hotspot/src/share/vm/gc/g1/g1CollectedHeap.cpp
author sjohanss
Fri, 13 Nov 2015 09:28:53 +0100
changeset 34135 317af749634b
parent 33803 d61d5830df80
child 34137 41cc1ac3e1d9
permissions -rw-r--r--
8139424: SIGSEGV, Problematic frame: # V [libjvm.so+0xd0c0cc] void InstanceKlass::oop_oop_iterate_oop_maps_specialized<true,oopDesc*,MarkAndPushClosure> Summary: The crash was caused by a faulty eager humongous reclaim. The reason for reclaiming a live object was that the call to cleanupHRRS was done after dirtying cards and clearing the remembered sets for the humongous object. This could lead to one or many cards being missed. Reviewed-by: tbenson, kbarrett, tschatzl

/*
 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/metadataOnStackMark.hpp"
#include "classfile/stringTable.hpp"
#include "code/codeCache.hpp"
#include "code/icBuffer.hpp"
#include "gc/g1/bufferingOopClosure.hpp"
#include "gc/g1/concurrentG1Refine.hpp"
#include "gc/g1/concurrentG1RefineThread.hpp"
#include "gc/g1/concurrentMarkThread.inline.hpp"
#include "gc/g1/g1Allocator.inline.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1CollectorPolicy.hpp"
#include "gc/g1/g1CollectorState.hpp"
#include "gc/g1/g1ErgoVerbose.hpp"
#include "gc/g1/g1EvacFailure.hpp"
#include "gc/g1/g1GCPhaseTimes.hpp"
#include "gc/g1/g1Log.hpp"
#include "gc/g1/g1MarkSweep.hpp"
#include "gc/g1/g1OopClosures.inline.hpp"
#include "gc/g1/g1ParScanThreadState.inline.hpp"
#include "gc/g1/g1RegionToSpaceMapper.hpp"
#include "gc/g1/g1RemSet.inline.hpp"
#include "gc/g1/g1RootClosures.hpp"
#include "gc/g1/g1RootProcessor.hpp"
#include "gc/g1/g1StringDedup.hpp"
#include "gc/g1/g1YCTypes.hpp"
#include "gc/g1/heapRegion.inline.hpp"
#include "gc/g1/heapRegionRemSet.hpp"
#include "gc/g1/heapRegionSet.inline.hpp"
#include "gc/g1/suspendibleThreadSet.hpp"
#include "gc/g1/vm_operations_g1.hpp"
#include "gc/shared/gcHeapSummary.hpp"
#include "gc/shared/gcId.hpp"
#include "gc/shared/gcLocker.inline.hpp"
#include "gc/shared/gcTimer.hpp"
#include "gc/shared/gcTrace.hpp"
#include "gc/shared/gcTraceTime.hpp"
#include "gc/shared/generationSpec.hpp"
#include "gc/shared/isGCActiveMark.hpp"
#include "gc/shared/referenceProcessor.hpp"
#include "gc/shared/taskqueue.inline.hpp"
#include "memory/allocation.hpp"
#include "memory/iterator.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/atomic.inline.hpp"
#include "runtime/init.hpp"
#include "runtime/orderAccess.inline.hpp"
#include "runtime/vmThread.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/stack.inline.hpp"

size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;

// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
// serialized by acquiring the HeapLock.  This happens in mem_allocate
// and allocate_new_tlab, which are the "entry" points to the
// allocation code from the rest of the JVM.  (Note that this does not
// apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.)

// Local to this file.

class RefineCardTableEntryClosure: public CardTableEntryClosure {
  bool _concurrent;
public:
  RefineCardTableEntryClosure() : _concurrent(true) { }

  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
    bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
    // This path is executed by the concurrent refine or mutator threads,
    // concurrently, and so we do not care if card_ptr contains references
    // that point into the collection set.
    assert(!oops_into_cset, "should be");

    if (_concurrent && SuspendibleThreadSet::should_yield()) {
      // Caller will actually yield.
      return false;
    }
    // Otherwise, we finished successfully; return true.
    return true;
  }

  void set_concurrent(bool b) { _concurrent = b; }
};


class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 private:
  size_t _num_processed;

 public:
  RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }

  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
    *card_ptr = CardTableModRefBS::dirty_card_val();
    _num_processed++;
    return true;
  }

  size_t num_processed() const { return _num_processed; }
};


void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
  HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
}

void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
  // The from card cache is not the memory that is actually committed. So we cannot
  // take advantage of the zero_filled parameter.
  reset_from_card_cache(start_idx, num_regions);
}

void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
{
  // Claim the right to put the region on the dirty cards region list
  // by installing a self pointer.
  HeapRegion* next = hr->get_next_dirty_cards_region();
  if (next == NULL) {
    HeapRegion* res = (HeapRegion*)
      Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
                          NULL);
    if (res == NULL) {
      HeapRegion* head;
      do {
        // Put the region to the dirty cards region list.
        head = _dirty_cards_region_list;
        next = (HeapRegion*)
          Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
        if (next == head) {
          assert(hr->get_next_dirty_cards_region() == hr,
                 "hr->get_next_dirty_cards_region() != hr");
          if (next == NULL) {
            // The last region in the list points to itself.
            hr->set_next_dirty_cards_region(hr);
          } else {
            hr->set_next_dirty_cards_region(next);
          }
        }
      } while (next != head);
    }
  }
}

HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
{
  HeapRegion* head;
  HeapRegion* hr;
  do {
    head = _dirty_cards_region_list;
    if (head == NULL) {
      return NULL;
    }
    HeapRegion* new_head = head->get_next_dirty_cards_region();
    if (head == new_head) {
      // The last region.
      new_head = NULL;
    }
    hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
                                          head);
  } while (hr != head);
  assert(hr != NULL, "invariant");
  hr->set_next_dirty_cards_region(NULL);
  return hr;
}

// Returns true if the reference points to an object that
// can move in an incremental collection.
bool G1CollectedHeap::is_scavengable(const void* p) {
  HeapRegion* hr = heap_region_containing(p);
  return !hr->is_pinned();
}

// Private methods.

HeapRegion*
G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "secondary_free_list has %u entries",
                               _secondary_free_list.length());
      }
      // It looks as if there are free regions available on the
      // secondary_free_list. Let's move them to the free_list and try
      // again to allocate from it.
      append_secondary_free_list();

      assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
             "empty we should have moved at least one entry to the free_list");
      HeapRegion* res = _hrm.allocate_free_region(is_old);
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "allocated " HR_FORMAT " from secondary_free_list",
                               HR_FORMAT_PARAMS(res));
      }
      return res;
    }

    // Wait here until we get notified either when (a) there are no
    // more free regions coming or (b) some regions have been moved on
    // the secondary_free_list.
    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                           "could not allocate from secondary_free_list");
  }
  return NULL;
}

HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
  assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
         "the only time we use this to allocate a humongous region is "
         "when we are allocating a single humongous region");

  HeapRegion* res;
  if (G1StressConcRegionFreeing) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "forced to look at the secondary_free_list");
      }
      res = new_region_try_secondary_free_list(is_old);
      if (res != NULL) {
        return res;
      }
    }
  }

  res = _hrm.allocate_free_region(is_old);

  if (res == NULL) {
    if (G1ConcRegionFreeingVerbose) {
      gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                             "res == NULL, trying the secondary_free_list");
    }
    res = new_region_try_secondary_free_list(is_old);
  }
  if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
    // Currently, only attempts to allocate GC alloc regions set
    // do_expand to true. So, we should only reach here during a
    // safepoint. If this assumption changes we might have to
    // reconsider the use of _expand_heap_after_alloc_failure.
    assert(SafepointSynchronize::is_at_safepoint(), "invariant");

    ergo_verbose1(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("region allocation request failed")
                  ergo_format_byte("allocation request"),
                  word_size * HeapWordSize);
    if (expand(word_size * HeapWordSize)) {
      // Given that expand() succeeded in expanding the heap, and we
      // always expand the heap by an amount aligned to the heap
      // region size, the free list should in theory not be empty.
      // In either case allocate_free_region() will check for NULL.
      res = _hrm.allocate_free_region(is_old);
    } else {
      _expand_heap_after_alloc_failure = false;
    }
  }
  return res;
}

HeapWord*
G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
                                                           uint num_regions,
                                                           size_t word_size,
                                                           AllocationContext_t context) {
  assert(first != G1_NO_HRM_INDEX, "pre-condition");
  assert(is_humongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

  // Index of last region in the series + 1.
  uint last = first + num_regions;

  // We need to initialize the region(s) we just discovered. This is
  // a bit tricky given that it can happen concurrently with
  // refinement threads refining cards on these regions and
  // potentially wanting to refine the BOT as they are scanning
  // those cards (this can happen shortly after a cleanup; see CR
  // 6991377). So we have to set up the region(s) carefully and in
  // a specific order.

  // The word size sum of all the regions we will allocate.
  size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
  assert(word_size <= word_size_sum, "sanity");

  // This will be the "starts humongous" region.
  HeapRegion* first_hr = region_at(first);
  // The header of the new object will be placed at the bottom of
  // the first region.
  HeapWord* new_obj = first_hr->bottom();
  // This will be the new top of the new object.
  HeapWord* obj_top = new_obj + word_size;

  // First, we need to zero the header of the space that we will be
  // allocating. When we update top further down, some refinement
  // threads might try to scan the region. By zeroing the header we
  // ensure that any thread that will try to scan the region will
  // come across the zero klass word and bail out.
  //
  // NOTE: It would not have been correct to have used
  // CollectedHeap::fill_with_object() and make the space look like
  // an int array. The thread that is doing the allocation will
  // later update the object header to a potentially different array
  // type and, for a very short period of time, the klass and length
  // fields will be inconsistent. This could cause a refinement
  // thread to calculate the object size incorrectly.
  Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);

  // We will set up the first region as "starts humongous". This
  // will also update the BOT covering all the regions to reflect
  // that there is a single object that starts at the bottom of the
  // first region.
  first_hr->set_starts_humongous(obj_top);
  first_hr->set_allocation_context(context);
  // Then, if there are any, we will set up the "continues
  // humongous" regions.
  HeapRegion* hr = NULL;
  for (uint i = first + 1; i < last; ++i) {
    hr = region_at(i);
    hr->set_continues_humongous(first_hr);
    hr->set_allocation_context(context);
  }

  // Up to this point no concurrent thread would have been able to
  // do any scanning on any region in this series. All the top
  // fields still point to bottom, so the intersection between
  // [bottom,top] and [card_start,card_end] will be empty. Before we
  // update the top fields, we'll do a storestore to make sure that
  // no thread sees the update to top before the zeroing of the
  // object header and the BOT initialization.
  OrderAccess::storestore();

  // Now that the BOT and the object header have been initialized,
  // we can update top of the "starts humongous" region.
  first_hr->set_top(MIN2(first_hr->end(), obj_top));
  if (_hr_printer.is_active()) {
    _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, first_hr->top());
  }

  // Now, we will update the top fields of the "continues humongous"
  // regions.
  hr = NULL;
  for (uint i = first + 1; i < last; ++i) {
    hr = region_at(i);
    if ((i + 1) == last) {
      // last continues humongous region
      assert(hr->bottom() < obj_top && obj_top <= hr->end(),
             "new_top should fall on this region");
      hr->set_top(obj_top);
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, obj_top);
    } else {
      // not last one
      assert(obj_top > hr->end(), "obj_top should be above this region");
      hr->set_top(hr->end());
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
    }
  }
  // If we have continues humongous regions (hr != NULL), its top should
  // match obj_top.
  assert(hr == NULL || (hr->top() == obj_top), "sanity");
  check_bitmaps("Humongous Region Allocation", first_hr);

  increase_used(word_size * HeapWordSize);

  for (uint i = first; i < last; ++i) {
    _humongous_set.add(region_at(i));
  }

  return new_obj;
}

// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);

  verify_region_sets_optional();

  uint first = G1_NO_HRM_INDEX;
  uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);

  if (obj_regions == 1) {
    // Only one region to allocate, try to use a fast path by directly allocating
    // from the free lists. Do not try to expand here, we will potentially do that
    // later.
    HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
    if (hr != NULL) {
      first = hr->hrm_index();
    }
  } else {
    // We can't allocate humongous regions spanning more than one region while
    // cleanupComplete() is running, since some of the regions we find to be
    // empty might not yet be added to the free list. It is not straightforward
    // to know in which list they are on so that we can remove them. We only
    // need to do this if we need to allocate more than one region to satisfy the
    // current humongous allocation request. If we are only allocating one region
    // we use the one-region region allocation code (see above), that already
    // potentially waits for regions from the secondary free list.
    wait_while_free_regions_coming();
    append_secondary_free_list_if_not_empty_with_lock();

    // Policy: Try only empty regions (i.e. already committed first). Maybe we
    // are lucky enough to find some.
    first = _hrm.find_contiguous_only_empty(obj_regions);
    if (first != G1_NO_HRM_INDEX) {
      _hrm.allocate_free_regions_starting_at(first, obj_regions);
    }
  }

  if (first == G1_NO_HRM_INDEX) {
    // Policy: We could not find enough regions for the humongous object in the
    // free list. Look through the heap to find a mix of free and uncommitted regions.
    // If so, try expansion.
    first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
    if (first != G1_NO_HRM_INDEX) {
      // We found something. Make sure these regions are committed, i.e. expand
      // the heap. Alternatively we could do a defragmentation GC.
      ergo_verbose1(ErgoHeapSizing,
                    "attempt heap expansion",
                    ergo_format_reason("humongous allocation request failed")
                    ergo_format_byte("allocation request"),
                    word_size * HeapWordSize);

      _hrm.expand_at(first, obj_regions);
      g1_policy()->record_new_heap_size(num_regions());

#ifdef ASSERT
      for (uint i = first; i < first + obj_regions; ++i) {
        HeapRegion* hr = region_at(i);
        assert(hr->is_free(), "sanity");
        assert(hr->is_empty(), "sanity");
        assert(is_on_master_free_list(hr), "sanity");
      }
#endif
      _hrm.allocate_free_regions_starting_at(first, obj_regions);
    } else {
      // Policy: Potentially trigger a defragmentation GC.
    }
  }

  HeapWord* result = NULL;
  if (first != G1_NO_HRM_INDEX) {
    result = humongous_obj_allocate_initialize_regions(first, obj_regions,
                                                       word_size, context);
    assert(result != NULL, "it should always return a valid result");

    // A successful humongous object allocation changes the used space
    // information of the old generation so we need to recalculate the
    // sizes and update the jstat counters here.
    g1mm()->update_sizes();
  }

  verify_region_sets_optional();

  return result;
}

HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!is_humongous(word_size), "we do not allow humongous TLABs");

  uint dummy_gc_count_before;
  uint dummy_gclocker_retry_count = 0;
  return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
}

HeapWord*
G1CollectedHeap::mem_allocate(size_t word_size,
                              bool*  gc_overhead_limit_was_exceeded) {
  assert_heap_not_locked_and_not_at_safepoint();

  // Loop until the allocation is satisfied, or unsatisfied after GC.
  for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
    uint gc_count_before;

    HeapWord* result = NULL;
    if (!is_humongous(word_size)) {
      result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
    } else {
      result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
    }
    if (result != NULL) {
      return result;
    }

    // Create the garbage collection operation...
    VM_G1CollectForAllocation op(gc_count_before, word_size);
    op.set_allocation_context(AllocationContext::current());

    // ...and get the VM thread to execute it.
    VMThread::execute(&op);

    if (op.prologue_succeeded() && op.pause_succeeded()) {
      // If the operation was successful we'll return the result even
      // if it is NULL. If the allocation attempt failed immediately
      // after a Full GC, it's unlikely we'll be able to allocate now.
      HeapWord* result = op.result();
      if (result != NULL && !is_humongous(word_size)) {
        // Allocations that take place on VM operations do not do any
        // card dirtying and we have to do it here. We only have to do
        // this for non-humongous allocations, though.
        dirty_young_block(result, word_size);
      }
      return result;
    } else {
      if (gclocker_retry_count > GCLockerRetryAllocationCount) {
        return NULL;
      }
      assert(op.result() == NULL,
             "the result should be NULL if the VM op did not succeed");
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
      warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
    }
  }

  ShouldNotReachHere();
  return NULL;
}

HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
                                                   AllocationContext_t context,
                                                   uint* gc_count_before_ret,
                                                   uint* gclocker_retry_count_ret) {
  // Make sure you read the note in attempt_allocation_humongous().

  assert_heap_not_locked_and_not_at_safepoint();
  assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
         "be called for humongous allocation requests");

  // We should only get here after the first-level allocation attempt
  // (attempt_allocation()) failed to allocate.

