/*
* Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_C1_C1_LIRGENERATOR_HPP
#define SHARE_VM_C1_C1_LIRGENERATOR_HPP
#include "c1/c1_Instruction.hpp"
#include "c1/c1_LIR.hpp"
#include "ci/ciMethodData.hpp"
#include "utilities/sizes.hpp"
// The classes responsible for code emission and register allocation
class LIRGenerator;
class LIREmitter;
class Invoke;
class SwitchRange;
class LIRItem;
define_array(LIRItemArray, LIRItem*)
define_stack(LIRItemList, LIRItemArray)
class SwitchRange: public CompilationResourceObj {
private:
int _low_key;
int _high_key;
BlockBegin* _sux;
public:
SwitchRange(int start_key, BlockBegin* sux): _low_key(start_key), _high_key(start_key), _sux(sux) {}
void set_high_key(int key) { _high_key = key; }
int high_key() const { return _high_key; }
int low_key() const { return _low_key; }
BlockBegin* sux() const { return _sux; }
};
define_array(SwitchRangeArray, SwitchRange*)
define_stack(SwitchRangeList, SwitchRangeArray)
class ResolveNode;
define_array(NodeArray, ResolveNode*);
define_stack(NodeList, NodeArray);
// Node objects form a directed graph of LIR_Opr
// Edges between Nodes represent moves from one Node to its destinations
class ResolveNode: public CompilationResourceObj {
private:
LIR_Opr _operand; // the source or destinaton
NodeList _destinations; // for the operand
bool _assigned; // Value assigned to this Node?
bool _visited; // Node already visited?
bool _start_node; // Start node already visited?
public:
ResolveNode(LIR_Opr operand)
: _operand(operand)
, _assigned(false)
, _visited(false)
, _start_node(false) {};
// accessors
LIR_Opr operand() const { return _operand; }
int no_of_destinations() const { return _destinations.length(); }
ResolveNode* destination_at(int i) { return _destinations[i]; }
bool assigned() const { return _assigned; }
bool visited() const { return _visited; }
bool start_node() const { return _start_node; }
// modifiers
void append(ResolveNode* dest) { _destinations.append(dest); }
void set_assigned() { _assigned = true; }
void set_visited() { _visited = true; }
void set_start_node() { _start_node = true; }
};
// This is shared state to be used by the PhiResolver so the operand
// arrays don't have to be reallocated for reach resolution.
class PhiResolverState: public CompilationResourceObj {
friend class PhiResolver;
private:
NodeList _virtual_operands; // Nodes where the operand is a virtual register
NodeList _other_operands; // Nodes where the operand is not a virtual register
NodeList _vreg_table; // Mapping from virtual register to Node
public:
PhiResolverState() {}
void reset(int max_vregs);
};
// class used to move value of phi operand to phi function
class PhiResolver: public CompilationResourceObj {
private:
LIRGenerator* _gen;
PhiResolverState& _state; // temporary state cached by LIRGenerator
ResolveNode* _loop;
LIR_Opr _temp;
// access to shared state arrays
NodeList& virtual_operands() { return _state._virtual_operands; }
NodeList& other_operands() { return _state._other_operands; }
NodeList& vreg_table() { return _state._vreg_table; }
ResolveNode* create_node(LIR_Opr opr, bool source);
ResolveNode* source_node(LIR_Opr opr) { return create_node(opr, true); }
ResolveNode* destination_node(LIR_Opr opr) { return create_node(opr, false); }
void emit_move(LIR_Opr src, LIR_Opr dest);
void move_to_temp(LIR_Opr src);
void move_temp_to(LIR_Opr dest);
void move(ResolveNode* src, ResolveNode* dest);
LIRGenerator* gen() {
return _gen;
}
public:
PhiResolver(LIRGenerator* _lir_gen, int max_vregs);
~PhiResolver();
void move(LIR_Opr src, LIR_Opr dest);
};
// only the classes below belong in the same file
class LIRGenerator: public InstructionVisitor, public BlockClosure {
// LIRGenerator should never get instatiated on the heap.
