care about the result and handle locking via runtime call
cbnz(hdr, slow_case);
// done
bind(done);
if (PrintBiasedLockingStatistics) {
lea(rscratch2, ExternalAddress((address)BiasedLocking::fast_path_entry_count_addr()));
addmw(Address(rscratch2, 0), 1, rscratch1);
}
return null_check_offset;
}
void C1_MacroAssembler::unlock_object(Register hdr, Register obj, Register disp_hdr, Label& slow_case) {
const int aligned_mask = BytesPerWord -1;
const int hdr_offset = oopDesc::mark_offset_in_bytes();
assert(hdr != obj && hdr != disp_hdr && obj != disp_hdr, "registers must be different");
Label done;
if (UseBiasedLocking) {
// load object
ldr(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes()));
biased_locking_exit(obj, hdr, done);
}
// load displaced header
ldr(hdr, Address(disp_hdr, 0));
// if the loaded hdr is NULL we had recursive locking
// if we had recursive locking, we are done
cbz(hdr, done);
if (!UseBiasedLocking) {
// load object
ldr(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes()));
}
verify_oop(obj);
// test if object header is pointing to the displaced header, and if so, restore
// the displaced header in the object - if the object header is not pointing to
// the displaced header, get the object header instead
// if the object header was not pointing to the displaced header,
// we do unlocking via runtime call
if (hdr_offset) {
lea(rscratch1, Address(obj, hdr_offset));
cmpxchgptr(disp_hdr, hdr, rscratch1, rscratch2, done, &slow_case);
} else {
cmpxchgptr(disp_hdr, hdr, obj, rscratch2, done, &slow_case);
}
// done
bind(done);
}
// Defines obj, preserves var_size_in_bytes
void C1_MacroAssembler::try_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Register t2, Label& slow_case) {
if (UseTLAB) {
tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
} else {
eden_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
incr_allocated_bytes(noreg, var_size_in_bytes, con_size_in_bytes, t1);
}
}
void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register t1, Register t2) {
assert_different_registers(obj, klass, len);
if (UseBiasedLocking && !len->is_valid()) {
assert_different_registers(obj, klass, len, t1, t2);
ldr(t1, Address(klass, Klass::prototype_header_offset()));
} else {
// This assumes that all prototype bits fit in an int32_t
mov(t1, (int32_t)(intptr_t)markOopDesc::prototype());
}
str(t1, Address(obj, oopDesc::mark_offset_in_bytes()));
if (UseCompressedClassPointers) { // Take care not to kill klass
encode_klass_not_null(t1, klass);
strw(t1, Address(obj, oopDesc::klass_offset_in_bytes()));
} else {
str(klass, Address(obj, oopDesc::klass_offset_in_bytes()));
}
if (len->is_valid()) {
strw(len, Address(obj, arrayOopDesc::length_offset_in_bytes()));
} else if (UseCompressedClassPointers) {
store_klass_gap(obj, zr);
}
}
// Zero words; len is in bytes
// Destroys all registers except addr
// len must be a nonzero multiple of wordSize
void C1_MacroAssembler::zero_memory(Register addr, Register len, Register t1) {
assert_different_registers(addr, len, t1, rscratch1, rscratch2);
#ifdef ASSERT
{ Label L;
tst(len, BytesPerWord - 1);
br(Assembler::EQ, L);
stop("len is not a multiple of BytesPerWord");
bind(L);
}
#endif
#ifndef PRODUCT
block_comment("zero memory");
#endif
Label loop;
Label entry;
// Algorithm:
//
// scratch1 = cnt & 7;
// cnt -= scratch1;
// p += scratch1;
// switch (scratch1) {
// do {
// cnt -= 8;
// p[-8] = 0;
// case 7:
// p[-7] = 0;
// case 6:
// p[-6] = 0;
// // ...