  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
  HeapWord* result = NULL;
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    bool should_try_gc;
    uint gc_count_before;

    {
      MutexLockerEx x(Heap_lock);
      result = _allocator->attempt_allocation_locked(word_size, context);
      if (result != NULL) {
        return result;
      }

      if (GC_locker::is_active_and_needs_gc()) {
        if (g1_policy()->can_expand_young_list()) {
          // No need for an ergo verbose message here,
          // can_expand_young_list() does this when it returns true.
          result = _allocator->attempt_allocation_force(word_size, context);
          if (result != NULL) {
            return result;
          }
        }
        should_try_gc = false;
      } else {
        // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
      }
    }

    if (should_try_gc) {
      bool succeeded;
      result = do_collection_pause(word_size, gc_count_before, &succeeded,
                                   GCCause::_g1_inc_collection_pause);
      if (result != NULL) {
        assert(succeeded, "only way to get back a non-NULL result");
        return result;
      }

      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
    } else {
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
      GC_locker::stall_until_clear();
      (*gclocker_retry_count_ret) += 1;
    }

    // We can reach here if we were unsuccessful in scheduling a
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space. We do the
    // first attempt (without holding the Heap_lock) here and the
    // follow-on attempt will be at the start of the next loop
    // iteration (after taking the Heap_lock).
    result = _allocator->attempt_allocation(word_size, context);
    if (result != NULL) {
      return result;
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
      warning("G1CollectedHeap::attempt_allocation_slow() "
              "retries %d times", try_count);
    }
  }

  ShouldNotReachHere();
  return NULL;
}

void G1CollectedHeap::begin_archive_alloc_range() {
  assert_at_safepoint(true /* should_be_vm_thread */);
  if (_archive_allocator == NULL) {
    _archive_allocator = G1ArchiveAllocator::create_allocator(this);
  }
}

bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
  // Allocations in archive regions cannot be of a size that would be considered
  // humongous even for a minimum-sized region, because G1 region sizes/boundaries
  // may be different at archive-restore time.
  return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
}

HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
  assert_at_safepoint(true /* should_be_vm_thread */);
  assert(_archive_allocator != NULL, "_archive_allocator not initialized");
  if (is_archive_alloc_too_large(word_size)) {
    return NULL;
  }
  return _archive_allocator->archive_mem_allocate(word_size);
}

void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
                                              size_t end_alignment_in_bytes) {
  assert_at_safepoint(true /* should_be_vm_thread */);
  assert(_archive_allocator != NULL, "_archive_allocator not initialized");

  // Call complete_archive to do the real work, filling in the MemRegion
  // array with the archive regions.
  _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
  delete _archive_allocator;
  _archive_allocator = NULL;
}

bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
  assert(ranges != NULL, "MemRegion array NULL");
  assert(count != 0, "No MemRegions provided");
  MemRegion reserved = _hrm.reserved();
  for (size_t i = 0; i < count; i++) {
    if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
      return false;
    }
  }
  return true;
}

bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
  assert(!is_init_completed(), "Expect to be called at JVM init time");
  assert(ranges != NULL, "MemRegion array NULL");
  assert(count != 0, "No MemRegions provided");
  MutexLockerEx x(Heap_lock);

  MemRegion reserved = _hrm.reserved();
  HeapWord* prev_last_addr = NULL;
  HeapRegion* prev_last_region = NULL;

  // Temporarily disable pretouching of heap pages. This interface is used
  // when mmap'ing archived heap data in, so pre-touching is wasted.
  FlagSetting fs(AlwaysPreTouch, false);

  // Enable archive object checking in G1MarkSweep. We have to let it know
  // about each archive range, so that objects in those ranges aren't marked.
  G1MarkSweep::enable_archive_object_check();

  // For each specified MemRegion range, allocate the corresponding G1
  // regions and mark them as archive regions. We expect the ranges in
  // ascending starting address order, without overlap.
  for (size_t i = 0; i < count; i++) {
    MemRegion curr_range = ranges[i];
    HeapWord* start_address = curr_range.start();
    size_t word_size = curr_range.word_size();
    HeapWord* last_address = curr_range.last();
    size_t commits = 0;

    guarantee(reserved.contains(start_address) && reserved.contains(last_address),
              "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
              p2i(start_address), p2i(last_address));
    guarantee(start_address > prev_last_addr,
              "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
              p2i(start_address), p2i(prev_last_addr));
    prev_last_addr = last_address;

    // Check for ranges that start in the same G1 region in which the previous
    // range ended, and adjust the start address so we don't try to allocate
    // the same region again. If the current range is entirely within that
    // region, skip it, just adjusting the recorded top.
    HeapRegion* start_region = _hrm.addr_to_region(start_address);
    if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
      start_address = start_region->end();
      if (start_address > last_address) {
        increase_used(word_size * HeapWordSize);
        start_region->set_top(last_address + 1);
        continue;
      }
      start_region->set_top(start_address);
      curr_range = MemRegion(start_address, last_address + 1);
      start_region = _hrm.addr_to_region(start_address);
    }

    // Perform the actual region allocation, exiting if it fails.
    // Then note how much new space we have allocated.
    if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
      return false;
    }
    increase_used(word_size * HeapWordSize);
    if (commits != 0) {
      ergo_verbose1(ErgoHeapSizing,
                    "attempt heap expansion",
                    ergo_format_reason("allocate archive regions")
                    ergo_format_byte("total size"),
                    HeapRegion::GrainWords * HeapWordSize * commits);
    }

    // Mark each G1 region touched by the range as archive, add it to the old set,
    // and set the allocation context and top.
    HeapRegion* curr_region = _hrm.addr_to_region(start_address);
    HeapRegion* last_region = _hrm.addr_to_region(last_address);
    prev_last_region = last_region;

    while (curr_region != NULL) {
      assert(curr_region->is_empty() && !curr_region->is_pinned(),
             "Region already in use (index %u)", curr_region->hrm_index());
      _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
      curr_region->set_allocation_context(AllocationContext::system());
      curr_region->set_archive();
      _old_set.add(curr_region);
      if (curr_region != last_region) {
        curr_region->set_top(curr_region->end());
        curr_region = _hrm.next_region_in_heap(curr_region);
      } else {
        curr_region->set_top(last_address + 1);
        curr_region = NULL;
      }
    }

    // Notify mark-sweep of the archive range.
    G1MarkSweep::set_range_archive(curr_range, true);
  }
  return true;
}

void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
  assert(!is_init_completed(), "Expect to be called at JVM init time");
  assert(ranges != NULL, "MemRegion array NULL");
  assert(count != 0, "No MemRegions provided");
  MemRegion reserved = _hrm.reserved();
  HeapWord *prev_last_addr = NULL;
  HeapRegion* prev_last_region = NULL;

  // For each MemRegion, create filler objects, if needed, in the G1 regions
  // that contain the address range. The address range actually within the
  // MemRegion will not be modified. That is assumed to have been initialized
  // elsewhere, probably via an mmap of archived heap data.
  MutexLockerEx x(Heap_lock);
  for (size_t i = 0; i < count; i++) {
    HeapWord* start_address = ranges[i].start();
    HeapWord* last_address = ranges[i].last();

    assert(reserved.contains(start_address) && reserved.contains(last_address),
           "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
           p2i(start_address), p2i(last_address));
    assert(start_address > prev_last_addr,
           "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
           p2i(start_address), p2i(prev_last_addr));

    HeapRegion* start_region = _hrm.addr_to_region(start_address);
    HeapRegion* last_region = _hrm.addr_to_region(last_address);
    HeapWord* bottom_address = start_region->bottom();

    // Check for a range beginning in the same region in which the
    // previous one ended.
    if (start_region == prev_last_region) {
      bottom_address = prev_last_addr + 1;
    }

    // Verify that the regions were all marked as archive regions by
    // alloc_archive_regions.
    HeapRegion* curr_region = start_region;
    while (curr_region != NULL) {
      guarantee(curr_region->is_archive(),
                "Expected archive region at index %u", curr_region->hrm_index());
      if (curr_region != last_region) {
        curr_region = _hrm.next_region_in_heap(curr_region);
      } else {
        curr_region = NULL;
      }
    }

    prev_last_addr = last_address;
    prev_last_region = last_region;

    // Fill the memory below the allocated range with dummy object(s),
    // if the region bottom does not match the range start, or if the previous
    // range ended within the same G1 region, and there is a gap.
    if (start_address != bottom_address) {
      size_t fill_size = pointer_delta(start_address, bottom_address);
      G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
      increase_used(fill_size * HeapWordSize);
    }
  }
}

inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
                                                     uint* gc_count_before_ret,
                                                     uint* gclocker_retry_count_ret) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!is_humongous(word_size), "attempt_allocation() should not "
         "be called for humongous allocation requests");

  AllocationContext_t context = AllocationContext::current();
  HeapWord* result = _allocator->attempt_allocation(word_size, context);

  if (result == NULL) {
    result = attempt_allocation_slow(word_size,
                                     context,
                                     gc_count_before_ret,
                                     gclocker_retry_count_ret);
  }
  assert_heap_not_locked();
  if (result != NULL) {
    dirty_young_block(result, word_size);
  }
  return result;
}

void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
  assert(!is_init_completed(), "Expect to be called at JVM init time");
  assert(ranges != NULL, "MemRegion array NULL");
  assert(count != 0, "No MemRegions provided");
  MemRegion reserved = _hrm.reserved();
  HeapWord* prev_last_addr = NULL;
  HeapRegion* prev_last_region = NULL;
  size_t size_used = 0;
  size_t uncommitted_regions = 0;

  // For each Memregion, free the G1 regions that constitute it, and
  // notify mark-sweep that the range is no longer to be considered 'archive.'
  MutexLockerEx x(Heap_lock);
  for (size_t i = 0; i < count; i++) {
    HeapWord* start_address = ranges[i].start();
    HeapWord* last_address = ranges[i].last();

    assert(reserved.contains(start_address) && reserved.contains(last_address),
           "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
           p2i(start_address), p2i(last_address));
    assert(start_address > prev_last_addr,
           "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
           p2i(start_address), p2i(prev_last_addr));
    size_used += ranges[i].byte_size();
    prev_last_addr = last_address;

    HeapRegion* start_region = _hrm.addr_to_region(start_address);
    HeapRegion* last_region = _hrm.addr_to_region(last_address);

    // Check for ranges that start in the same G1 region in which the previous
    // range ended, and adjust the start address so we don't try to free
    // the same region again. If the current range is entirely within that
    // region, skip it.
    if (start_region == prev_last_region) {
      start_address = start_region->end();
      if (start_address > last_address) {
        continue;
      }
      start_region = _hrm.addr_to_region(start_address);
    }
    prev_last_region = last_region;

    // After verifying that each region was marked as an archive region by
    // alloc_archive_regions, set it free and empty and uncommit it.
    HeapRegion* curr_region = start_region;
    while (curr_region != NULL) {
      guarantee(curr_region->is_archive(),
                "Expected archive region at index %u", curr_region->hrm_index());
      uint curr_index = curr_region->hrm_index();
      _old_set.remove(curr_region);
      curr_region->set_free();
      curr_region->set_top(curr_region->bottom());
      if (curr_region != last_region) {
        curr_region = _hrm.next_region_in_heap(curr_region);
      } else {
        curr_region = NULL;
      }
      _hrm.shrink_at(curr_index, 1);
      uncommitted_regions++;
    }

    // Notify mark-sweep that this is no longer an archive range.
    G1MarkSweep::set_range_archive(ranges[i], false);
  }

  if (uncommitted_regions != 0) {
    ergo_verbose1(ErgoHeapSizing,
                  "attempt heap shrinking",
                  ergo_format_reason("uncommitted archive regions")
                  ergo_format_byte("total size"),
                  HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
  }
  decrease_used(size_used);
}

HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
                                                        uint* gc_count_before_ret,
                                                        uint* gclocker_retry_count_ret) {
  // The structure of this method has a lot of similarities to
  // attempt_allocation_slow(). The reason these two were not merged
  // into a single one is that such a method would require several "if
  // allocation is not humongous do this, otherwise do that"
  // conditional paths which would obscure its flow. In fact, an early
  // version of this code did use a unified method which was harder to
  // follow and, as a result, it had subtle bugs that were hard to
  // track down. So keeping these two methods separate allows each to
  // be more readable. It will be good to keep these two in sync as
  // much as possible.

  assert_heap_not_locked_and_not_at_safepoint();
  assert(is_humongous(word_size), "attempt_allocation_humongous() "
         "should only be called for humongous allocations");

  // Humongous objects can exhaust the heap quickly, so we should check if we
  // need to start a marking cycle at each humongous object allocation. We do
  // the check before we do the actual allocation. The reason for doing it
  // before the allocation is that we avoid having to keep track of the newly
  // allocated memory while we do a GC.
  if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
                                           word_size)) {
    collect(GCCause::_g1_humongous_allocation);
  }

  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
  HeapWord* result = NULL;
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    bool should_try_gc;
    uint gc_count_before;

    {
      MutexLockerEx x(Heap_lock);

      // Given that humongous objects are not allocated in young
      // regions, we'll first try to do the allocation without doing a
      // collection hoping that there's enough space in the heap.
      result = humongous_obj_allocate(word_size, AllocationContext::current());
      if (result != NULL) {
        return result;
      }

      if (GC_locker::is_active_and_needs_gc()) {
        should_try_gc = false;
      } else {
         // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
      }
    }

    if (should_try_gc) {
      // If we failed to allocate the humongous object, we should try to
      // do a collection pause (if we're allowed) in case it reclaims
      // enough space for the allocation to succeed after the pause.

      bool succeeded;
      result = do_collection_pause(word_size, gc_count_before, &succeeded,
                                   GCCause::_g1_humongous_allocation);
      if (result != NULL) {
        assert(succeeded, "only way to get back a non-NULL result");
        return result;
      }

      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
    } else {
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
      GC_locker::stall_until_clear();
      (*gclocker_retry_count_ret) += 1;
    }

    // We can reach here if we were unsuccessful in scheduling a
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space.  Give a
    // warning if we seem to be looping forever.

    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
      warning("G1CollectedHeap::attempt_allocation_humongous() "
              "retries %d times", try_count);
    }
  }

  ShouldNotReachHere();
  return NULL;
}

HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
                                                           AllocationContext_t context,
                                                           bool expect_null_mutator_alloc_region) {
  assert_at_safepoint(true /* should_be_vm_thread */);
  assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
         "the current alloc region was unexpectedly found to be non-NULL");

  if (!is_humongous(word_size)) {
    return _allocator->attempt_allocation_locked(word_size, context);
  } else {
    HeapWord* result = humongous_obj_allocate(word_size, context);
    if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
      collector_state()->set_initiate_conc_mark_if_possible(true);
    }
    return result;
  }

  ShouldNotReachHere();
}

class PostMCRemSetClearClosure: public HeapRegionClosure {
  G1CollectedHeap* _g1h;
  ModRefBarrierSet* _mr_bs;
public:
  PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
    _g1h(g1h), _mr_bs(mr_bs) {}

  bool doHeapRegion(HeapRegion* r) {
    HeapRegionRemSet* hrrs = r->rem_set();

    _g1h->reset_gc_time_stamps(r);

    if (r->is_continues_humongous()) {
      // We'll assert that the strong code root list and RSet is empty
      assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
      assert(hrrs->occupied() == 0, "RSet should be empty");
    } else {
      hrrs->clear();
    }
    // You might think here that we could clear just the cards
    // corresponding to the used region.  But no: if we leave a dirty card
    // in a region we might allocate into, then it would prevent that card
    // from being enqueued, and cause it to be missed.
    // Re: the performance cost: we shouldn't be doing full GC anyway!
    _mr_bs->clear(MemRegion(r->bottom(), r->end()));

    return false;
  }
};

void G1CollectedHeap::clear_rsets_post_compaction() {
  PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
  heap_region_iterate(&rs_clear);
}

class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*   _g1h;
  UpdateRSOopClosure _cl;
public:
  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
    _cl(g1->g1_rem_set(), worker_i),
    _g1h(g1)
  { }

  bool doHeapRegion(HeapRegion* r) {
    if (!r->is_continues_humongous()) {
      _cl.set_from(r);
      r->oop_iterate(&_cl);
    }
    return false;
  }
};

class ParRebuildRSTask: public AbstractGangTask {
  G1CollectedHeap* _g1;
  HeapRegionClaimer _hrclaimer;

public:
  ParRebuildRSTask(G1CollectedHeap* g1) :
      AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}

  void work(uint worker_id) {
    RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
    _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
  }
};

class PostCompactionPrinterClosure: public HeapRegionClosure {
private:
  G1HRPrinter* _hr_printer;
public:
  bool doHeapRegion(HeapRegion* hr) {
    assert(!hr->is_young(), "not expecting to find young regions");
    if (hr->is_free()) {
      // We only generate output for non-empty regions.
    } else if (hr->is_starts_humongous()) {
      _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
    } else if (hr->is_continues_humongous()) {
      _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
    } else if (hr->is_archive()) {
      _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
    } else if (hr->is_old()) {
      _hr_printer->post_compaction(hr, G1HRPrinter::Old);
    } else {
      ShouldNotReachHere();
    }
    return false;
  }

  PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
    : _hr_printer(hr_printer) { }
};

void G1CollectedHeap::print_hrm_post_compaction() {
  PostCompactionPrinterClosure cl(hr_printer());
  heap_region_iterate(&cl);
}

bool G1CollectedHeap::do_collection(bool explicit_gc,
                                    bool clear_all_soft_refs,
                                    size_t word_size) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  if (GC_locker::check_active_before_gc()) {
    return false;
  }

  STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
  gc_timer->register_gc_start();

  SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  GCIdMark gc_id_mark;
  gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());

  SvcGCMarker sgcm(SvcGCMarker::FULL);
  ResourceMark rm;

  G1Log::update_level();
  print_heap_before_gc();
  trace_heap_before_gc(gc_tracer);

  size_t metadata_prev_used = MetaspaceAux::used_bytes();

  verify_region_sets_optional();

  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                           collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

  {
    IsGCActiveMark x;

    // Timing
    assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);

    {
      GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
      TraceCollectorStats tcs(g1mm()->full_collection_counters());
      TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());

      g1_policy()->record_full_collection_start();

      // Note: When we have a more flexible GC logging framework that
      // allows us to add optional attributes to a GC log record we
      // could consider timing and reporting how long we wait in the
      // following two methods.
      wait_while_free_regions_coming();
      // If we start the compaction before the CM threads finish
      // scanning the root regions we might trip them over as we'll
      // be moving objects / updating references. So let's wait until
      // they are done. By telling them to abort, they should complete
      // early.
      _cm->root_regions()->abort();
      _cm->root_regions()->wait_until_scan_finished();
      append_secondary_free_list_if_not_empty_with_lock();

      gc_prologue(true);
      increment_total_collections(true /* full gc */);
      increment_old_marking_cycles_started();

      assert(used() == recalculate_used(), "Should be equal");

      verify_before_gc();

      check_bitmaps("Full GC Start");
      pre_full_gc_dump(gc_timer);

#if defined(COMPILER2) || INCLUDE_JVMCI
      DerivedPointerTable::clear();
#endif

      // Disable discovery and empty the discovered lists
      // for the CM ref processor.
      ref_processor_cm()->disable_discovery();
      ref_processor_cm()->abandon_partial_discovery();
      ref_processor_cm()->verify_no_references_recorded();

      // Abandon current iterations of concurrent marking and concurrent
      // refinement, if any are in progress. We have to do this before
      // wait_until_scan_finished() below.
      concurrent_mark()->abort();

      // Make sure we'll choose a new allocation region afterwards.
      _allocator->release_mutator_alloc_region();
      _allocator->abandon_gc_alloc_regions();
      g1_rem_set()->cleanupHRRS();

      // We should call this after we retire any currently active alloc
      // regions so that all the ALLOC / RETIRE events are generated
      // before the start GC event.
      _hr_printer.start_gc(true /* full */, (size_t) total_collections());

      // We may have added regions to the current incremental collection
      // set between the last GC or pause and now. We need to clear the
      // incremental collection set and then start rebuilding it afresh
      // after this full GC.
      abandon_collection_set(g1_policy()->inc_cset_head());
      g1_policy()->clear_incremental_cset();
      g1_policy()->stop_incremental_cset_building();

      tear_down_region_sets(false /* free_list_only */);
      collector_state()->set_gcs_are_young(true);

      // See the comments in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() about
      // how reference processing currently works in G1.