private:
void* operator new(size_t size) throw();
void* operator new[](size_t size) throw();
void operator delete(void* p) { ShouldNotReachHere(); }
void operator delete[](void* p) { ShouldNotReachHere(); }
Compilation* _compilation;
ciMethod* _method; // method that we are compiling
PhiResolverState _resolver_state;
BlockBegin* _block;
int _virtual_register_number;
Values _instruction_for_operand;
BitMap2D _vreg_flags; // flags which can be set on a per-vreg basis
LIR_List* _lir;
BarrierSet* _bs;
LIRGenerator* gen() {
return this;
}
void print_if_not_loaded(const NewInstance* new_instance) PRODUCT_RETURN;
#ifdef ASSERT
LIR_List* lir(const char * file, int line) const {
_lir->set_file_and_line(file, line);
return _lir;
}
#endif
LIR_List* lir() const {
return _lir;
}
// a simple cache of constants used within a block
GrowableArray<LIR_Const*> _constants;
LIR_OprList _reg_for_constants;
Values _unpinned_constants;
friend class PhiResolver;
// unified bailout support
void bailout(const char* msg) const { compilation()->bailout(msg); }
bool bailed_out() const { return compilation()->bailed_out(); }
void block_do_prolog(BlockBegin* block);
void block_do_epilog(BlockBegin* block);
// register allocation
LIR_Opr rlock(Value instr); // lock a free register
LIR_Opr rlock_result(Value instr);
LIR_Opr rlock_result(Value instr, BasicType type);
LIR_Opr rlock_byte(BasicType type);
LIR_Opr rlock_callee_saved(BasicType type);
// get a constant into a register and get track of what register was used
LIR_Opr load_constant(Constant* x);
LIR_Opr load_constant(LIR_Const* constant);
// Given an immediate value, return an operand usable in logical ops.
LIR_Opr load_immediate(int x, BasicType type);
void set_result(Value x, LIR_Opr opr) {
assert(opr->is_valid(), "must set to valid value");
assert(x->operand()->is_illegal(), "operand should never change");
assert(!opr->is_register() || opr->is_virtual(), "should never set result to a physical register");
x->set_operand(opr);
assert(opr == x->operand(), "must be");
if (opr->is_virtual()) {
_instruction_for_operand.at_put_grow(opr->vreg_number(), x, NULL);
}
}
void set_no_result(Value x) { assert(!x->has_uses(), "can't have use"); x->clear_operand(); }
friend class LIRItem;
LIR_Opr round_item(LIR_Opr opr);
LIR_Opr force_to_spill(LIR_Opr value, BasicType t);
PhiResolverState& resolver_state() { return _resolver_state; }
void move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val);
void move_to_phi(ValueStack* cur_state);
// code emission
void do_ArithmeticOp_Long (ArithmeticOp* x);
void do_ArithmeticOp_Int (ArithmeticOp* x);
void do_ArithmeticOp_FPU (ArithmeticOp* x);
// platform dependent
LIR_Opr getThreadPointer();
void do_RegisterFinalizer(Intrinsic* x);
void do_isInstance(Intrinsic* x);
void do_getClass(Intrinsic* x);
void do_currentThread(Intrinsic* x);
void do_MathIntrinsic(Intrinsic* x);
void do_LibmIntrinsic(Intrinsic* x);
void do_ArrayCopy(Intrinsic* x);
void do_CompareAndSwap(Intrinsic* x, ValueType* type);
void do_NIOCheckIndex(Intrinsic* x);
void do_FPIntrinsics(Intrinsic* x);
void do_Reference_get(Intrinsic* x);
void do_update_CRC32(Intrinsic* x);
LIR_Opr call_runtime(BasicTypeArray* signature, LIRItemList* args, address entry, ValueType* result_type, CodeEmitInfo* info);
LIR_Opr call_runtime(BasicTypeArray* signature, LIR_OprList* args, address entry, ValueType* result_type, CodeEmitInfo* info);
// convenience functions
LIR_Opr call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info);
LIR_Opr call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info);
// GC Barriers
// generic interface
void pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val, bool do_load, bool patch, CodeEmitInfo* info);
void post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val);
// specific implementations
// pre barriers
void G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
bool do_load, bool patch, CodeEmitInfo* info);
// post barriers
void G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val);
void CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val);
#ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
void CardTableModRef_post_barrier_helper(LIR_OprDesc* addr, LIR_Const* card_table_base);
#endif
static LIR_Opr result_register_for(ValueType* type, bool callee = false);
ciObject* get_jobject_constant(Value value);
LIRItemList* invoke_visit_arguments(Invoke* x);
void invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list);
void trace_block_entry(BlockBegin* block);
// volatile field operations are never patchable because a klass
// must be loaded to know it's volatile which means that the offset
// it always known as well.