// case 1:
// p[-1] = 0;
// case 0:
// p += 8;
// } while (cnt);
// }
const int unroll = 8; // Number of str(zr) instructions we'll unroll
lsr(len, len, LogBytesPerWord);
andr(rscratch1, len, unroll - 1); // tmp1 = cnt % unroll
sub(len, len, rscratch1); // cnt -= unroll
// t1 always points to the end of the region we're about to zero
add(t1, addr, rscratch1, Assembler::LSL, LogBytesPerWord);
adr(rscratch2, entry);
sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 2);
br(rscratch2);
bind(loop);
sub(len, len, unroll);
for (int i = -unroll; i < 0; i++)
str(zr, Address(t1, i * wordSize));
bind(entry);
add(t1, t1, unroll * wordSize);
cbnz(len, loop);
}
// preserves obj, destroys len_in_bytes
void C1_MacroAssembler::initialize_body(Register obj, Register len_in_bytes, int hdr_size_in_bytes, Register t1) {
Label done;
assert(obj != len_in_bytes && obj != t1 && t1 != len_in_bytes, "registers must be different");
assert((hdr_size_in_bytes & (BytesPerWord - 1)) == 0, "header size is not a multiple of BytesPerWord");
Register index = len_in_bytes;
// index is positive and ptr sized
subs(index, index, hdr_size_in_bytes);
br(Assembler::EQ, done);
// note: for the remaining code to work, index must be a multiple of BytesPerWord
#ifdef ASSERT
{ Label L;
tst(index, BytesPerWord - 1);
br(Assembler::EQ, L);
stop("index is not a multiple of BytesPerWord");
bind(L);
}
#endif
// Preserve obj
if (hdr_size_in_bytes)
add(obj, obj, hdr_size_in_bytes);
zero_memory(obj, index, t1);
if (hdr_size_in_bytes)
sub(obj, obj, hdr_size_in_bytes);
// done
bind(done);
}
void C1_MacroAssembler::allocate_object(Register obj, Register t1, Register t2, int header_size, int object_size, Register klass, Label& slow_case) {
assert_different_registers(obj, t1, t2); // XXX really?
assert(header_size >= 0 && object_size >= header_size, "illegal sizes");
try_allocate(obj, noreg, object_size * BytesPerWord, t1, t2, slow_case);
initialize_object(obj, klass, noreg, object_size * HeapWordSize, t1, t2);
}
void C1_MacroAssembler::initialize_object(Register obj, Register klass, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Register t2) {
assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0,
"con_size_in_bytes is not multiple of alignment");
const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize;
initialize_header(obj, klass, noreg, t1, t2);
// clear rest of allocated space
const Register index = t2;
const int threshold = 16 * BytesPerWord; // approximate break even point for code size (see comments below)
if (var_size_in_bytes != noreg) {
mov(index, var_size_in_bytes);
initialize_body(obj, index, hdr_size_in_bytes, t1);
} else if (con_size_in_bytes <= threshold) {
// use explicit null stores
int i = hdr_size_in_bytes;
if (i < con_size_in_bytes && (con_size_in_bytes % (2 * BytesPerWord))) {
str(zr, Address(obj, i));
i += BytesPerWord;
}
for (; i < con_size_in_bytes; i += 2 * BytesPerWord)
stp(zr, zr, Address(obj, i));
} else if (con_size_in_bytes > hdr_size_in_bytes) {
block_comment("zero memory");
// use loop to null out the fields
int words = (con_size_in_bytes - hdr_size_in_bytes) / BytesPerWord;
mov(index, words / 8);
const int unroll = 8; // Number of str(zr) instructions we'll unroll
int remainder = words % unroll;
lea(rscratch1, Address(obj, hdr_size_in_bytes + remainder * BytesPerWord));
Label entry_point, loop;
b(entry_point);
bind(loop);
sub(index, index, 1);
for (int i = -unroll; i < 0; i++) {