      // Temporarily make discovery by the STW ref processor single threaded (non-MT).
      ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);

      // Temporarily clear the STW ref processor's _is_alive_non_header field.
      ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);

      ref_processor_stw()->enable_discovery();
      ref_processor_stw()->setup_policy(do_clear_all_soft_refs);

      // Do collection work
      {
        HandleMark hm;  // Discard invalid handles created during gc
        G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
      }

      assert(num_free_regions() == 0, "we should not have added any free regions");
      rebuild_region_sets(false /* free_list_only */);

      // Enqueue any discovered reference objects that have
      // not been removed from the discovered lists.
      ref_processor_stw()->enqueue_discovered_references();

#if defined(COMPILER2) || INCLUDE_JVMCI
      DerivedPointerTable::update_pointers();
#endif

      MemoryService::track_memory_usage();

      assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
      ref_processor_stw()->verify_no_references_recorded();

      // Delete metaspaces for unloaded class loaders and clean up loader_data graph
      ClassLoaderDataGraph::purge();
      MetaspaceAux::verify_metrics();

      // Note: since we've just done a full GC, concurrent
      // marking is no longer active. Therefore we need not
      // re-enable reference discovery for the CM ref processor.
      // That will be done at the start of the next marking cycle.
      assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
      ref_processor_cm()->verify_no_references_recorded();

      reset_gc_time_stamp();
      // Since everything potentially moved, we will clear all remembered
      // sets, and clear all cards.  Later we will rebuild remembered
      // sets. We will also reset the GC time stamps of the regions.
      clear_rsets_post_compaction();
      check_gc_time_stamps();

      // Resize the heap if necessary.
      resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);

      if (_hr_printer.is_active()) {
        // We should do this after we potentially resize the heap so
        // that all the COMMIT / UNCOMMIT events are generated before
        // the end GC event.

        print_hrm_post_compaction();
        _hr_printer.end_gc(true /* full */, (size_t) total_collections());
      }

      G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
      if (hot_card_cache->use_cache()) {
        hot_card_cache->reset_card_counts();
        hot_card_cache->reset_hot_cache();
      }

      // Rebuild remembered sets of all regions.
      uint n_workers =
        AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                                workers()->active_workers(),
                                                Threads::number_of_non_daemon_threads());
      workers()->set_active_workers(n_workers);

      ParRebuildRSTask rebuild_rs_task(this);
      workers()->run_task(&rebuild_rs_task);

      // Rebuild the strong code root lists for each region
      rebuild_strong_code_roots();

      if (true) { // FIXME
        MetaspaceGC::compute_new_size();
      }

#ifdef TRACESPINNING
      ParallelTaskTerminator::print_termination_counts();
#endif

      // Discard all rset updates
      JavaThread::dirty_card_queue_set().abandon_logs();
      assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");

      _young_list->reset_sampled_info();
      // At this point there should be no regions in the
      // entire heap tagged as young.
      assert(check_young_list_empty(true /* check_heap */),
             "young list should be empty at this point");

      // Update the number of full collections that have been completed.
      increment_old_marking_cycles_completed(false /* concurrent */);

      _hrm.verify_optional();
      verify_region_sets_optional();

      verify_after_gc();

      // Clear the previous marking bitmap, if needed for bitmap verification.
      // Note we cannot do this when we clear the next marking bitmap in
      // ConcurrentMark::abort() above since VerifyDuringGC verifies the
      // objects marked during a full GC against the previous bitmap.
      // But we need to clear it before calling check_bitmaps below since
      // the full GC has compacted objects and updated TAMS but not updated
      // the prev bitmap.
      if (G1VerifyBitmaps) {
        ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
      }
      check_bitmaps("Full GC End");

      // Start a new incremental collection set for the next pause
      assert(g1_policy()->collection_set() == NULL, "must be");
      g1_policy()->start_incremental_cset_building();

      clear_cset_fast_test();

      _allocator->init_mutator_alloc_region();

      g1_policy()->record_full_collection_end();

      if (G1Log::fine()) {
        g1_policy()->print_heap_transition();
      }

      // We must call G1MonitoringSupport::update_sizes() in the same scoping level
      // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
      // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
      // before any GC notifications are raised.
      g1mm()->update_sizes();

      gc_epilogue(true);
    }

    if (G1Log::finer()) {
      g1_policy()->print_detailed_heap_transition(true /* full */);
    }

    print_heap_after_gc();
    trace_heap_after_gc(gc_tracer);

    post_full_gc_dump(gc_timer);

    gc_timer->register_gc_end();
    gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
  }

  return true;
}

void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  // do_collection() will return whether it succeeded in performing
  // the GC. Currently, there is no facility on the
  // do_full_collection() API to notify the caller than the collection
  // did not succeed (e.g., because it was locked out by the GC
  // locker). So, right now, we'll ignore the return value.
  bool dummy = do_collection(true,                /* explicit_gc */
                             clear_all_soft_refs,
                             0                    /* word_size */);
}

// This code is mostly copied from TenuredGeneration.
void
G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size) {
  // Include the current allocation, if any, and bytes that will be
  // pre-allocated to support collections, as "used".
  const size_t used_after_gc = used();
  const size_t capacity_after_gc = capacity();
  const size_t free_after_gc = capacity_after_gc - used_after_gc;

  // This is enforced in arguments.cpp.
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
         "otherwise the code below doesn't make sense");

  // We don't have floating point command-line arguments
  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  const double minimum_used_percentage = 1.0 - maximum_free_percentage;

  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  const size_t max_heap_size = collector_policy()->max_heap_byte_size();

  // We have to be careful here as these two calculations can overflow
  // 32-bit size_t's.
  double used_after_gc_d = (double) used_after_gc;
  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;

  // Let's make sure that they are both under the max heap size, which
  // by default will make them fit into a size_t.
  double desired_capacity_upper_bound = (double) max_heap_size;
  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
                                    desired_capacity_upper_bound);
  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
                                    desired_capacity_upper_bound);

  // We can now safely turn them into size_t's.
  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;

  // This assert only makes sense here, before we adjust them
  // with respect to the min and max heap size.
  assert(minimum_desired_capacity <= maximum_desired_capacity,
         "minimum_desired_capacity = " SIZE_FORMAT ", "
         "maximum_desired_capacity = " SIZE_FORMAT,
         minimum_desired_capacity, maximum_desired_capacity);

  // Should not be greater than the heap max size. No need to adjust
  // it with respect to the heap min size as it's a lower bound (i.e.,
  // we'll try to make the capacity larger than it, not smaller).
  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  // Should not be less than the heap min size. No need to adjust it
  // with respect to the heap max size as it's an upper bound (i.e.,
  // we'll try to make the capacity smaller than it, not greater).
  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);

  if (capacity_after_gc < minimum_desired_capacity) {
    // Don't expand unless it's significant
    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("capacity lower than "
                                     "min desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("min desired capacity"),
                  capacity_after_gc, used_after_gc,
                  minimum_desired_capacity, (double) MinHeapFreeRatio);
    expand(expand_bytes);

    // No expansion, now see if we want to shrink
  } else if (capacity_after_gc > maximum_desired_capacity) {
    // Capacity too large, compute shrinking size
    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap shrinking",
                  ergo_format_reason("capacity higher than "
                                     "max desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("max desired capacity"),
                  capacity_after_gc, used_after_gc,
                  maximum_desired_capacity, (double) MaxHeapFreeRatio);
    shrink(shrink_bytes);
  }
}

HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
                                                            AllocationContext_t context,
                                                            bool do_gc,
                                                            bool clear_all_soft_refs,
                                                            bool expect_null_mutator_alloc_region,
                                                            bool* gc_succeeded) {
  *gc_succeeded = true;
  // Let's attempt the allocation first.
  HeapWord* result =
    attempt_allocation_at_safepoint(word_size,
                                    context,
                                    expect_null_mutator_alloc_region);
  if (result != NULL) {
    assert(*gc_succeeded, "sanity");
    return result;
  }

  // In a G1 heap, we're supposed to keep allocation from failing by
  // incremental pauses.  Therefore, at least for now, we'll favor
  // expansion over collection.  (This might change in the future if we can
  // do something smarter than full collection to satisfy a failed alloc.)
  result = expand_and_allocate(word_size, context);
  if (result != NULL) {
    assert(*gc_succeeded, "sanity");
    return result;
  }

  if (do_gc) {
    // Expansion didn't work, we'll try to do a Full GC.
    *gc_succeeded = do_collection(false, /* explicit_gc */
                                  clear_all_soft_refs,
                                  word_size);
  }

  return NULL;
}

HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
                                                     AllocationContext_t context,
                                                     bool* succeeded) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  // Attempts to allocate followed by Full GC.
  HeapWord* result =
    satisfy_failed_allocation_helper(word_size,
                                     context,
                                     true,  /* do_gc */
                                     false, /* clear_all_soft_refs */
                                     false, /* expect_null_mutator_alloc_region */
                                     succeeded);

  if (result != NULL || !*succeeded) {
    return result;
  }

  // Attempts to allocate followed by Full GC that will collect all soft references.
  result = satisfy_failed_allocation_helper(word_size,
                                            context,
                                            true, /* do_gc */
                                            true, /* clear_all_soft_refs */
                                            true, /* expect_null_mutator_alloc_region */
                                            succeeded);

  if (result != NULL || !*succeeded) {
    return result;
  }

  // Attempts to allocate, no GC
  result = satisfy_failed_allocation_helper(word_size,
                                            context,
                                            false, /* do_gc */
                                            false, /* clear_all_soft_refs */
                                            true,  /* expect_null_mutator_alloc_region */
                                            succeeded);

  if (result != NULL) {
    assert(*succeeded, "sanity");
    return result;
  }

  assert(!collector_policy()->should_clear_all_soft_refs(),
         "Flag should have been handled and cleared prior to this point");

  // What else?  We might try synchronous finalization later.  If the total
  // space available is large enough for the allocation, then a more
  // complete compaction phase than we've tried so far might be
  // appropriate.
  assert(*succeeded, "sanity");
  return NULL;
}

// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size".  If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".

HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  verify_region_sets_optional();

  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  ergo_verbose1(ErgoHeapSizing,
                "attempt heap expansion",
                ergo_format_reason("allocation request failed")
                ergo_format_byte("allocation request"),
                word_size * HeapWordSize);
  if (expand(expand_bytes)) {
    _hrm.verify_optional();
    verify_region_sets_optional();
    return attempt_allocation_at_safepoint(word_size,
                                           context,
                                           false /* expect_null_mutator_alloc_region */);
  }
  return NULL;
}

bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
                                       HeapRegion::GrainBytes);
  ergo_verbose2(ErgoHeapSizing,
                "expand the heap",
                ergo_format_byte("requested expansion amount")
                ergo_format_byte("attempted expansion amount"),
                expand_bytes, aligned_expand_bytes);

  if (is_maximal_no_gc()) {
    ergo_verbose0(ErgoHeapSizing,
                      "did not expand the heap",
                      ergo_format_reason("heap already fully expanded"));
    return false;
  }

  double expand_heap_start_time_sec = os::elapsedTime();
  uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
  assert(regions_to_expand > 0, "Must expand by at least one region");

  uint expanded_by = _hrm.expand_by(regions_to_expand);
  if (expand_time_ms != NULL) {
    *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
  }

  if (expanded_by > 0) {
    size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
    assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
    g1_policy()->record_new_heap_size(num_regions());
  } else {
    ergo_verbose0(ErgoHeapSizing,
                  "did not expand the heap",
                  ergo_format_reason("heap expansion operation failed"));
    // The expansion of the virtual storage space was unsuccessful.
    // Let's see if it was because we ran out of swap.
    if (G1ExitOnExpansionFailure &&
        _hrm.available() >= regions_to_expand) {
      // We had head room...
      vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
    }
  }
  return regions_to_expand > 0;
}

void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  size_t aligned_shrink_bytes =
    ReservedSpace::page_align_size_down(shrink_bytes);
  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
                                         HeapRegion::GrainBytes);
  uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);

  uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
  size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;

  ergo_verbose3(ErgoHeapSizing,
                "shrink the heap",
                ergo_format_byte("requested shrinking amount")
                ergo_format_byte("aligned shrinking amount")
                ergo_format_byte("attempted shrinking amount"),
                shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  if (num_regions_removed > 0) {
    g1_policy()->record_new_heap_size(num_regions());
  } else {
    ergo_verbose0(ErgoHeapSizing,
                  "did not shrink the heap",
                  ergo_format_reason("heap shrinking operation failed"));
  }
}

void G1CollectedHeap::shrink(size_t shrink_bytes) {
  verify_region_sets_optional();

  // We should only reach here at the end of a Full GC which means we
  // should not not be holding to any GC alloc regions. The method
  // below will make sure of that and do any remaining clean up.
  _allocator->abandon_gc_alloc_regions();

  // Instead of tearing down / rebuilding the free lists here, we
  // could instead use the remove_all_pending() method on free_list to
  // remove only the ones that we need to remove.
  tear_down_region_sets(true /* free_list_only */);
  shrink_helper(shrink_bytes);
  rebuild_region_sets(true /* free_list_only */);

  _hrm.verify_optional();
  verify_region_sets_optional();
}

// Public methods.

G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  CollectedHeap(),
  _g1_policy(policy_),
  _dirty_card_queue_set(false),
  _is_alive_closure_cm(this),
  _is_alive_closure_stw(this),
  _ref_processor_cm(NULL),
  _ref_processor_stw(NULL),
  _bot_shared(NULL),
  _cg1r(NULL),
  _g1mm(NULL),
  _refine_cte_cl(NULL),
  _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
  _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
  _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
  _humongous_reclaim_candidates(),
  _has_humongous_reclaim_candidates(false),
  _archive_allocator(NULL),
  _free_regions_coming(false),
  _young_list(new YoungList(this)),
  _gc_time_stamp(0),
  _summary_bytes_used(0),
  _survivor_evac_stats(YoungPLABSize, PLABWeight),
  _old_evac_stats(OldPLABSize, PLABWeight),
  _expand_heap_after_alloc_failure(true),
  _old_marking_cycles_started(0),
  _old_marking_cycles_completed(0),
  _heap_summary_sent(false),
  _in_cset_fast_test(),
  _dirty_cards_region_list(NULL),
  _worker_cset_start_region(NULL),
  _worker_cset_start_region_time_stamp(NULL),
  _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {

  _workers = new WorkGang("GC Thread", ParallelGCThreads,
                          /* are_GC_task_threads */true,
                          /* are_ConcurrentGC_threads */false);
  _workers->initialize_workers();

  _allocator = G1Allocator::create_allocator(this);
  _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);

  // Override the default _filler_array_max_size so that no humongous filler
  // objects are created.
  _filler_array_max_size = _humongous_object_threshold_in_words;

  uint n_queues = ParallelGCThreads;
  _task_queues = new RefToScanQueueSet(n_queues);

  uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  assert(n_rem_sets > 0, "Invariant.");

  _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
  _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);

  for (uint i = 0; i < n_queues; i++) {
    RefToScanQueue* q = new RefToScanQueue();
    q->initialize();
    _task_queues->register_queue(i, q);
    ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
  }
  clear_cset_start_regions();

  // Initialize the G1EvacuationFailureALot counters and flags.
  NOT_PRODUCT(reset_evacuation_should_fail();)

  guarantee(_task_queues != NULL, "task_queues allocation failure.");
}

G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
                                                                 size_t size,
                                                                 size_t translation_factor) {
  size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
  // Allocate a new reserved space, preferring to use large pages.
  ReservedSpace rs(size, preferred_page_size);
  G1RegionToSpaceMapper* result  =
    G1RegionToSpaceMapper::create_mapper(rs,
                                         size,
                                         rs.alignment(),
                                         HeapRegion::GrainBytes,
                                         translation_factor,
                                         mtGC);
  if (TracePageSizes) {
    gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
                           description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
  }
  return result;
}

jint G1CollectedHeap::initialize() {
  CollectedHeap::pre_initialize();
  os::enable_vtime();

  G1Log::init();

  // Necessary to satisfy locking discipline assertions.

  MutexLocker x(Heap_lock);

  // We have to initialize the printer before committing the heap, as
  // it will be used then.
  _hr_printer.set_active(G1PrintHeapRegions);

  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  size_t max_byte_size = collector_policy()->max_heap_byte_size();
  size_t heap_alignment = collector_policy()->heap_alignment();

  // Ensure that the sizes are properly aligned.
  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");

  _refine_cte_cl = new RefineCardTableEntryClosure();

  jint ecode = JNI_OK;
  _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
  if (_cg1r == NULL) {
    return ecode;
  }

  // Reserve the maximum.

  // When compressed oops are enabled, the preferred heap base
  // is calculated by subtracting the requested size from the
  // 32Gb boundary and using the result as the base address for
  // heap reservation. If the requested size is not aligned to
  // HeapRegion::GrainBytes (i.e. the alignment that is passed
  // into the ReservedHeapSpace constructor) then the actual
  // base of the reserved heap may end up differing from the
  // address that was requested (i.e. the preferred heap base).
  // If this happens then we could end up using a non-optimal
  // compressed oops mode.

  ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
                                                 heap_alignment);

  initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));

  // Create the barrier set for the entire reserved region.
  G1SATBCardTableLoggingModRefBS* bs
    = new G1SATBCardTableLoggingModRefBS(reserved_region());
  bs->initialize();
  assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
  set_barrier_set(bs);

  // Also create a G1 rem set.
  _g1_rem_set = new G1RemSet(this, g1_barrier_set());

  // Carve out the G1 part of the heap.

  ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
  size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
  G1RegionToSpaceMapper* heap_storage =
    G1RegionToSpaceMapper::create_mapper(g1_rs,
                                         g1_rs.size(),
                                         page_size,
                                         HeapRegion::GrainBytes,
                                         1,
                                         mtJavaHeap);
  os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
                       max_byte_size, page_size,
                       heap_rs.base(),
                       heap_rs.size());
  heap_storage->set_mapping_changed_listener(&_listener);

  // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
  G1RegionToSpaceMapper* bot_storage =
    create_aux_memory_mapper("Block offset table",
                             G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
                             G1BlockOffsetSharedArray::heap_map_factor());

  ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
  G1RegionToSpaceMapper* cardtable_storage =
    create_aux_memory_mapper("Card table",
                             G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
                             G1SATBCardTableLoggingModRefBS::heap_map_factor());

  G1RegionToSpaceMapper* card_counts_storage =
    create_aux_memory_mapper("Card counts table",
                             G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
                             G1CardCounts::heap_map_factor());

  size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
  G1RegionToSpaceMapper* prev_bitmap_storage =
    create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
  G1RegionToSpaceMapper* next_bitmap_storage =
    create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());

  _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
  g1_barrier_set()->initialize(cardtable_storage);
   // Do later initialization work for concurrent refinement.
  _cg1r->init(card_counts_storage);

  // 6843694 - ensure that the maximum region index can fit
  // in the remembered set structures.
  const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");

  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
            "too many cards per region");

  FreeRegionList::set_unrealistically_long_length(max_regions() + 1);

  _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);

  {
    HeapWord* start = _hrm.reserved().start();
    HeapWord* end = _hrm.reserved().end();
    size_t granularity = HeapRegion::GrainBytes;

    _in_cset_fast_test.initialize(start, end, granularity);
    _humongous_reclaim_candidates.initialize(start, end, granularity);
  }

  // Create the ConcurrentMark data structure and thread.
  // (Must do this late, so that "max_regions" is defined.)
  _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
  if (_cm == NULL || !_cm->completed_initialization()) {
    vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
    return JNI_ENOMEM;
  }
  _cmThread = _cm->cmThread();

  // Initialize the from_card cache structure of HeapRegionRemSet.
  HeapRegionRemSet::init_heap(max_regions());

  // Now expand into the initial heap size.
  if (!expand(init_byte_size)) {
    vm_shutdown_during_initialization("Failed to allocate initial heap.");
    return JNI_ENOMEM;
  }

  // Perform any initialization actions delegated to the policy.
  g1_policy()->init();

  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
                                               SATB_Q_FL_lock,
                                               G1SATBProcessCompletedThreshold,
                                               Shared_SATB_Q_lock);

  JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
                                                DirtyCardQ_CBL_mon,
                                                DirtyCardQ_FL_lock,
                                                concurrent_g1_refine()->yellow_zone(),
                                                concurrent_g1_refine()->red_zone(),
                                                Shared_DirtyCardQ_lock);

  dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
                                    DirtyCardQ_CBL_mon,
                                    DirtyCardQ_FL_lock,
                                    -1, // never trigger processing
                                    -1, // no limit on length
                                    Shared_DirtyCardQ_lock,
                                    &JavaThread::dirty_card_queue_set());

  // Here we allocate the dummy HeapRegion that is required by the
  // G1AllocRegion class.
  HeapRegion* dummy_region = _hrm.get_dummy_region();

  // We'll re-use the same region whether the alloc region will
  // require BOT updates or not and, if it doesn't, then a non-young
  // region will complain that it cannot support allocations without
  // BOT updates. So we'll tag the dummy region as eden to avoid that.
  dummy_region->set_eden();
  // Make sure it's full.
  dummy_region->set_top(dummy_region->end());
  G1AllocRegion::setup(this, dummy_region);

  _allocator->init_mutator_alloc_region();

  // Do create of the monitoring and management support so that
  // values in the heap have been properly initialized.
  _g1mm = new G1MonitoringSupport(this);

  G1StringDedup::initialize();

  _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
  for (uint i = 0; i < ParallelGCThreads; i++) {
    new (&_preserved_objs[i]) OopAndMarkOopStack();
  }

  return JNI_OK;
}

void G1CollectedHeap::stop() {
  // Stop all concurrent threads. We do this to make sure these threads
  // do not continue to execute and access resources (e.g. gclog_or_tty)
  // that are destroyed during shutdown.
  _cg1r->stop();
  _cmThread->stop();
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::stop();
  }
}

size_t G1CollectedHeap::conservative_max_heap_alignment() {
  return HeapRegion::max_region_size();
}

void G1CollectedHeap::post_initialize() {
  CollectedHeap::post_initialize();
  ref_processing_init();
}

void G1CollectedHeap::ref_processing_init() {
  // Reference processing in G1 currently works as follows:
  //
  // * There are two reference processor instances. One is
  //   used to record and process discovered references
  //   during concurrent marking; the other is used to
  //   record and process references during STW pauses
  //   (both full and incremental).
  // * Both ref processors need to 'span' the entire heap as
  //   the regions in the collection set may be dotted around.
  //
  // * For the concurrent marking ref processor:
  //   * Reference discovery is enabled at initial marking.
  //   * Reference discovery is disabled and the discovered
  //     references processed etc during remarking.
  //   * Reference discovery is MT (see below).
  //   * Reference discovery requires a barrier (see below).
  //   * Reference processing may or may not be MT
  //     (depending on the value of ParallelRefProcEnabled
  //     and ParallelGCThreads).
  //   * A full GC disables reference discovery by the CM
  //     ref processor and abandons any entries on it's
  //     discovered lists.
  //
  // * For the STW processor:
  //   * Non MT discovery is enabled at the start of a full GC.
  //   * Processing and enqueueing during a full GC is non-MT.
  //   * During a full GC, references are processed after marking.
  //
  //   * Discovery (may or may not be MT) is enabled at the start
  //     of an incremental evacuation pause.
  //   * References are processed near the end of a STW evacuation pause.
  //   * For both types of GC:
  //     * Discovery is atomic - i.e. not concurrent.
  //     * Reference discovery will not need a barrier.

  MemRegion mr = reserved_region();

  // Concurrent Mark ref processor
  _ref_processor_cm =
    new ReferenceProcessor(mr,    // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           ParallelGCThreads,
                                // degree of mt processing
                           (ParallelGCThreads > 1) || (ConcGCThreads > 1),
                                // mt discovery
                           MAX2(ParallelGCThreads, ConcGCThreads),
                                // degree of mt discovery
                           false,
                                // Reference discovery is not atomic
                           &_is_alive_closure_cm);
                                // is alive closure
                                // (for efficiency/performance)

  // STW ref processor
  _ref_processor_stw =
    new ReferenceProcessor(mr,    // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           ParallelGCThreads,
                                // degree of mt processing
                           (ParallelGCThreads > 1),
                                // mt discovery
                           ParallelGCThreads,
                                // degree of mt discovery
                           true,
                                // Reference discovery is atomic
                           &_is_alive_closure_stw);
                                // is alive closure
                                // (for efficiency/performance)
}

CollectorPolicy* G1CollectedHeap::collector_policy() const {
  return g1_policy();
}

size_t G1CollectedHeap::capacity() const {
  return _hrm.length() * HeapRegion::GrainBytes;
}

void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  hr->reset_gc_time_stamp();
}

#ifndef PRODUCT

class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
private:
  unsigned _gc_time_stamp;
  bool _failures;

public:
  CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
    _gc_time_stamp(gc_time_stamp), _failures(false) { }

  virtual bool doHeapRegion(HeapRegion* hr) {
    unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
    if (_gc_time_stamp != region_gc_time_stamp) {
      gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
                             "expected %d", HR_FORMAT_PARAMS(hr),
                             region_gc_time_stamp, _gc_time_stamp);
      _failures = true;
    }
    return false;
  }

  bool failures() { return _failures; }
};

void G1CollectedHeap::check_gc_time_stamps() {
  CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  heap_region_iterate(&cl);
  guarantee(!cl.failures(), "all GC time stamps should have been reset");
}
#endif // PRODUCT

void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
  _cg1r->hot_card_cache()->drain(cl, worker_i);
}

void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t n_completed_buffers = 0;
  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
    n_completed_buffers++;
  }
  g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
  dcqs.clear_n_completed_buffers();
  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}

// Computes the sum of the storage used by the various regions.
size_t G1CollectedHeap::used() const {
  size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
  if (_archive_allocator != NULL) {
    result += _archive_allocator->used();
  }
  return result;
}

size_t G1CollectedHeap::used_unlocked() const {
  return _summary_bytes_used;
}

class SumUsedClosure: public HeapRegionClosure {
  size_t _used;
public:
  SumUsedClosure() : _used(0) {}
  bool doHeapRegion(HeapRegion* r) {
    _used += r->used();
    return false;
  }
  size_t result() { return _used; }
};

size_t G1CollectedHeap::recalculate_used() const {
  double recalculate_used_start = os::elapsedTime();

  SumUsedClosure blk;
  heap_region_iterate(&blk);

  g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
  return blk.result();
}

bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  switch (cause) {
    case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
    case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
    case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
    case GCCause::_g1_humongous_allocation: return true;
    case GCCause::_update_allocation_context_stats_inc: return true;
    case GCCause::_wb_conc_mark:            return true;
    default:                                return false;
  }
}

#ifndef PRODUCT
void G1CollectedHeap::allocate_dummy_regions() {
  // Let's fill up most of the region
  size_t word_size = HeapRegion::GrainWords - 1024;
  // And as a result the region we'll allocate will be humongous.
  guarantee(is_humongous(word_size), "sanity");

  for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
    // Let's use the existing mechanism for the allocation
    HeapWord* dummy_obj = humongous_obj_allocate(word_size,
                                                 AllocationContext::system());
    if (dummy_obj != NULL) {
      MemRegion mr(dummy_obj, word_size);
      CollectedHeap::fill_with_object(mr);
    } else {
      // If we can't allocate once, we probably cannot allocate
      // again. Let's get out of the loop.
      break;
    }
  }
}
#endif // !PRODUCT

void G1CollectedHeap::increment_old_marking_cycles_started() {
  assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
         _old_marking_cycles_started == _old_marking_cycles_completed + 1,
         "Wrong marking cycle count (started: %d, completed: %d)",
         _old_marking_cycles_started, _old_marking_cycles_completed);

  _old_marking_cycles_started++;
}

void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);

  // We assume that if concurrent == true, then the caller is a
  // concurrent thread that was joined the Suspendible Thread
  // Set. If there's ever a cheap way to check this, we should add an
  // assert here.

  // Given that this method is called at the end of a Full GC or of a
  // concurrent cycle, and those can be nested (i.e., a Full GC can
  // interrupt a concurrent cycle), the number of full collections
  // completed should be either one (in the case where there was no
  // nesting) or two (when a Full GC interrupted a concurrent cycle)
  // behind the number of full collections started.

  // This is the case for the inner caller, i.e. a Full GC.
  assert(concurrent ||
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
         (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
         "for inner caller (Full GC): _old_marking_cycles_started = %u "
         "is inconsistent with _old_marking_cycles_completed = %u",
         _old_marking_cycles_started, _old_marking_cycles_completed);

  // This is the case for the outer caller, i.e. the concurrent cycle.
  assert(!concurrent ||
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
         "for outer caller (concurrent cycle): "
         "_old_marking_cycles_started = %u "
         "is inconsistent with _old_marking_cycles_completed = %u",
         _old_marking_cycles_started, _old_marking_cycles_completed);

  _old_marking_cycles_completed += 1;

  // We need to clear the "in_progress" flag in the CM thread before
  // we wake up any waiters (especially when ExplicitInvokesConcurrent
  // is set) so that if a waiter requests another System.gc() it doesn't
  // incorrectly see that a marking cycle is still in progress.
  if (concurrent) {
    _cmThread->set_idle();
  }

  // This notify_all() will ensure that a thread that called
  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  // and it's waiting for a full GC to finish will be woken up. It is
  // waiting in VM_G1IncCollectionPause::doit_epilogue().
  FullGCCount_lock->notify_all();
}

void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
  GCIdMarkAndRestore conc_gc_id_mark;
  collector_state()->set_concurrent_cycle_started(true);
  _gc_timer_cm->register_gc_start(start_time);

  _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  trace_heap_before_gc(_gc_tracer_cm);
  _cmThread->set_gc_id(GCId::current());
}

void G1CollectedHeap::register_concurrent_cycle_end() {
  if (collector_state()->concurrent_cycle_started()) {
    GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
    if (_cm->has_aborted()) {
      _gc_tracer_cm->report_concurrent_mode_failure();
    }

    _gc_timer_cm->register_gc_end();
    _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());

    // Clear state variables to prepare for the next concurrent cycle.
     collector_state()->set_concurrent_cycle_started(false);
    _heap_summary_sent = false;
  }
}

void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  if (collector_state()->concurrent_cycle_started()) {
    // This function can be called when:
    //  the cleanup pause is run
    //  the concurrent cycle is aborted before the cleanup pause.
    //  the concurrent cycle is aborted after the cleanup pause,
    //   but before the concurrent cycle end has been registered.
    // Make sure that we only send the heap information once.
    if (!_heap_summary_sent) {
      GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
      trace_heap_after_gc(_gc_tracer_cm);
      _heap_summary_sent = true;
    }
  }
}

void G1CollectedHeap::collect(GCCause::Cause cause) {
  assert_heap_not_locked();

  uint gc_count_before;
  uint old_marking_count_before;
  uint full_gc_count_before;
  bool retry_gc;

  do {
    retry_gc = false;

    {
      MutexLocker ml(Heap_lock);

      // Read the GC count while holding the Heap_lock
      gc_count_before = total_collections();
      full_gc_count_before = total_full_collections();
      old_marking_count_before = _old_marking_cycles_started;
    }

    if (should_do_concurrent_full_gc(cause)) {
      // Schedule an initial-mark evacuation pause that will start a
      // concurrent cycle. We're setting word_size to 0 which means that
      // we are not requesting a post-GC allocation.
      VM_G1IncCollectionPause op(gc_count_before,
                                 0,     /* word_size */
                                 true,  /* should_initiate_conc_mark */
                                 g1_policy()->max_pause_time_ms(),
                                 cause);
      op.set_allocation_context(AllocationContext::current());

      VMThread::execute(&op);
      if (!op.pause_succeeded()) {
        if (old_marking_count_before == _old_marking_cycles_started) {
          retry_gc = op.should_retry_gc();
        } else {
          // A Full GC happened while we were trying to schedule the
          // initial-mark GC. No point in starting a new cycle given
          // that the whole heap was collected anyway.
        }

        if (retry_gc) {
          if (GC_locker::is_active_and_needs_gc()) {
            GC_locker::stall_until_clear();
          }
        }
      }
    } else {
      if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
          DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {

        // Schedule a standard evacuation pause. We're setting word_size
        // to 0 which means that we are not requesting a post-GC allocation.
        VM_G1IncCollectionPause op(gc_count_before,
                                   0,     /* word_size */
                                   false, /* should_initiate_conc_mark */
                                   g1_policy()->max_pause_time_ms(),
                                   cause);
        VMThread::execute(&op);
      } else {
        // Schedule a Full GC.
        VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
        VMThread::execute(&op);
      }
    }
  } while (retry_gc);
}

bool G1CollectedHeap::is_in(const void* p) const {
  if (_hrm.reserved().contains(p)) {
    // Given that we know that p is in the reserved space,
    // heap_region_containing() should successfully
    // return the containing region.
    HeapRegion* hr = heap_region_containing(p);
    return hr->is_in(p);
  } else {
    return false;
  }
}

#ifdef ASSERT
bool G1CollectedHeap::is_in_exact(const void* p) const {
  bool contains = reserved_region().contains(p);
  bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
  if (contains && available) {
    return true;
  } else {
    return false;
  }
}
#endif

bool G1CollectedHeap::obj_in_cs(oop obj) {
  HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
  return r != NULL && r->in_collection_set();
}

// Iteration functions.

// Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.

class IterateOopClosureRegionClosure: public HeapRegionClosure {
  ExtendedOopClosure* _cl;
public:
  IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->is_continues_humongous()) {
      r->oop_iterate(_cl);
    }
    return false;
  }
};

// Iterates an ObjectClosure over all objects within a HeapRegion.

class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  ObjectClosure* _cl;
public:
  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->is_continues_humongous()) {
      r->object_iterate(_cl);
    }
    return false;
  }
};

void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
  IterateObjectClosureRegionClosure blk(cl);
  heap_region_iterate(&blk);
}

void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  _hrm.iterate(cl);
}

void
G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
                                         uint worker_id,
                                         HeapRegionClaimer *hrclaimer,
                                         bool concurrent) const {
  _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
}

// Clear the cached CSet starting regions and (more importantly)
// the time stamps. Called when we reset the GC time stamp.
void G1CollectedHeap::clear_cset_start_regions() {
  assert(_worker_cset_start_region != NULL, "sanity");
  assert(_worker_cset_start_region_time_stamp != NULL, "sanity");

  for (uint i = 0; i < ParallelGCThreads; i++) {
    _worker_cset_start_region[i] = NULL;
    _worker_cset_start_region_time_stamp[i] = 0;
  }
}

// Given the id of a worker, obtain or calculate a suitable
// starting region for iterating over the current collection set.
HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
  assert(get_gc_time_stamp() > 0, "should have been updated by now");

  HeapRegion* result = NULL;
  unsigned gc_time_stamp = get_gc_time_stamp();

  if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
    // Cached starting region for current worker was set
    // during the current pause - so it's valid.
    // Note: the cached starting heap region may be NULL
    // (when the collection set is empty).
    result = _worker_cset_start_region[worker_i];
    assert(result == NULL || result->in_collection_set(), "sanity");
    return result;
  }

  // The cached entry was not valid so let's calculate
  // a suitable starting heap region for this worker.