void volatile_field_store(LIR_Opr value, LIR_Address* address, CodeEmitInfo* info);
void volatile_field_load(LIR_Address* address, LIR_Opr result, CodeEmitInfo* info);
void put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data, BasicType type, bool is_volatile);
void get_Object_unsafe(LIR_Opr dest, LIR_Opr src, LIR_Opr offset, BasicType type, bool is_volatile);
void arithmetic_call_op (Bytecodes::Code code, LIR_Opr result, LIR_OprList* args);
void increment_counter(address counter, BasicType type, int step = 1);
void increment_counter(LIR_Address* addr, int step = 1);
// is_strictfp is only needed for mul and div (and only generates different code on i486)
void arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp, CodeEmitInfo* info = NULL);
// machine dependent. returns true if it emitted code for the multiply
bool strength_reduce_multiply(LIR_Opr left, int constant, LIR_Opr result, LIR_Opr tmp);
void store_stack_parameter (LIR_Opr opr, ByteSize offset_from_sp_in_bytes);
void klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve = false);
// this loads the length and compares against the index
void array_range_check (LIR_Opr array, LIR_Opr index, CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info);
// For java.nio.Buffer.checkIndex
void nio_range_check (LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info);
void arithmetic_op_int (Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp);
void arithmetic_op_long (Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL);
void arithmetic_op_fpu (Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp = LIR_OprFact::illegalOpr);
void shift_op (Bytecodes::Code code, LIR_Opr dst_reg, LIR_Opr value, LIR_Opr count, LIR_Opr tmp);
void logic_op (Bytecodes::Code code, LIR_Opr dst_reg, LIR_Opr left, LIR_Opr right);
void monitor_enter (LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info);
void monitor_exit (LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no);
void new_instance (LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info);
// machine dependent
void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info);
void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info);
void arraycopy_helper(Intrinsic* x, int* flags, ciArrayKlass** expected_type);
// returns a LIR_Address to address an array location. May also
// emit some code as part of address calculation. If
// needs_card_mark is true then compute the full address for use by
// both the store and the card mark.
LIR_Address* generate_address(LIR_Opr base,
LIR_Opr index, int shift,
int disp,
BasicType type);
LIR_Address* generate_address(LIR_Opr base, int disp, BasicType type) {
return generate_address(base, LIR_OprFact::illegalOpr, 0, disp, type);
}
LIR_Address* emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr, BasicType type, bool needs_card_mark);
// the helper for generate_address
void add_large_constant(LIR_Opr src, int c, LIR_Opr dest);
// machine preferences and characteristics
bool can_inline_as_constant(Value i) const;
bool can_inline_as_constant(LIR_Const* c) const;
bool can_store_as_constant(Value i, BasicType type) const;
LIR_Opr safepoint_poll_register();
void profile_branch(If* if_instr, If::Condition cond);
void increment_event_counter_impl(CodeEmitInfo* info,
ciMethod *method, int frequency,
int bci, bool backedge, bool notify);
void increment_event_counter(CodeEmitInfo* info, int bci, bool backedge);
void increment_invocation_counter(CodeEmitInfo *info) {
if (compilation()->count_invocations()) {
increment_event_counter(info, InvocationEntryBci, false);
}
}
void increment_backedge_counter(CodeEmitInfo* info, int bci) {
if (compilation()->count_backedges()) {
increment_event_counter(info, bci, true);
}
}
void decrement_age(CodeEmitInfo* info);
CodeEmitInfo* state_for(Instruction* x, ValueStack* state, bool ignore_xhandler = false);
CodeEmitInfo* state_for(Instruction* x);
// allocates a virtual register for this instruction if
// one isn't already allocated. Only for Phi and Local.