if (-i == remainder)
bind(entry_point);
str(zr, Address(rscratch1, i * wordSize));
}
if (remainder == 0)
bind(entry_point);
add(rscratch1, rscratch1, unroll * wordSize);
cbnz(index, loop);
}
membar(StoreStore);
if (CURRENT_ENV->dtrace_alloc_probes()) {
assert(obj == r0, "must be");
far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)));
}
verify_oop(obj);
}
void C1_MacroAssembler::allocate_array(Register obj, Register len, Register t1, Register t2, int header_size, int f, Register klass, Label& slow_case) {
assert_different_registers(obj, len, t1, t2, klass);
// determine alignment mask
assert(!(BytesPerWord & 1), "must be a multiple of 2 for masking code to work");
// check for negative or excessive length
mov(rscratch1, (int32_t)max_array_allocation_length);
cmp(len, rscratch1);
br(Assembler::HS, slow_case);
const Register arr_size = t2; // okay to be the same
// align object end
mov(arr_size, (int32_t)header_size * BytesPerWord + MinObjAlignmentInBytesMask);
add(arr_size, arr_size, len, ext::uxtw, f);
andr(arr_size, arr_size, ~MinObjAlignmentInBytesMask);
try_allocate(obj, arr_size, 0, t1, t2, slow_case);
initialize_header(obj, klass, len, t1, t2);
// clear rest of allocated space
const Register len_zero = len;
initialize_body(obj, arr_size, header_size * BytesPerWord, len_zero);
membar(StoreStore);
if (CURRENT_ENV->dtrace_alloc_probes()) {
assert(obj == r0, "must be");
far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)));
}
verify_oop(obj);
}
void C1_MacroAssembler::inline_cache_check(Register receiver, Register iCache) {
verify_oop(receiver);
// explicit NULL check not needed since load from [klass_offset] causes a trap
// check against inline cache
assert(!MacroAssembler::needs_explicit_null_check(oopDesc::klass_offset_in_bytes()), "must add explicit null check");
cmp_klass(receiver, iCache, rscratch1);
}
void C1_MacroAssembler::build_frame(int framesize, int bang_size_in_bytes) {
// If we have to make this method not-entrant we'll overwrite its
// first instruction with a jump. For this action to be legal we
// must ensure that this first instruction is a B, BL, NOP, BKPT,
// SVC, HVC, or SMC. Make it a NOP.
nop();
assert(bang_size_in_bytes >= framesize, "stack bang size incorrect");
// Make sure there is enough stack space for this method's activation.
// Note that we do this before doing an enter().
generate_stack_overflow_check(bang_size_in_bytes);
MacroAssembler::build_frame(framesize + 2 * wordSize);
if (NotifySimulator) {
notify(Assembler::method_entry);
}
}
void C1_MacroAssembler::remove_frame(int framesize) {
MacroAssembler::remove_frame(framesize + 2 * wordSize);
if (NotifySimulator) {
notify(Assembler::method_reentry);
}
}
void C1_MacroAssembler::verified_entry() {
}
#ifndef PRODUCT
void C1_MacroAssembler::verify_stack_oop(int stack_offset) {
if (!VerifyOops) return;
verify_oop_addr(Address(sp, stack_offset), "oop");
}
void C1_MacroAssembler::verify_not_null_oop(Register r) {
if (!VerifyOops) return;
Label not_null;
cbnz(r, not_null);
stop("non-null oop required");
bind(not_null);
verify_oop(r);
}
void C1_MacroAssembler::invalidate_registers(bool inv_r0, bool inv_r19, bool inv_r2, bool inv_r3, bool inv_r4, bool inv_r5) {
#ifdef ASSERT
static int nn;
if (inv_r0) mov(r0, 0xDEAD);
if (inv_r19) mov(r19, 0xDEAD);
if (inv_r2) mov(r2, nn++);
if (inv_r3) mov(r3, 0xDEAD);
if (inv_r4) mov(r4, 0xDEAD);
if (inv_r5) mov(r5, 0xDEAD);
#endif
}
#endif // ifndef PRODUCT