  // We want the parallel threads to start their collection
  // set iteration at different collection set regions to
  // avoid contention.
  // If we have:
  //          n collection set regions
  //          p threads
  // Then thread t will start at region floor ((t * n) / p)

  result = g1_policy()->collection_set();
  uint cs_size = g1_policy()->cset_region_length();
  uint active_workers = workers()->active_workers();

  uint end_ind   = (cs_size * worker_i) / active_workers;
  uint start_ind = 0;

  if (worker_i > 0 &&
      _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
    // Previous workers starting region is valid
    // so let's iterate from there
    start_ind = (cs_size * (worker_i - 1)) / active_workers;
    result = _worker_cset_start_region[worker_i - 1];
  }

  for (uint i = start_ind; i < end_ind; i++) {
    result = result->next_in_collection_set();
  }

  // Note: the calculated starting heap region may be NULL
  // (when the collection set is empty).
  assert(result == NULL || result->in_collection_set(), "sanity");
  assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
         "should be updated only once per pause");
  _worker_cset_start_region[worker_i] = result;
  OrderAccess::storestore();
  _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  return result;
}

void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  HeapRegion* r = g1_policy()->collection_set();
  while (r != NULL) {
    HeapRegion* next = r->next_in_collection_set();
    if (cl->doHeapRegion(r)) {
      cl->incomplete();
      return;
    }
    r = next;
  }
}

void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
                                                  HeapRegionClosure *cl) {
  if (r == NULL) {
    // The CSet is empty so there's nothing to do.
    return;
  }

  assert(r->in_collection_set(),
         "Start region must be a member of the collection set.");
  HeapRegion* cur = r;
  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
  cur = g1_policy()->collection_set();
  while (cur != r) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
}

HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
  HeapRegion* result = _hrm.next_region_in_heap(from);
  while (result != NULL && result->is_pinned()) {
    result = _hrm.next_region_in_heap(result);
  }
  return result;
}

HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  HeapRegion* hr = heap_region_containing(addr);
  return hr->block_start(addr);
}

size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  HeapRegion* hr = heap_region_containing(addr);
  return hr->block_size(addr);
}

bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  HeapRegion* hr = heap_region_containing(addr);
  return hr->block_is_obj(addr);
}

bool G1CollectedHeap::supports_tlab_allocation() const {
  return true;
}

size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
  return young_list()->eden_used_bytes();
}

// For G1 TLABs should not contain humongous objects, so the maximum TLAB size
// must be equal to the humongous object limit.
size_t G1CollectedHeap::max_tlab_size() const {
  return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
}

size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  AllocationContext_t context = AllocationContext::current();
  return _allocator->unsafe_max_tlab_alloc(context);
}

size_t G1CollectedHeap::max_capacity() const {
  return _hrm.reserved().byte_size();
}

jlong G1CollectedHeap::millis_since_last_gc() {
  // assert(false, "NYI");
  return 0;
}

void G1CollectedHeap::prepare_for_verify() {
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    ensure_parsability(false);
  }
  g1_rem_set()->prepare_for_verify();
}

bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
                                              VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking:
    return hr->obj_allocated_since_prev_marking(obj);
  case VerifyOption_G1UseNextMarking:
    return hr->obj_allocated_since_next_marking(obj);
  case VerifyOption_G1UseMarkWord:
    return false;
  default:
    ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  case VerifyOption_G1UseMarkWord:    return NULL;
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return "PTAMS";
  case VerifyOption_G1UseNextMarking: return "NTAMS";
  case VerifyOption_G1UseMarkWord:    return "NONE";
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

class VerifyRootsClosure: public OopClosure {
private:
  G1CollectedHeap* _g1h;
  VerifyOption     _vo;
  bool             _failures;
public:
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyRootsClosure(VerifyOption vo) :
    _g1h(G1CollectedHeap::heap()),
    _vo(vo),
    _failures(false) { }

  bool failures() { return _failures; }

  template <class T> void do_oop_nv(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      if (_g1h->is_obj_dead_cond(obj, _vo)) {
        gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
                               "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
        if (_vo == VerifyOption_G1UseMarkWord) {
          gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
        }
        obj->print_on(gclog_or_tty);
        _failures = true;
      }
    }
  }

  void do_oop(oop* p)       { do_oop_nv(p); }
  void do_oop(narrowOop* p) { do_oop_nv(p); }
};

class G1VerifyCodeRootOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  OopClosure* _root_cl;
  nmethod* _nm;
  VerifyOption _vo;
  bool _failures;

  template <class T> void do_oop_work(T* p) {
    // First verify that this root is live
    _root_cl->do_oop(p);

    if (!G1VerifyHeapRegionCodeRoots) {
      // We're not verifying the code roots attached to heap region.
      return;
    }

    // Don't check the code roots during marking verification in a full GC
    if (_vo == VerifyOption_G1UseMarkWord) {
      return;
    }

    // Now verify that the current nmethod (which contains p) is
    // in the code root list of the heap region containing the
    // object referenced by p.

    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);

      // Now fetch the region containing the object
      HeapRegion* hr = _g1h->heap_region_containing(obj);
      HeapRegionRemSet* hrrs = hr->rem_set();
      // Verify that the strong code root list for this region
      // contains the nmethod
      if (!hrrs->strong_code_roots_list_contains(_nm)) {
        gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
                               "from nmethod " PTR_FORMAT " not in strong "
                               "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
                               p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
        _failures = true;
      }
    }
  }

public:
  G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
    _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}

  void do_oop(oop* p) { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }

  void set_nmethod(nmethod* nm) { _nm = nm; }
  bool failures() { return _failures; }
};

class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  G1VerifyCodeRootOopClosure* _oop_cl;

public:
  G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
    _oop_cl(oop_cl) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = cb->as_nmethod_or_null();
    if (nm != NULL) {
      _oop_cl->set_nmethod(nm);
      nm->oops_do(_oop_cl);
    }
  }
};

class YoungRefCounterClosure : public OopClosure {
  G1CollectedHeap* _g1h;
  int              _count;
 public:
  YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  void do_oop(narrowOop* p) { ShouldNotReachHere(); }

  int count() { return _count; }
  void reset_count() { _count = 0; };
};

class VerifyKlassClosure: public KlassClosure {
  YoungRefCounterClosure _young_ref_counter_closure;
  OopClosure *_oop_closure;
 public:
  VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  void do_klass(Klass* k) {
    k->oops_do(_oop_closure);

    _young_ref_counter_closure.reset_count();
    k->oops_do(&_young_ref_counter_closure);
    if (_young_ref_counter_closure.count() > 0) {
      guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
    }
  }
};

class VerifyLivenessOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  VerifyOption _vo;
public:
  VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
    _g1h(g1h), _vo(vo)
  { }
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
    guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
              "Dead object referenced by a not dead object");
  }
};

class VerifyObjsInRegionClosure: public ObjectClosure {
private:
  G1CollectedHeap* _g1h;
  size_t _live_bytes;
  HeapRegion *_hr;
  VerifyOption _vo;
public:
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
    : _live_bytes(0), _hr(hr), _vo(vo) {
    _g1h = G1CollectedHeap::heap();
  }
  void do_object(oop o) {
    VerifyLivenessOopClosure isLive(_g1h, _vo);
    assert(o != NULL, "Huh?");
    if (!_g1h->is_obj_dead_cond(o, _vo)) {
      // If the object is alive according to the mark word,
      // then verify that the marking information agrees.
      // Note we can't verify the contra-positive of the
      // above: if the object is dead (according to the mark
      // word), it may not be marked, or may have been marked
      // but has since became dead, or may have been allocated
      // since the last marking.
      if (_vo == VerifyOption_G1UseMarkWord) {
        guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
      }

      o->oop_iterate_no_header(&isLive);
      if (!_hr->obj_allocated_since_prev_marking(o)) {
        size_t obj_size = o->size();    // Make sure we don't overflow
        _live_bytes += (obj_size * HeapWordSize);
      }
    }
  }
  size_t live_bytes() { return _live_bytes; }
};

class VerifyArchiveOopClosure: public OopClosure {
public:
  VerifyArchiveOopClosure(HeapRegion *hr) { }
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
    guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
              "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
              p2i(p), p2i(obj));
  }
};

class VerifyArchiveRegionClosure: public ObjectClosure {
public:
  VerifyArchiveRegionClosure(HeapRegion *hr) { }
  // Verify that all object pointers are to archive regions.
  void do_object(oop o) {
    VerifyArchiveOopClosure checkOop(NULL);
    assert(o != NULL, "Should not be here for NULL oops");
    o->oop_iterate_no_header(&checkOop);
  }
};

class VerifyRegionClosure: public HeapRegionClosure {
private:
  bool             _par;
  VerifyOption     _vo;
  bool             _failures;
public:
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyRegionClosure(bool par, VerifyOption vo)
    : _par(par),
      _vo(vo),
      _failures(false) {}

  bool failures() {
    return _failures;
  }

  bool doHeapRegion(HeapRegion* r) {
    // For archive regions, verify there are no heap pointers to
    // non-pinned regions. For all others, verify liveness info.
    if (r->is_archive()) {
      VerifyArchiveRegionClosure verify_oop_pointers(r);
      r->object_iterate(&verify_oop_pointers);
      return true;
    }
    if (!r->is_continues_humongous()) {
      bool failures = false;
      r->verify(_vo, &failures);
      if (failures) {
        _failures = true;
      } else if (!r->is_starts_humongous()) {
        VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
        r->object_iterate(&not_dead_yet_cl);
        if (_vo != VerifyOption_G1UseNextMarking) {
          if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
            gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
                                   "max_live_bytes " SIZE_FORMAT " "
                                   "< calculated " SIZE_FORMAT,
                                   p2i(r->bottom()), p2i(r->end()),
                                   r->max_live_bytes(),
                                 not_dead_yet_cl.live_bytes());
            _failures = true;
          }
        } else {
          // When vo == UseNextMarking we cannot currently do a sanity
          // check on the live bytes as the calculation has not been
          // finalized yet.
        }
      }
    }
    return false; // stop the region iteration if we hit a failure
  }
};

// This is the task used for parallel verification of the heap regions

class G1ParVerifyTask: public AbstractGangTask {
private:
  G1CollectedHeap*  _g1h;
  VerifyOption      _vo;
  bool              _failures;
  HeapRegionClaimer _hrclaimer;

public:
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
      AbstractGangTask("Parallel verify task"),
      _g1h(g1h),
      _vo(vo),
      _failures(false),
      _hrclaimer(g1h->workers()->active_workers()) {}

  bool failures() {
    return _failures;
  }

  void work(uint worker_id) {
    HandleMark hm;
    VerifyRegionClosure blk(true, _vo);
    _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
    if (blk.failures()) {
      _failures = true;
    }
  }
};

void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
  if (SafepointSynchronize::is_at_safepoint()) {
    assert(Thread::current()->is_VM_thread(),
           "Expected to be executed serially by the VM thread at this point");

    if (!silent) { gclog_or_tty->print("Roots "); }
    VerifyRootsClosure rootsCl(vo);
    VerifyKlassClosure klassCl(this, &rootsCl);
    CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);

    // We apply the relevant closures to all the oops in the
    // system dictionary, class loader data graph, the string table
    // and the nmethods in the code cache.
    G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
    G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);

    {
      G1RootProcessor root_processor(this, 1);
      root_processor.process_all_roots(&rootsCl,
                                       &cldCl,
                                       &blobsCl);
    }

    bool failures = rootsCl.failures() || codeRootsCl.failures();

    if (vo != VerifyOption_G1UseMarkWord) {
      // If we're verifying during a full GC then the region sets
      // will have been torn down at the start of the GC. Therefore
      // verifying the region sets will fail. So we only verify
      // the region sets when not in a full GC.
      if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
      verify_region_sets();
    }

    if (!silent) { gclog_or_tty->print("HeapRegions "); }
    if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {

      G1ParVerifyTask task(this, vo);
      workers()->run_task(&task);
      if (task.failures()) {
        failures = true;
      }

    } else {
      VerifyRegionClosure blk(false, vo);
      heap_region_iterate(&blk);
      if (blk.failures()) {
        failures = true;
      }
    }

    if (G1StringDedup::is_enabled()) {
      if (!silent) gclog_or_tty->print("StrDedup ");
      G1StringDedup::verify();
    }

    if (failures) {
      gclog_or_tty->print_cr("Heap:");
      // It helps to have the per-region information in the output to
      // help us track down what went wrong. This is why we call
      // print_extended_on() instead of print_on().
      print_extended_on(gclog_or_tty);
      gclog_or_tty->cr();
      gclog_or_tty->flush();
    }
    guarantee(!failures, "there should not have been any failures");
  } else {
    if (!silent) {
      gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
      if (G1StringDedup::is_enabled()) {
        gclog_or_tty->print(", StrDedup");
      }
      gclog_or_tty->print(") ");
    }
  }
}

void G1CollectedHeap::verify(bool silent) {
  verify(silent, VerifyOption_G1UsePrevMarking);
}

double G1CollectedHeap::verify(bool guard, const char* msg) {
  double verify_time_ms = 0.0;

  if (guard && total_collections() >= VerifyGCStartAt) {
    double verify_start = os::elapsedTime();
    HandleMark hm;  // Discard invalid handles created during verification
    prepare_for_verify();
    Universe::verify(VerifyOption_G1UsePrevMarking, msg);
    verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  }

  return verify_time_ms;
}

void G1CollectedHeap::verify_before_gc() {
  double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
}

void G1CollectedHeap::verify_after_gc() {
  double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
}

class PrintRegionClosure: public HeapRegionClosure {
  outputStream* _st;
public:
  PrintRegionClosure(outputStream* st) : _st(st) {}
  bool doHeapRegion(HeapRegion* r) {
    r->print_on(_st);
    return false;
  }
};

bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
                                       const HeapRegion* hr,
                                       const VerifyOption vo) const {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
                                       const VerifyOption vo) const {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  case VerifyOption_G1UseMarkWord: {
    HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
    return !obj->is_gc_marked() && !hr->is_archive();
  }
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

void G1CollectedHeap::print_on(outputStream* st) const {
  st->print(" %-20s", "garbage-first heap");
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
            capacity()/K, used_unlocked()/K);
  st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
            p2i(_hrm.reserved().start()),
            p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
            p2i(_hrm.reserved().end()));
  st->cr();
  st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  uint young_regions = _young_list->length();
  st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
            (size_t) young_regions * HeapRegion::GrainBytes / K);
  uint survivor_regions = g1_policy()->recorded_survivor_regions();
  st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
            (size_t) survivor_regions * HeapRegion::GrainBytes / K);
  st->cr();
  MetaspaceAux::print_on(st);
}

void G1CollectedHeap::print_extended_on(outputStream* st) const {
  print_on(st);

  // Print the per-region information.
  st->cr();
  st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
               "HS=humongous(starts), HC=humongous(continues), "
               "CS=collection set, F=free, A=archive, TS=gc time stamp, "
               "PTAMS=previous top-at-mark-start, "
               "NTAMS=next top-at-mark-start)");
  PrintRegionClosure blk(st);
  heap_region_iterate(&blk);
}

void G1CollectedHeap::print_on_error(outputStream* st) const {
  this->CollectedHeap::print_on_error(st);

  if (_cm != NULL) {
    st->cr();
    _cm->print_on_error(st);
  }
}

void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  workers()->print_worker_threads_on(st);
  _cmThread->print_on(st);
  st->cr();
  _cm->print_worker_threads_on(st);
  _cg1r->print_worker_threads_on(st);
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::print_worker_threads_on(st);
  }
}

void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  workers()->threads_do(tc);
  tc->do_thread(_cmThread);
  _cg1r->threads_do(tc);
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::threads_do(tc);
  }
}

void G1CollectedHeap::print_tracing_info() const {
  // We'll overload this to mean "trace GC pause statistics."
  if (TraceYoungGenTime || TraceOldGenTime) {
    // The "G1CollectorPolicy" is keeping track of these stats, so delegate
    // to that.
    g1_policy()->print_tracing_info();
  }
  if (G1SummarizeRSetStats) {
    g1_rem_set()->print_summary_info();
  }
  if (G1SummarizeConcMark) {
    concurrent_mark()->print_summary_info();
  }
  g1_policy()->print_yg_surv_rate_info();
}

#ifndef PRODUCT
// Helpful for debugging RSet issues.

class PrintRSetsClosure : public HeapRegionClosure {
private:
  const char* _msg;
  size_t _occupied_sum;

public:
  bool doHeapRegion(HeapRegion* r) {
    HeapRegionRemSet* hrrs = r->rem_set();
    size_t occupied = hrrs->occupied();
    _occupied_sum += occupied;

    gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
                           HR_FORMAT_PARAMS(r));
    if (occupied == 0) {
      gclog_or_tty->print_cr("  RSet is empty");
    } else {
      hrrs->print();
    }
    gclog_or_tty->print_cr("----------");
    return false;
  }

  PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
    gclog_or_tty->cr();
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->print_cr("%s", msg);
    gclog_or_tty->cr();
  }

  ~PrintRSetsClosure() {
    gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->cr();
  }
};

void G1CollectedHeap::print_cset_rsets() {
  PrintRSetsClosure cl("Printing CSet RSets");
  collection_set_iterate(&cl);
}

void G1CollectedHeap::print_all_rsets() {
  PrintRSetsClosure cl("Printing All RSets");;
  heap_region_iterate(&cl);
}
#endif // PRODUCT

G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
  YoungList* young_list = heap()->young_list();

  size_t eden_used_bytes = young_list->eden_used_bytes();
  size_t survivor_used_bytes = young_list->survivor_used_bytes();

  size_t eden_capacity_bytes =
    (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;

  VirtualSpaceSummary heap_summary = create_heap_space_summary();
  return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
}