LIR_Opr operand_for_instruction(Instruction *x);
void set_block(BlockBegin* block) { _block = block; }
void block_prolog(BlockBegin* block);
void block_epilog(BlockBegin* block);
void do_root (Instruction* instr);
void walk (Instruction* instr);
void bind_block_entry(BlockBegin* block);
void start_block(BlockBegin* block);
LIR_Opr new_register(BasicType type);
LIR_Opr new_register(Value value) { return new_register(as_BasicType(value->type())); }
LIR_Opr new_register(ValueType* type) { return new_register(as_BasicType(type)); }
// returns a register suitable for doing pointer math
LIR_Opr new_pointer_register() {
#ifdef _LP64
return new_register(T_LONG);
#else
return new_register(T_INT);
#endif
}
static LIR_Condition lir_cond(If::Condition cond) {
LIR_Condition l = lir_cond_unknown;
switch (cond) {
case If::eql: l = lir_cond_equal; break;
case If::neq: l = lir_cond_notEqual; break;
case If::lss: l = lir_cond_less; break;
case If::leq: l = lir_cond_lessEqual; break;
case If::geq: l = lir_cond_greaterEqual; break;
case If::gtr: l = lir_cond_greater; break;
case If::aeq: l = lir_cond_aboveEqual; break;
case If::beq: l = lir_cond_belowEqual; break;
default: fatal("You must pass valid If::Condition");
};
return l;
}
#ifdef __SOFTFP__
void do_soft_float_compare(If *x);
#endif // __SOFTFP__
void init();
SwitchRangeArray* create_lookup_ranges(TableSwitch* x);
SwitchRangeArray* create_lookup_ranges(LookupSwitch* x);
void do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux);
void do_RuntimeCall(address routine, Intrinsic* x);
#ifdef TRACE_HAVE_INTRINSICS
void do_ThreadIDIntrinsic(Intrinsic* x);
void do_ClassIDIntrinsic(Intrinsic* x);
#endif
ciKlass* profile_type(ciMethodData* md, int md_first_offset, int md_offset, intptr_t profiled_k,
Value arg, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
ciKlass* callee_signature_k);
void profile_arguments(ProfileCall* x);
void profile_parameters(Base* x);
void profile_parameters_at_call(ProfileCall* x);
public:
Compilation* compilation() const { return _compilation; }
FrameMap* frame_map() const { return _compilation->frame_map(); }
ciMethod* method() const { return _method; }
BlockBegin* block() const { return _block; }
IRScope* scope() const { return block()->scope(); }
int max_virtual_register_number() const { return _virtual_register_number; }
void block_do(BlockBegin* block);
// Flags that can be set on vregs
enum VregFlag {
must_start_in_memory = 0 // needs to be assigned a memory location at beginning, but may then be loaded in a register
, callee_saved = 1 // must be in a callee saved register
, byte_reg = 2 // must be in a byte register
, num_vreg_flags
};
LIRGenerator(Compilation* compilation, ciMethod* method)
: _compilation(compilation)
, _method(method)
, _virtual_register_number(LIR_OprDesc::vreg_base)
, _vreg_flags(NULL, 0, num_vreg_flags) {
init();
}
// for virtual registers, maps them back to Phi's or Local's
Instruction* instruction_for_opr(LIR_Opr opr);
Instruction* instruction_for_vreg(int reg_num);
void set_vreg_flag (int vreg_num, VregFlag f);
bool is_vreg_flag_set(int vreg_num, VregFlag f);
void set_vreg_flag (LIR_Opr opr, VregFlag f) { set_vreg_flag(opr->vreg_number(), f); }
bool is_vreg_flag_set(LIR_Opr opr, VregFlag f) { return is_vreg_flag_set(opr->vreg_number(), f); }
// statics
static LIR_Opr exceptionOopOpr();
static LIR_Opr exceptionPcOpr();
static LIR_Opr divInOpr();
static LIR_Opr divOutOpr();
static LIR_Opr remOutOpr();
static LIR_Opr shiftCountOpr();
LIR_Opr syncLockOpr();
LIR_Opr syncTempOpr();
LIR_Opr atomicLockOpr();
// returns a register suitable for saving the thread in a
// call_runtime_leaf if one is needed.