G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
  return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
                       stats->unused(), stats->used(), stats->region_end_waste(),
                       stats->regions_filled(), stats->direct_allocated(),
                       stats->failure_used(), stats->failure_waste());
}

void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
  const G1HeapSummary& heap_summary = create_g1_heap_summary();
  gc_tracer->report_gc_heap_summary(when, heap_summary);

  const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
  gc_tracer->report_metaspace_summary(when, metaspace_summary);
}


G1CollectedHeap* G1CollectedHeap::heap() {
  CollectedHeap* heap = Universe::heap();
  assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
  assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
  return (G1CollectedHeap*)heap;
}

void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  // always_do_update_barrier = false;
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  // Fill TLAB's and such
  accumulate_statistics_all_tlabs();
  ensure_parsability(true);

  if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
      (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
  }
}

void G1CollectedHeap::gc_epilogue(bool full) {

  if (G1SummarizeRSetStats &&
      (G1SummarizeRSetStatsPeriod > 0) &&
      // we are at the end of the GC. Total collections has already been increased.
      ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_periodic_summary_info("After GC RS summary");
  }

  // FIXME: what is this about?
  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  // is set.
#if defined(COMPILER2) || INCLUDE_JVMCI
  assert(DerivedPointerTable::is_empty(), "derived pointer present");
#endif
  // always_do_update_barrier = true;

  resize_all_tlabs();
  allocation_context_stats().update(full);

  // We have just completed a GC. Update the soft reference
  // policy with the new heap occupancy
  Universe::update_heap_info_at_gc();
}

HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
                                               uint gc_count_before,
                                               bool* succeeded,
                                               GCCause::Cause gc_cause) {
  assert_heap_not_locked_and_not_at_safepoint();
  g1_policy()->record_stop_world_start();
  VM_G1IncCollectionPause op(gc_count_before,
                             word_size,
                             false, /* should_initiate_conc_mark */
                             g1_policy()->max_pause_time_ms(),
                             gc_cause);

  op.set_allocation_context(AllocationContext::current());
  VMThread::execute(&op);

  HeapWord* result = op.result();
  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  assert(result == NULL || ret_succeeded,
         "the result should be NULL if the VM did not succeed");
  *succeeded = ret_succeeded;

  assert_heap_not_locked();
  return result;
}

void
G1CollectedHeap::doConcurrentMark() {
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  if (!_cmThread->in_progress()) {
    _cmThread->set_started();
    CGC_lock->notify();
  }
}

size_t G1CollectedHeap::pending_card_num() {
  size_t extra_cards = 0;
  JavaThread *curr = Threads::first();
  while (curr != NULL) {
    DirtyCardQueue& dcq = curr->dirty_card_queue();
    extra_cards += dcq.size();
    curr = curr->next();
  }
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num = dcqs.completed_buffers_num();

  // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  // in bytes - not the number of 'entries'. We need to convert
  // into a number of cards.
  return (buffer_size * buffer_num + extra_cards) / oopSize;
}

class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
 private:
  size_t _total_humongous;
  size_t _candidate_humongous;

  DirtyCardQueue _dcq;

  // We don't nominate objects with many remembered set entries, on
  // the assumption that such objects are likely still live.
  bool is_remset_small(HeapRegion* region) const {
    HeapRegionRemSet* const rset = region->rem_set();
    return G1EagerReclaimHumongousObjectsWithStaleRefs
      ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
      : rset->is_empty();
  }

  bool is_typeArray_region(HeapRegion* region) const {
    return oop(region->bottom())->is_typeArray();
  }

  bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
    assert(region->is_starts_humongous(), "Must start a humongous object");

    // Candidate selection must satisfy the following constraints
    // while concurrent marking is in progress:
    //
    // * In order to maintain SATB invariants, an object must not be
    // reclaimed if it was allocated before the start of marking and
    // has not had its references scanned.  Such an object must have
    // its references (including type metadata) scanned to ensure no
    // live objects are missed by the marking process.  Objects
    // allocated after the start of concurrent marking don't need to
    // be scanned.
    //
    // * An object must not be reclaimed if it is on the concurrent
    // mark stack.  Objects allocated after the start of concurrent
    // marking are never pushed on the mark stack.
    //
    // Nominating only objects allocated after the start of concurrent
    // marking is sufficient to meet both constraints.  This may miss
    // some objects that satisfy the constraints, but the marking data
    // structures don't support efficiently performing the needed
    // additional tests or scrubbing of the mark stack.
    //
    // However, we presently only nominate is_typeArray() objects.
    // A humongous object containing references induces remembered
    // set entries on other regions.  In order to reclaim such an
    // object, those remembered sets would need to be cleaned up.
    //
    // We also treat is_typeArray() objects specially, allowing them
    // to be reclaimed even if allocated before the start of
    // concurrent mark.  For this we rely on mark stack insertion to
    // exclude is_typeArray() objects, preventing reclaiming an object
    // that is in the mark stack.  We also rely on the metadata for
    // such objects to be built-in and so ensured to be kept live.
    // Frequent allocation and drop of large binary blobs is an
    // important use case for eager reclaim, and this special handling
    // may reduce needed headroom.

    return is_typeArray_region(region) && is_remset_small(region);
  }

 public:
  RegisterHumongousWithInCSetFastTestClosure()
  : _total_humongous(0),
    _candidate_humongous(0),
    _dcq(&JavaThread::dirty_card_queue_set()) {
  }

  virtual bool doHeapRegion(HeapRegion* r) {
    if (!r->is_starts_humongous()) {
      return false;
    }
    G1CollectedHeap* g1h = G1CollectedHeap::heap();

    bool is_candidate = humongous_region_is_candidate(g1h, r);
    uint rindex = r->hrm_index();
    g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
    if (is_candidate) {
      _candidate_humongous++;
      g1h->register_humongous_region_with_cset(rindex);
      // Is_candidate already filters out humongous object with large remembered sets.
      // If we have a humongous object with a few remembered sets, we simply flush these
      // remembered set entries into the DCQS. That will result in automatic
      // re-evaluation of their remembered set entries during the following evacuation
      // phase.
      if (!r->rem_set()->is_empty()) {
        guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
                  "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
        G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
        HeapRegionRemSetIterator hrrs(r->rem_set());
        size_t card_index;
        while (hrrs.has_next(card_index)) {
          jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
          // The remembered set might contain references to already freed
          // regions. Filter out such entries to avoid failing card table
          // verification.
          if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
            if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
              *card_ptr = CardTableModRefBS::dirty_card_val();
              _dcq.enqueue(card_ptr);
            }
          }
        }
        assert(hrrs.n_yielded() == r->rem_set()->occupied(),
               "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
               hrrs.n_yielded(), r->rem_set()->occupied());
        r->rem_set()->clear_locked();
      }
      assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
    }
    _total_humongous++;

    return false;
  }

  size_t total_humongous() const { return _total_humongous; }
  size_t candidate_humongous() const { return _candidate_humongous; }

  void flush_rem_set_entries() { _dcq.flush(); }
};

void G1CollectedHeap::register_humongous_regions_with_cset() {
  if (!G1EagerReclaimHumongousObjects) {
    g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
    return;
  }
  double time = os::elapsed_counter();

  // Collect reclaim candidate information and register candidates with cset.
  RegisterHumongousWithInCSetFastTestClosure cl;
  heap_region_iterate(&cl);

  time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
  g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
                                                                  cl.total_humongous(),
                                                                  cl.candidate_humongous());
  _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;

  // Finally flush all remembered set entries to re-check into the global DCQS.
  cl.flush_rem_set_entries();
}

#ifdef ASSERT
class VerifyCSetClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* hr) {
    // Here we check that the CSet region's RSet is ready for parallel
    // iteration. The fields that we'll verify are only manipulated
    // when the region is part of a CSet and is collected. Afterwards,
    // we reset these fields when we clear the region's RSet (when the
    // region is freed) so they are ready when the region is
    // re-allocated. The only exception to this is if there's an
    // evacuation failure and instead of freeing the region we leave
    // it in the heap. In that case, we reset these fields during
    // evacuation failure handling.
    guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");

    // Here's a good place to add any other checks we'd like to
    // perform on CSet regions.
    return false;
  }
};
#endif // ASSERT

uint G1CollectedHeap::num_task_queues() const {
  return _task_queues->size();
}

#if TASKQUEUE_STATS
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  st->print_raw_cr("GC Task Stats");
  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}

void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  print_taskqueue_stats_hdr(st);

  TaskQueueStats totals;
  const uint n = num_task_queues();
  for (uint i = 0; i < n; ++i) {
    st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
    totals += task_queue(i)->stats;
  }
  st->print_raw("tot "); totals.print(st); st->cr();

  DEBUG_ONLY(totals.verify());
}

void G1CollectedHeap::reset_taskqueue_stats() {
  const uint n = num_task_queues();
  for (uint i = 0; i < n; ++i) {
    task_queue(i)->stats.reset();
  }
}
#endif // TASKQUEUE_STATS

void G1CollectedHeap::log_gc_header() {
  if (!G1Log::fine()) {
    return;
  }

  gclog_or_tty->gclog_stamp();

  GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
    .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
    .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");

  gclog_or_tty->print("[%s", (const char*)gc_cause_str);
}

void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  if (!G1Log::fine()) {
    return;
  }

  if (G1Log::finer()) {
    if (evacuation_failed()) {
      gclog_or_tty->print(" (to-space exhausted)");
    }
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
    g1_policy()->print_phases(pause_time_sec);
    g1_policy()->print_detailed_heap_transition();
  } else {
    if (evacuation_failed()) {
      gclog_or_tty->print("--");
    }
    g1_policy()->print_heap_transition();
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  }
  gclog_or_tty->flush();
}

void G1CollectedHeap::wait_for_root_region_scanning() {
  double scan_wait_start = os::elapsedTime();
  // We have to wait until the CM threads finish scanning the
  // root regions as it's the only way to ensure that all the
  // objects on them have been correctly scanned before we start
  // moving them during the GC.
  bool waited = _cm->root_regions()->wait_until_scan_finished();
  double wait_time_ms = 0.0;
  if (waited) {
    double scan_wait_end = os::elapsedTime();
    wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
  }
  g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
}

bool
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  assert_at_safepoint(true /* should_be_vm_thread */);
  guarantee(!is_gc_active(), "collection is not reentrant");

  if (GC_locker::check_active_before_gc()) {
    return false;
  }

  _gc_timer_stw->register_gc_start();

  GCIdMark gc_id_mark;
  _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());

  SvcGCMarker sgcm(SvcGCMarker::MINOR);
  ResourceMark rm;

  wait_for_root_region_scanning();

  G1Log::update_level();
  print_heap_before_gc();
  trace_heap_before_gc(_gc_tracer_stw);

  verify_region_sets_optional();
  verify_dirty_young_regions();

  // This call will decide whether this pause is an initial-mark
  // pause. If it is, during_initial_mark_pause() will return true
  // for the duration of this pause.
  g1_policy()->decide_on_conc_mark_initiation();

  // We do not allow initial-mark to be piggy-backed on a mixed GC.
  assert(!collector_state()->during_initial_mark_pause() ||
          collector_state()->gcs_are_young(), "sanity");

  // We also do not allow mixed GCs during marking.
  assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");

  // Record whether this pause is an initial mark. When the current
  // thread has completed its logging output and it's safe to signal
  // the CM thread, the flag's value in the policy has been reset.
  bool should_start_conc_mark = collector_state()->during_initial_mark_pause();

  // Inner scope for scope based logging, timers, and stats collection
  {
    EvacuationInfo evacuation_info;

    if (collector_state()->during_initial_mark_pause()) {
      // We are about to start a marking cycle, so we increment the
      // full collection counter.
      increment_old_marking_cycles_started();
      register_concurrent_cycle_start(_gc_timer_stw->gc_start());
    }

    _gc_tracer_stw->report_yc_type(collector_state()->yc_type());

    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);

    uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                                                  workers()->active_workers(),
                                                                  Threads::number_of_non_daemon_threads());
    workers()->set_active_workers(active_workers);

    double pause_start_sec = os::elapsedTime();
    g1_policy()->note_gc_start(active_workers);
    log_gc_header();

    TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
    TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());

    // If the secondary_free_list is not empty, append it to the
    // free_list. No need to wait for the cleanup operation to finish;
    // the region allocation code will check the secondary_free_list
    // and wait if necessary. If the G1StressConcRegionFreeing flag is
    // set, skip this step so that the region allocation code has to
    // get entries from the secondary_free_list.
    if (!G1StressConcRegionFreeing) {
      append_secondary_free_list_if_not_empty_with_lock();
    }

    assert(check_young_list_well_formed(), "young list should be well formed");

    // Don't dynamically change the number of GC threads this early.  A value of
    // 0 is used to indicate serial work.  When parallel work is done,
    // it will be set.

    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
      IsGCActiveMark x;

      gc_prologue(false);
      increment_total_collections(false /* full gc */);
      increment_gc_time_stamp();

      verify_before_gc();

      check_bitmaps("GC Start");

#if defined(COMPILER2) || INCLUDE_JVMCI
      DerivedPointerTable::clear();
#endif

      // Please see comment in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() to see how
      // reference processing currently works in G1.

      // Enable discovery in the STW reference processor
      ref_processor_stw()->enable_discovery();

      {
        // We want to temporarily turn off discovery by the
        // CM ref processor, if necessary, and turn it back on
        // on again later if we do. Using a scoped
        // NoRefDiscovery object will do this.
        NoRefDiscovery no_cm_discovery(ref_processor_cm());

        // Forget the current alloc region (we might even choose it to be part
        // of the collection set!).
        _allocator->release_mutator_alloc_region();

        // We should call this after we retire the mutator alloc
        // region(s) so that all the ALLOC / RETIRE events are generated
        // before the start GC event.
        _hr_printer.start_gc(false /* full */, (size_t) total_collections());

        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        //
        // Preserving the old comment here if that helps the investigation:
        //
        // The elapsed time induced by the start time below deliberately elides
        // the possible verification above.
        double sample_start_time_sec = os::elapsedTime();

        g1_policy()->record_collection_pause_start(sample_start_time_sec);

        if (collector_state()->during_initial_mark_pause()) {
          concurrent_mark()->checkpointRootsInitialPre();
        }

        double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
        g1_policy()->finalize_old_cset_part(time_remaining_ms);

        evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());

        // Make sure the remembered sets are up to date. This needs to be
        // done before register_humongous_regions_with_cset(), because the
        // remembered sets are used there to choose eager reclaim candidates.
        // If the remembered sets are not up to date we might miss some
        // entries that need to be handled.
        g1_rem_set()->cleanupHRRS();

        register_humongous_regions_with_cset();

        assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");

        _cm->note_start_of_gc();
        // We call this after finalize_cset() to
        // ensure that the CSet has been finalized.
        _cm->verify_no_cset_oops();

        if (_hr_printer.is_active()) {
          HeapRegion* hr = g1_policy()->collection_set();
          while (hr != NULL) {
            _hr_printer.cset(hr);
            hr = hr->next_in_collection_set();
          }
        }

#ifdef ASSERT
        VerifyCSetClosure cl;
        collection_set_iterate(&cl);
#endif // ASSERT

        // Initialize the GC alloc regions.
        _allocator->init_gc_alloc_regions(evacuation_info);

        G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length());
        pre_evacuate_collection_set();

        // Actually do the work...
        evacuate_collection_set(evacuation_info, &per_thread_states);

        post_evacuate_collection_set(evacuation_info, &per_thread_states);

        const size_t* surviving_young_words = per_thread_states.surviving_young_words();
        free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words);

        eagerly_reclaim_humongous_regions();

        g1_policy()->clear_collection_set();

        // Start a new incremental collection set for the next pause.
        g1_policy()->start_incremental_cset_building();

        clear_cset_fast_test();

        _young_list->reset_sampled_info();

        // Don't check the whole heap at this point as the
        // GC alloc regions from this pause have been tagged
        // as survivors and moved on to the survivor list.
        // Survivor regions will fail the !is_young() check.
        assert(check_young_list_empty(false /* check_heap */),
          "young list should be empty");

        g1_policy()->record_survivor_regions(_young_list->survivor_length(),
                                             _young_list->first_survivor_region(),
                                             _young_list->last_survivor_region());

        _young_list->reset_auxilary_lists();

        if (evacuation_failed()) {
          set_used(recalculate_used());
          if (_archive_allocator != NULL) {
            _archive_allocator->clear_used();
          }
          for (uint i = 0; i < ParallelGCThreads; i++) {
            if (_evacuation_failed_info_array[i].has_failed()) {
              _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
            }
          }
        } else {
          // The "used" of the the collection set have already been subtracted
          // when they were freed.  Add in the bytes evacuated.
          increase_used(g1_policy()->bytes_copied_during_gc());
        }

        if (collector_state()->during_initial_mark_pause()) {
          // We have to do this before we notify the CM threads that
          // they can start working to make sure that all the
          // appropriate initialization is done on the CM object.
          concurrent_mark()->checkpointRootsInitialPost();
          collector_state()->set_mark_in_progress(true);
          // Note that we don't actually trigger the CM thread at
          // this point. We do that later when we're sure that
          // the current thread has completed its logging output.
        }

        allocate_dummy_regions();

        _allocator->init_mutator_alloc_region();

        {
          size_t expand_bytes = g1_policy()->expansion_amount();
          if (expand_bytes > 0) {
            size_t bytes_before = capacity();
            // No need for an ergo verbose message here,
            // expansion_amount() does this when it returns a value > 0.
            double expand_ms;
            if (!expand(expand_bytes, &expand_ms)) {
              // We failed to expand the heap. Cannot do anything about it.
            }
            g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
          }
        }

        // We redo the verification but now wrt to the new CSet which
        // has just got initialized after the previous CSet was freed.
        _cm->verify_no_cset_oops();
        _cm->note_end_of_gc();

        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        double sample_end_time_sec = os::elapsedTime();
        double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
        size_t total_cards_scanned = per_thread_states.total_cards_scanned();
        g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned);

        evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
        evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());

        MemoryService::track_memory_usage();

        // In prepare_for_verify() below we'll need to scan the deferred
        // update buffers to bring the RSets up-to-date if
        // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
        // the update buffers we'll probably need to scan cards on the
        // regions we just allocated to (i.e., the GC alloc
        // regions). However, during the last GC we called
        // set_saved_mark() on all the GC alloc regions, so card
        // scanning might skip the [saved_mark_word()...top()] area of
        // those regions (i.e., the area we allocated objects into
        // during the last GC). But it shouldn't. Given that
        // saved_mark_word() is conditional on whether the GC time stamp
        // on the region is current or not, by incrementing the GC time
        // stamp here we invalidate all the GC time stamps on all the
        // regions and saved_mark_word() will simply return top() for
        // all the regions. This is a nicer way of ensuring this rather
        // than iterating over the regions and fixing them. In fact, the
        // GC time stamp increment here also ensures that
        // saved_mark_word() will return top() between pauses, i.e.,
        // during concurrent refinement. So we don't need the
        // is_gc_active() check to decided which top to use when
        // scanning cards (see CR 7039627).
        increment_gc_time_stamp();

        verify_after_gc();
        check_bitmaps("GC End");

        assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
        ref_processor_stw()->verify_no_references_recorded();

        // CM reference discovery will be re-enabled if necessary.
      }

      // We should do this after we potentially expand the heap so
      // that all the COMMIT events are generated before the end GC
      // event, and after we retire the GC alloc regions so that all
      // RETIRE events are generated before the end GC event.
      _hr_printer.end_gc(false /* full */, (size_t) total_collections());

#ifdef TRACESPINNING
      ParallelTaskTerminator::print_termination_counts();
#endif

      gc_epilogue(false);
    }

    // Print the remainder of the GC log output.
    log_gc_footer(os::elapsedTime() - pause_start_sec);

    // It is not yet to safe to tell the concurrent mark to
    // start as we have some optional output below. We don't want the
    // output from the concurrent mark thread interfering with this
    // logging output either.

    _hrm.verify_optional();
    verify_region_sets_optional();

    TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
    TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());

    print_heap_after_gc();
    trace_heap_after_gc(_gc_tracer_stw);

    // We must call G1MonitoringSupport::update_sizes() in the same scoping level
    // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
    // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
    // before any GC notifications are raised.
    g1mm()->update_sizes();

    _gc_tracer_stw->report_evacuation_info(&evacuation_info);
    _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
    _gc_timer_stw->register_gc_end();
    _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  }
  // It should now be safe to tell the concurrent mark thread to start
  // without its logging output interfering with the logging output
  // that came from the pause.

  if (should_start_conc_mark) {
    // CAUTION: after the doConcurrentMark() call below,
    // the concurrent marking thread(s) could be running
    // concurrently with us. Make sure that anything after
    // this point does not assume that we are the only GC thread
    // running. Note: of course, the actual marking work will
    // not start until the safepoint itself is released in
    // SuspendibleThreadSet::desynchronize().
    doConcurrentMark();
  }

  return true;
}

void G1CollectedHeap::remove_self_forwarding_pointers() {
  double remove_self_forwards_start = os::elapsedTime();

  G1ParRemoveSelfForwardPtrsTask rsfp_task;
  workers()->run_task(&rsfp_task);

  // Now restore saved marks, if any.
  for (uint i = 0; i < ParallelGCThreads; i++) {
    OopAndMarkOopStack& cur = _preserved_objs[i];
    while (!cur.is_empty()) {
      OopAndMarkOop elem = cur.pop();
      elem.set_mark();
    }
    cur.clear(true);
  }

  g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
}

void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
  if (!_evacuation_failed) {
    _evacuation_failed = true;
  }

  _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());

  // We want to call the "for_promotion_failure" version only in the
  // case of a promotion failure.
  if (m->must_be_preserved_for_promotion_failure(obj)) {
    OopAndMarkOop elem(obj, m);
    _preserved_objs[worker_id].push(elem);
  }
}

class G1ParEvacuateFollowersClosure : public VoidClosure {
private:
  double _start_term;
  double _term_time;
  size_t _term_attempts;

  void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
  void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
protected:
  G1CollectedHeap*              _g1h;
  G1ParScanThreadState*         _par_scan_state;
  RefToScanQueueSet*            _queues;
  ParallelTaskTerminator*       _terminator;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  RefToScanQueueSet*      queues()         { return _queues; }
  ParallelTaskTerminator* terminator()     { return _terminator; }

public:
  G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
                                G1ParScanThreadState* par_scan_state,
                                RefToScanQueueSet* queues,
                                ParallelTaskTerminator* terminator)
    : _g1h(g1h), _par_scan_state(par_scan_state),
      _queues(queues), _terminator(terminator),
      _start_term(0.0), _term_time(0.0), _term_attempts(0) {}

  void do_void();

  double term_time() const { return _term_time; }
  size_t term_attempts() const { return _term_attempts; }

private:
  inline bool offer_termination();
};

bool G1ParEvacuateFollowersClosure::offer_termination() {
  G1ParScanThreadState* const pss = par_scan_state();
  start_term_time();
  const bool res = terminator()->offer_termination();
  end_term_time();
  return res;
}

void G1ParEvacuateFollowersClosure::do_void() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->trim_queue();
  do {
    pss->steal_and_trim_queue(queues());
  } while (!offer_termination());
}

class G1ParTask : public AbstractGangTask {
protected:
  G1CollectedHeap*         _g1h;
  G1ParScanThreadStateSet* _pss;
  RefToScanQueueSet*       _queues;
  G1RootProcessor*         _root_processor;
  ParallelTaskTerminator   _terminator;
  uint                     _n_workers;

public:
  G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
    : AbstractGangTask("G1 collection"),
      _g1h(g1h),
      _pss(per_thread_states),
      _queues(task_queues),
      _root_processor(root_processor),
      _terminator(n_workers, _queues),
      _n_workers(n_workers)
  {}

  void work(uint worker_id) {
    if (worker_id >= _n_workers) return;  // no work needed this round

    double start_sec = os::elapsedTime();
    _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);

    {
      ResourceMark rm;
      HandleMark   hm;

      ReferenceProcessor*             rp = _g1h->ref_processor_stw();

      G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
      pss->set_ref_processor(rp);

      double start_strong_roots_sec = os::elapsedTime();

      _root_processor->evacuate_roots(pss->closures(), worker_id);

      G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);

      // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
      // treating the nmethods visited to act as roots for concurrent marking.
      // We only want to make sure that the oops in the nmethods are adjusted with regard to the
      // objects copied by the current evacuation.
      size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
                                                                             pss->closures()->weak_codeblobs(),
                                                                             worker_id);

      _pss->add_cards_scanned(worker_id, cards_scanned);

      double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;

      double term_sec = 0.0;
      size_t evac_term_attempts = 0;
      {
        double start = os::elapsedTime();
        G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
        evac.do_void();

        evac_term_attempts = evac.term_attempts();
        term_sec = evac.term_time();
        double elapsed_sec = os::elapsedTime() - start;
        _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
        _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
        _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
      }

      assert(pss->queue_is_empty(), "should be empty");

      if (PrintTerminationStats) {
        MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
        size_t lab_waste;
        size_t lab_undo_waste;
        pss->waste(lab_waste, lab_undo_waste);
        _g1h->print_termination_stats(gclog_or_tty,
                                      worker_id,
                                      (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
                                      strong_roots_sec * 1000.0,                  /* strong roots time */
                                      term_sec * 1000.0,                          /* evac term time */
                                      evac_term_attempts,                         /* evac term attempts */
                                      lab_waste,                                  /* alloc buffer waste */
                                      lab_undo_waste                              /* undo waste */
                                      );
      }

      // Close the inner scope so that the ResourceMark and HandleMark
      // destructors are executed here and are included as part of the
      // "GC Worker Time".
    }
    _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
  }
};

void G1CollectedHeap::print_termination_stats_hdr(outputStream* const st) {
  st->print_raw_cr("GC Termination Stats");
  st->print_raw_cr("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
  st->print_raw_cr("thr     ms        ms      %        ms      %    attempts  total   alloc    undo");
  st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
}

void G1CollectedHeap::print_termination_stats(outputStream* const st,
                                              uint worker_id,
                                              double elapsed_ms,
                                              double strong_roots_ms,
                                              double term_ms,
                                              size_t term_attempts,
                                              size_t alloc_buffer_waste,
                                              size_t undo_waste) const {
  st->print_cr("%3d %9.2f %9.2f %6.2f "
               "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
               SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
               worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
               term_ms, term_ms * 100 / elapsed_ms, term_attempts,
               (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
               alloc_buffer_waste * HeapWordSize / K,
               undo_waste * HeapWordSize / K);
}

class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
private:
  BoolObjectClosure* _is_alive;
  int _initial_string_table_size;
  int _initial_symbol_table_size;

  bool  _process_strings;
  int _strings_processed;
  int _strings_removed;

  bool  _process_symbols;
  int _symbols_processed;
  int _symbols_removed;

public:
  G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
    AbstractGangTask("String/Symbol Unlinking"),
    _is_alive(is_alive),
    _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
    _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {

    _initial_string_table_size = StringTable::the_table()->table_size();
    _initial_symbol_table_size = SymbolTable::the_table()->table_size();
    if (process_strings) {
      StringTable::clear_parallel_claimed_index();
    }
    if (process_symbols) {
      SymbolTable::clear_parallel_claimed_index();
    }
  }

  ~G1StringSymbolTableUnlinkTask() {
    guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
              "claim value %d after unlink less than initial string table size %d",
              StringTable::parallel_claimed_index(), _initial_string_table_size);
    guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
              "claim value %d after unlink less than initial symbol table size %d",
              SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);

    if (G1TraceStringSymbolTableScrubbing) {
      gclog_or_tty->print_cr("Cleaned string and symbol table, "
                             "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
                             "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
                             strings_processed(), strings_removed(),
                             symbols_processed(), symbols_removed());
    }
  }

  void work(uint worker_id) {
    int strings_processed = 0;
    int strings_removed = 0;
    int symbols_processed = 0;
    int symbols_removed = 0;
    if (_process_strings) {
      StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
      Atomic::add(strings_processed, &_strings_processed);
      Atomic::add(strings_removed, &_strings_removed);
    }
    if (_process_symbols) {
      SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
      Atomic::add(symbols_processed, &_symbols_processed);
      Atomic::add(symbols_removed, &_symbols_removed);
    }
  }

  size_t strings_processed() const { return (size_t)_strings_processed; }
  size_t strings_removed()   const { return (size_t)_strings_removed; }

  size_t symbols_processed() const { return (size_t)_symbols_processed; }
  size_t symbols_removed()   const { return (size_t)_symbols_removed; }
};

class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
private:
  static Monitor* _lock;

  BoolObjectClosure* const _is_alive;
  const bool               _unloading_occurred;
  const uint               _num_workers;

  // Variables used to claim nmethods.
  nmethod* _first_nmethod;
  volatile nmethod* _claimed_nmethod;

  // The list of nmethods that need to be processed by the second pass.
  volatile nmethod* _postponed_list;
  volatile uint     _num_entered_barrier;

 public:
  G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
      _is_alive(is_alive),
      _unloading_occurred(unloading_occurred),
      _num_workers(num_workers),
      _first_nmethod(NULL),
      _claimed_nmethod(NULL),
      _postponed_list(NULL),
      _num_entered_barrier(0)
  {
    nmethod::increase_unloading_clock();
    // Get first alive nmethod
    NMethodIterator iter = NMethodIterator();
    if(iter.next_alive()) {
      _first_nmethod = iter.method();
    }
    _claimed_nmethod = (volatile nmethod*)_first_nmethod;
  }

  ~G1CodeCacheUnloadingTask() {
    CodeCache::verify_clean_inline_caches();

    CodeCache::set_needs_cache_clean(false);
    guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");

    CodeCache::verify_icholder_relocations();
  }

 private:
  void add_to_postponed_list(nmethod* nm) {
      nmethod* old;
      do {
        old = (nmethod*)_postponed_list;
        nm->set_unloading_next(old);
      } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
  }

  void clean_nmethod(nmethod* nm) {
    bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);

    if (postponed) {
      // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
      add_to_postponed_list(nm);
    }

    // Mark that this thread has been cleaned/unloaded.
    // After this call, it will be safe to ask if this nmethod was unloaded or not.
    nm->set_unloading_clock(nmethod::global_unloading_clock());
  }

  void clean_nmethod_postponed(nmethod* nm) {
    nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
  }

  static const int MaxClaimNmethods = 16;

  void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
    nmethod* first;
    NMethodIterator last;

    do {
      *num_claimed_nmethods = 0;

      first = (nmethod*)_claimed_nmethod;
      last = NMethodIterator(first);

      if (first != NULL) {

        for (int i = 0; i < MaxClaimNmethods; i++) {
          if (!last.next_alive()) {
            break;
          }
          claimed_nmethods[i] = last.method();
          (*num_claimed_nmethods)++;
        }
      }

    } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
  }

  nmethod* claim_postponed_nmethod() {
    nmethod* claim;
    nmethod* next;

    do {
      claim = (nmethod*)_postponed_list;
      if (claim == NULL) {
        return NULL;
      }

      next = claim->unloading_next();

    } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);

    return claim;
  }

 public:
  // Mark that we're done with the first pass of nmethod cleaning.
  void barrier_mark(uint worker_id) {
    MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
    _num_entered_barrier++;
    if (_num_entered_barrier == _num_workers) {
      ml.notify_all();
    }
  }

  // See if we have to wait for the other workers to
  // finish their first-pass nmethod cleaning work.
  void barrier_wait(uint worker_id) {
    if (_num_entered_barrier < _num_workers) {
      MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
      while (_num_entered_barrier < _num_workers) {
          ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
      }
    }
  }

  // Cleaning and unloading of nmethods. Some work has to be postponed
  // to the second pass, when we know which nmethods survive.
  void work_first_pass(uint worker_id) {
    // The first nmethods is claimed by the first worker.
    if (worker_id == 0 && _first_nmethod != NULL) {
      clean_nmethod(_first_nmethod);
      _first_nmethod = NULL;
    }

    int num_claimed_nmethods;
    nmethod* claimed_nmethods[MaxClaimNmethods];

    while (true) {
      claim_nmethods(claimed_nmethods, &num_claimed_nmethods);

      if (num_claimed_nmethods == 0) {
        break;
      }

      for (int i = 0; i < num_claimed_nmethods; i++) {
        clean_nmethod(claimed_nmethods[i]);
      }
    }
  }

  void work_second_pass(uint worker_id) {
    nmethod* nm;
    // Take care of postponed nmethods.
    while ((nm = claim_postponed_nmethod()) != NULL) {
      clean_nmethod_postponed(nm);
    }
  }
};

Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);

class G1KlassCleaningTask : public StackObj {
  BoolObjectClosure*                      _is_alive;
  volatile jint                           _clean_klass_tree_claimed;
  ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;

 public:
  G1KlassCleaningTask(BoolObjectClosure* is_alive) :
      _is_alive(is_alive),
      _clean_klass_tree_claimed(0),
      _klass_iterator() {
  }

 private:
  bool claim_clean_klass_tree_task() {
    if (_clean_klass_tree_claimed) {
      return false;
    }

    return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
  }

  InstanceKlass* claim_next_klass() {
    Klass* klass;
    do {
      klass =_klass_iterator.next_klass();
    } while (klass != NULL && !klass->is_instance_klass());

    // this can be null so don't call InstanceKlass::cast
    return static_cast<InstanceKlass*>(klass);
  }

public:

  void clean_klass(InstanceKlass* ik) {
    ik->clean_weak_instanceklass_links(_is_alive);
  }

  void work() {
    ResourceMark rm;

    // One worker will clean the subklass/sibling klass tree.
    if (claim_clean_klass_tree_task()) {
      Klass::clean_subklass_tree(_is_alive);
    }

    // All workers will help cleaning the classes,
    InstanceKlass* klass;
    while ((klass = claim_next_klass()) != NULL) {
      clean_klass(klass);
    }
  }
};

// To minimize the remark pause times, the tasks below are done in parallel.
class G1ParallelCleaningTask : public AbstractGangTask {
private:
  G1StringSymbolTableUnlinkTask _string_symbol_task;
  G1CodeCacheUnloadingTask      _code_cache_task;
  G1KlassCleaningTask           _klass_cleaning_task;

public:
  // The constructor is run in the VMThread.
  G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
      AbstractGangTask("Parallel Cleaning"),
      _string_symbol_task(is_alive, process_strings, process_symbols),
      _code_cache_task(num_workers, is_alive, unloading_occurred),
      _klass_cleaning_task(is_alive) {
  }

  // The parallel work done by all worker threads.
  void work(uint worker_id) {
    // Do first pass of code cache cleaning.
    _code_cache_task.work_first_pass(worker_id);

    // Let the threads mark that the first pass is done.
    _code_cache_task.barrier_mark(worker_id);

    // Clean the Strings and Symbols.
    _string_symbol_task.work(worker_id);

    // Wait for all workers to finish the first code cache cleaning pass.
    _code_cache_task.barrier_wait(worker_id);

    // Do the second code cache cleaning work, which realize on
    // the liveness information gathered during the first pass.
    _code_cache_task.work_second_pass(worker_id);

    // Clean all klasses that were not unloaded.
    _klass_cleaning_task.work();
  }
};


void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
                                        bool process_strings,
                                        bool process_symbols,
                                        bool class_unloading_occurred) {
  uint n_workers = workers()->active_workers();

  G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
                                        n_workers, class_unloading_occurred);
  workers()->run_task(&g1_unlink_task);
}

void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
                                                     bool process_strings, bool process_symbols) {
  {
    G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
    workers()->run_task(&g1_unlink_task);
  }

  if (G1StringDedup::is_enabled()) {
    G1StringDedup::unlink(is_alive);
  }
}

class G1RedirtyLoggedCardsTask : public AbstractGangTask {
 private:
  DirtyCardQueueSet* _queue;
 public:
  G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }

  virtual void work(uint worker_id) {
    G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
    G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);

    RedirtyLoggedCardTableEntryClosure cl;
    _queue->par_apply_closure_to_all_completed_buffers(&cl);

    phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
  }
};

void G1CollectedHeap::redirty_logged_cards() {
  double redirty_logged_cards_start = os::elapsedTime();