LIR_Opr getThreadTemp();
// visitor functionality
virtual void do_Phi (Phi* x);
virtual void do_Local (Local* x);
virtual void do_Constant (Constant* x);
virtual void do_LoadField (LoadField* x);
virtual void do_StoreField (StoreField* x);
virtual void do_ArrayLength (ArrayLength* x);
virtual void do_LoadIndexed (LoadIndexed* x);
virtual void do_StoreIndexed (StoreIndexed* x);
virtual void do_NegateOp (NegateOp* x);
virtual void do_ArithmeticOp (ArithmeticOp* x);
virtual void do_ShiftOp (ShiftOp* x);
virtual void do_LogicOp (LogicOp* x);
virtual void do_CompareOp (CompareOp* x);
virtual void do_IfOp (IfOp* x);
virtual void do_Convert (Convert* x);
virtual void do_NullCheck (NullCheck* x);
virtual void do_TypeCast (TypeCast* x);
virtual void do_Invoke (Invoke* x);
virtual void do_NewInstance (NewInstance* x);
virtual void do_NewTypeArray (NewTypeArray* x);
virtual void do_NewObjectArray (NewObjectArray* x);
virtual void do_NewMultiArray (NewMultiArray* x);
virtual void do_CheckCast (CheckCast* x);
virtual void do_InstanceOf (InstanceOf* x);
virtual void do_MonitorEnter (MonitorEnter* x);
virtual void do_MonitorExit (MonitorExit* x);
virtual void do_Intrinsic (Intrinsic* x);
virtual void do_BlockBegin (BlockBegin* x);
virtual void do_Goto (Goto* x);
virtual void do_If (If* x);
virtual void do_IfInstanceOf (IfInstanceOf* x);
virtual void do_TableSwitch (TableSwitch* x);
virtual void do_LookupSwitch (LookupSwitch* x);
virtual void do_Return (Return* x);
virtual void do_Throw (Throw* x);
virtual void do_Base (Base* x);
virtual void do_OsrEntry (OsrEntry* x);
virtual void do_ExceptionObject(ExceptionObject* x);
virtual void do_RoundFP (RoundFP* x);
virtual void do_UnsafeGetRaw (UnsafeGetRaw* x);
virtual void do_UnsafePutRaw (UnsafePutRaw* x);
virtual void do_UnsafeGetObject(UnsafeGetObject* x);
virtual void do_UnsafePutObject(UnsafePutObject* x);
virtual void do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x);
virtual void do_ProfileCall (ProfileCall* x);
virtual void do_ProfileReturnType (ProfileReturnType* x);
virtual void do_ProfileInvoke (ProfileInvoke* x);
virtual void do_RuntimeCall (RuntimeCall* x);
virtual void do_MemBar (MemBar* x);
virtual void do_RangeCheckPredicate(RangeCheckPredicate* x);
#ifdef ASSERT
virtual void do_Assert (Assert* x);
#endif
#ifdef C1_LIRGENERATOR_MD_HPP
#include C1_LIRGENERATOR_MD_HPP
#endif
};
class LIRItem: public CompilationResourceObj {
private:
Value _value;
LIRGenerator* _gen;
LIR_Opr _result;
bool _destroys_register;
LIR_Opr _new_result;
LIRGenerator* gen() const { return _gen; }
public:
LIRItem(Value value, LIRGenerator* gen) {
_destroys_register = false;
_gen = gen;
set_instruction(value);
}
LIRItem(LIRGenerator* gen) {
_destroys_register = false;
_gen = gen;
_result = LIR_OprFact::illegalOpr;
set_instruction(NULL);
}
void set_instruction(Value value) {
_value = value;
_result = LIR_OprFact::illegalOpr;
if (_value != NULL) {
_gen->walk(_value);
_result = _value->operand();
}
_new_result = LIR_OprFact::illegalOpr;
}
Value value() const { return _value; }
ValueType* type() const { return value()->type(); }
LIR_Opr result() {
assert(!_destroys_register || (!_result->is_register() || _result->is_virtual()),
"shouldn't use set_destroys_register with physical regsiters");
if (_destroys_register && _result->is_register()) {
if (_new_result->is_illegal()) {
_new_result = _gen->new_register(type());
gen()->lir()->move(_result, _new_result);
}
return _new_result;
} else {
return _result;
}
return _result;
}
void set_result(LIR_Opr opr);
void load_item();
void load_byte_item();
void load_nonconstant();
// load any values which can't be expressed as part of a single store instruction
void load_for_store(BasicType store_type);
void load_item_force(LIR_Opr reg);
void dont_load_item() {
// do nothing
}
void set_destroys_register() {
_destroys_register = true;
}
bool is_constant() const { return value()->as_Constant() != NULL; }
bool is_stack() { return result()->is_stack(); }
bool is_register() { return result()->is_register(); }
ciObject* get_jobject_constant() const;
jint get_jint_constant() const;
jlong get_jlong_constant() const;
jfloat get_jfloat_constant() const;
jdouble get_jdouble_constant() const;
jint get_address_constant() const;
};
#endif // SHARE_VM_C1_C1_LIRGENERATOR_HPP