  G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
  dirty_card_queue_set().reset_for_par_iteration();
  workers()->run_task(&redirty_task);

  DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  dcq.merge_bufferlists(&dirty_card_queue_set());
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");

  g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
}

// Weak Reference Processing support

// An always "is_alive" closure that is used to preserve referents.
// If the object is non-null then it's alive.  Used in the preservation
// of referent objects that are pointed to by reference objects
// discovered by the CM ref processor.
class G1AlwaysAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  bool do_object_b(oop p) {
    if (p != NULL) {
      return true;
    }
    return false;
  }
};

bool G1STWIsAliveClosure::do_object_b(oop p) {
  // An object is reachable if it is outside the collection set,
  // or is inside and copied.
  return !_g1->is_in_cset(p) || p->is_forwarded();
}

// Non Copying Keep Alive closure
class G1KeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  void do_oop(oop* p) {
    oop obj = *p;
    assert(obj != NULL, "the caller should have filtered out NULL values");

    const InCSetState cset_state = _g1->in_cset_state(obj);
    if (!cset_state.is_in_cset_or_humongous()) {
      return;
    }
    if (cset_state.is_in_cset()) {
      assert( obj->is_forwarded(), "invariant" );
      *p = obj->forwardee();
    } else {
      assert(!obj->is_forwarded(), "invariant" );
      assert(cset_state.is_humongous(),
             "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
      _g1->set_humongous_is_live(obj);
    }
  }
};

// Copying Keep Alive closure - can be called from both
// serial and parallel code as long as different worker
// threads utilize different G1ParScanThreadState instances
// and different queues.

class G1CopyingKeepAliveClosure: public OopClosure {
  G1CollectedHeap*         _g1h;
  OopClosure*              _copy_non_heap_obj_cl;
  G1ParScanThreadState*    _par_scan_state;

public:
  G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
                            OopClosure* non_heap_obj_cl,
                            G1ParScanThreadState* pss):
    _g1h(g1h),
    _copy_non_heap_obj_cl(non_heap_obj_cl),
    _par_scan_state(pss)
  {}

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);

    if (_g1h->is_in_cset_or_humongous(obj)) {
      // If the referent object has been forwarded (either copied
      // to a new location or to itself in the event of an
      // evacuation failure) then we need to update the reference
      // field and, if both reference and referent are in the G1
      // heap, update the RSet for the referent.
      //
      // If the referent has not been forwarded then we have to keep
      // it alive by policy. Therefore we have copy the referent.
      //
      // If the reference field is in the G1 heap then we can push
      // on the PSS queue. When the queue is drained (after each
      // phase of reference processing) the object and it's followers
      // will be copied, the reference field set to point to the
      // new location, and the RSet updated. Otherwise we need to
      // use the the non-heap or metadata closures directly to copy
      // the referent object and update the pointer, while avoiding
      // updating the RSet.

      if (_g1h->is_in_g1_reserved(p)) {
        _par_scan_state->push_on_queue(p);
      } else {
        assert(!Metaspace::contains((const void*)p),
               "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
        _copy_non_heap_obj_cl->do_oop(p);
      }
    }
  }
};

// Serial drain queue closure. Called as the 'complete_gc'
// closure for each discovered list in some of the
// reference processing phases.

class G1STWDrainQueueClosure: public VoidClosure {
protected:
  G1CollectedHeap* _g1h;
  G1ParScanThreadState* _par_scan_state;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }

public:
  G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
    _g1h(g1h),
    _par_scan_state(pss)
  { }

  void do_void() {
    G1ParScanThreadState* const pss = par_scan_state();
    pss->trim_queue();
  }
};

// Parallel Reference Processing closures

// Implementation of AbstractRefProcTaskExecutor for parallel reference
// processing during G1 evacuation pauses.

class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
private:
  G1CollectedHeap*          _g1h;
  G1ParScanThreadStateSet*  _pss;
  RefToScanQueueSet*        _queues;
  WorkGang*                 _workers;
  uint                      _active_workers;

public:
  G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
                           G1ParScanThreadStateSet* per_thread_states,
                           WorkGang* workers,
                           RefToScanQueueSet *task_queues,
                           uint n_workers) :
    _g1h(g1h),
    _pss(per_thread_states),
    _queues(task_queues),
    _workers(workers),
    _active_workers(n_workers)
  {
    assert(n_workers > 0, "shouldn't call this otherwise");
  }

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

// Gang task for possibly parallel reference processing

class G1STWRefProcTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  G1ParScanThreadStateSet* _pss;
  RefToScanQueueSet* _task_queues;
  ParallelTaskTerminator* _terminator;

public:
  G1STWRefProcTaskProxy(ProcessTask& proc_task,
                        G1CollectedHeap* g1h,
                        G1ParScanThreadStateSet* per_thread_states,
                        RefToScanQueueSet *task_queues,
                        ParallelTaskTerminator* terminator) :
    AbstractGangTask("Process reference objects in parallel"),
    _proc_task(proc_task),
    _g1h(g1h),
    _pss(per_thread_states),
    _task_queues(task_queues),
    _terminator(terminator)
  {}

  virtual void work(uint worker_id) {
    // The reference processing task executed by a single worker.
    ResourceMark rm;
    HandleMark   hm;

    G1STWIsAliveClosure is_alive(_g1h);

    G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
    pss->set_ref_processor(NULL);

    // Keep alive closure.
    G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);

    // Complete GC closure
    G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);

    // Call the reference processing task's work routine.
    _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);

    // Note we cannot assert that the refs array is empty here as not all
    // of the processing tasks (specifically phase2 - pp2_work) execute
    // the complete_gc closure (which ordinarily would drain the queue) so
    // the queue may not be empty.
  }
};

// Driver routine for parallel reference processing.
// Creates an instance of the ref processing gang
// task and has the worker threads execute it.
void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  ParallelTaskTerminator terminator(_active_workers, _queues);
  G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);

  _workers->run_task(&proc_task_proxy);
}

// Gang task for parallel reference enqueueing.

class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
  G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
    AbstractGangTask("Enqueue reference objects in parallel"),
    _enq_task(enq_task)
  { }

  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
  }
};

// Driver routine for parallel reference enqueueing.
// Creates an instance of the ref enqueueing gang
// task and has the worker threads execute it.

void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);

  _workers->run_task(&enq_task_proxy);
}

// End of weak reference support closures

// Abstract task used to preserve (i.e. copy) any referent objects
// that are in the collection set and are pointed to by reference
// objects discovered by the CM ref processor.

class G1ParPreserveCMReferentsTask: public AbstractGangTask {
protected:
  G1CollectedHeap*         _g1h;
  G1ParScanThreadStateSet* _pss;
  RefToScanQueueSet*       _queues;
  ParallelTaskTerminator   _terminator;
  uint                     _n_workers;

public:
  G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
    AbstractGangTask("ParPreserveCMReferents"),
    _g1h(g1h),
    _pss(per_thread_states),
    _queues(task_queues),
    _terminator(workers, _queues),
    _n_workers(workers)
  { }

  void work(uint worker_id) {
    ResourceMark rm;
    HandleMark   hm;

    G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
    pss->set_ref_processor(NULL);
    assert(pss->queue_is_empty(), "both queue and overflow should be empty");

    // Is alive closure
    G1AlwaysAliveClosure always_alive(_g1h);

    // Copying keep alive closure. Applied to referent objects that need
    // to be copied.
    G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);

    ReferenceProcessor* rp = _g1h->ref_processor_cm();

    uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
    uint stride = MIN2(MAX2(_n_workers, 1U), limit);

    // limit is set using max_num_q() - which was set using ParallelGCThreads.
    // So this must be true - but assert just in case someone decides to
    // change the worker ids.
    assert(worker_id < limit, "sanity");
    assert(!rp->discovery_is_atomic(), "check this code");

    // Select discovered lists [i, i+stride, i+2*stride,...,limit)
    for (uint idx = worker_id; idx < limit; idx += stride) {
      DiscoveredList& ref_list = rp->discovered_refs()[idx];

      DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
      while (iter.has_next()) {
        // Since discovery is not atomic for the CM ref processor, we
        // can see some null referent objects.
        iter.load_ptrs(DEBUG_ONLY(true));
        oop ref = iter.obj();

        // This will filter nulls.
        if (iter.is_referent_alive()) {
          iter.make_referent_alive();
        }
        iter.move_to_next();
      }
    }

    // Drain the queue - which may cause stealing
    G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
    drain_queue.do_void();
    // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
    assert(pss->queue_is_empty(), "should be");
  }
};

// Weak Reference processing during an evacuation pause (part 1).
void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
  double ref_proc_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(rp->discovery_enabled(), "should have been enabled");

  // Any reference objects, in the collection set, that were 'discovered'
  // by the CM ref processor should have already been copied (either by
  // applying the external root copy closure to the discovered lists, or
  // by following an RSet entry).
  //
  // But some of the referents, that are in the collection set, that these
  // reference objects point to may not have been copied: the STW ref
  // processor would have seen that the reference object had already
  // been 'discovered' and would have skipped discovering the reference,
  // but would not have treated the reference object as a regular oop.
  // As a result the copy closure would not have been applied to the
  // referent object.
  //
  // We need to explicitly copy these referent objects - the references
  // will be processed at the end of remarking.
  //
  // We also need to do this copying before we process the reference
  // objects discovered by the STW ref processor in case one of these
  // referents points to another object which is also referenced by an
  // object discovered by the STW ref processor.

  uint no_of_gc_workers = workers()->active_workers();

  G1ParPreserveCMReferentsTask keep_cm_referents(this,
                                                 per_thread_states,
                                                 no_of_gc_workers,
                                                 _task_queues);

  workers()->run_task(&keep_cm_referents);

  // Closure to test whether a referent is alive.
  G1STWIsAliveClosure is_alive(this);

  // Even when parallel reference processing is enabled, the processing
  // of JNI refs is serial and performed serially by the current thread
  // rather than by a worker. The following PSS will be used for processing
  // JNI refs.

  // Use only a single queue for this PSS.
  G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
  pss->set_ref_processor(NULL);
  assert(pss->queue_is_empty(), "pre-condition");

  // Keep alive closure.
  G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);

  // Serial Complete GC closure
  G1STWDrainQueueClosure drain_queue(this, pss);

  // Setup the soft refs policy...
  rp->setup_policy(false);

  ReferenceProcessorStats stats;
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
    stats = rp->process_discovered_references(&is_alive,
                                              &keep_alive,
                                              &drain_queue,
                                              NULL,
                                              _gc_timer_stw);
  } else {
    // Parallel reference processing
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");

    G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
    stats = rp->process_discovered_references(&is_alive,
                                              &keep_alive,
                                              &drain_queue,
                                              &par_task_executor,
                                              _gc_timer_stw);
  }

  _gc_tracer_stw->report_gc_reference_stats(stats);

  // We have completed copying any necessary live referent objects.
  assert(pss->queue_is_empty(), "both queue and overflow should be empty");

  double ref_proc_time = os::elapsedTime() - ref_proc_start;
  g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
}

// Weak Reference processing during an evacuation pause (part 2).
void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
  double ref_enq_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(!rp->discovery_enabled(), "should have been disabled as part of processing");

  // Now enqueue any remaining on the discovered lists on to
  // the pending list.
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
    rp->enqueue_discovered_references();
  } else {
    // Parallel reference enqueueing

    uint n_workers = workers()->active_workers();

    assert(rp->num_q() == n_workers, "sanity");
    assert(n_workers <= rp->max_num_q(), "sanity");

    G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
    rp->enqueue_discovered_references(&par_task_executor);
  }

  rp->verify_no_references_recorded();
  assert(!rp->discovery_enabled(), "should have been disabled");

  // FIXME
  // CM's reference processing also cleans up the string and symbol tables.
  // Should we do that here also? We could, but it is a serial operation
  // and could significantly increase the pause time.

  double ref_enq_time = os::elapsedTime() - ref_enq_start;
  g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
}

void G1CollectedHeap::pre_evacuate_collection_set() {
  _expand_heap_after_alloc_failure = true;
  _evacuation_failed = false;

  // Disable the hot card cache.
  G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  hot_card_cache->reset_hot_cache_claimed_index();
  hot_card_cache->set_use_cache(false);

}

void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
  g1_rem_set()->prepare_for_oops_into_collection_set_do();

  // Should G1EvacuationFailureALot be in effect for this GC?
  NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)

  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  double start_par_time_sec = os::elapsedTime();
  double end_par_time_sec;

  {
    const uint n_workers = workers()->active_workers();
    G1RootProcessor root_processor(this, n_workers);
    G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
    // InitialMark needs claim bits to keep track of the marked-through CLDs.
    if (collector_state()->during_initial_mark_pause()) {
      ClassLoaderDataGraph::clear_claimed_marks();
    }

    // The individual threads will set their evac-failure closures.
    if (PrintTerminationStats) {
      print_termination_stats_hdr(gclog_or_tty);
    }

    workers()->run_task(&g1_par_task);
    end_par_time_sec = os::elapsedTime();

    // Closing the inner scope will execute the destructor
    // for the G1RootProcessor object. We record the current
    // elapsed time before closing the scope so that time
    // taken for the destructor is NOT included in the
    // reported parallel time.
  }

  G1GCPhaseTimes* phase_times = g1_policy()->phase_times();

  double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  phase_times->record_par_time(par_time_ms);

  double code_root_fixup_time_ms =
        (os::elapsedTime() - end_par_time_sec) * 1000.0;
  phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);

  // Process any discovered reference objects - we have
  // to do this _before_ we retire the GC alloc regions
  // as we may have to copy some 'reachable' referent
  // objects (and their reachable sub-graphs) that were
  // not copied during the pause.
  process_discovered_references(per_thread_states);

  if (G1StringDedup::is_enabled()) {
    double fixup_start = os::elapsedTime();

    G1STWIsAliveClosure is_alive(this);
    G1KeepAliveClosure keep_alive(this);
    G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);

    double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
    phase_times->record_string_dedup_fixup_time(fixup_time_ms);
  }

  g1_rem_set()->cleanup_after_oops_into_collection_set_do();

  if (evacuation_failed()) {
    remove_self_forwarding_pointers();

    // Reset the G1EvacuationFailureALot counters and flags
    // Note: the values are reset only when an actual
    // evacuation failure occurs.
    NOT_PRODUCT(reset_evacuation_should_fail();)
  }

  // Enqueue any remaining references remaining on the STW
  // reference processor's discovered lists. We need to do
  // this after the card table is cleaned (and verified) as
  // the act of enqueueing entries on to the pending list
  // will log these updates (and dirty their associated
  // cards). We need these updates logged to update any
  // RSets.
  enqueue_discovered_references(per_thread_states);
}

void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
  _allocator->release_gc_alloc_regions(evacuation_info);

  per_thread_states->flush();

  record_obj_copy_mem_stats();

  _survivor_evac_stats.adjust_desired_plab_sz();
  _old_evac_stats.adjust_desired_plab_sz();

  // Reset and re-enable the hot card cache.
  // Note the counts for the cards in the regions in the
  // collection set are reset when the collection set is freed.
  G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  hot_card_cache->reset_hot_cache();
  hot_card_cache->set_use_cache(true);

  purge_code_root_memory();

  redirty_logged_cards();
#if defined(COMPILER2) || INCLUDE_JVMCI
  DerivedPointerTable::update_pointers();
#endif
}

void G1CollectedHeap::record_obj_copy_mem_stats() {
  _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
                                               create_g1_evac_summary(&_old_evac_stats));
}

void G1CollectedHeap::free_region(HeapRegion* hr,
                                  FreeRegionList* free_list,
                                  bool par,
                                  bool locked) {
  assert(!hr->is_free(), "the region should not be free");
  assert(!hr->is_empty(), "the region should not be empty");
  assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
  assert(free_list != NULL, "pre-condition");

  if (G1VerifyBitmaps) {
    MemRegion mr(hr->bottom(), hr->end());
    concurrent_mark()->clearRangePrevBitmap(mr);
  }

  // Clear the card counts for this region.
  // Note: we only need to do this if the region is not young
  // (since we don't refine cards in young regions).
  if (!hr->is_young()) {
    _cg1r->hot_card_cache()->reset_card_counts(hr);
  }
  hr->hr_clear(par, true /* clear_space */, locked /* locked */);
  free_list->add_ordered(hr);
}

void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
                                            FreeRegionList* free_list,
                                            bool par) {
  assert(hr->is_humongous(), "this is only for humongous regions");
  assert(free_list != NULL, "pre-condition");
  hr->clear_humongous();
  free_region(hr, free_list, par);
}

void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
                                           const HeapRegionSetCount& humongous_regions_removed) {
  if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
    _old_set.bulk_remove(old_regions_removed);
    _humongous_set.bulk_remove(humongous_regions_removed);
  }

}

void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
  assert(list != NULL, "list can't be null");
  if (!list->is_empty()) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
    _hrm.insert_list_into_free_list(list);
  }
}

void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
  decrease_used(bytes);
}

class G1ParCleanupCTTask : public AbstractGangTask {
  G1SATBCardTableModRefBS* _ct_bs;
  G1CollectedHeap* _g1h;
  HeapRegion* volatile _su_head;
public:
  G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
                     G1CollectedHeap* g1h) :
    AbstractGangTask("G1 Par Cleanup CT Task"),
    _ct_bs(ct_bs), _g1h(g1h) { }

  void work(uint worker_id) {
    HeapRegion* r;
    while (r = _g1h->pop_dirty_cards_region()) {
      clear_cards(r);
    }
  }

  void clear_cards(HeapRegion* r) {
    // Cards of the survivors should have already been dirtied.
    if (!r->is_survivor()) {
      _ct_bs->clear(MemRegion(r->bottom(), r->end()));
    }
  }
};

#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
  G1CollectedHeap* _g1h;
  G1SATBCardTableModRefBS* _ct_bs;
public:
  G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
    : _g1h(g1h), _ct_bs(ct_bs) { }
  virtual bool doHeapRegion(HeapRegion* r) {
    if (r->is_survivor()) {
      _g1h->verify_dirty_region(r);
    } else {
      _g1h->verify_not_dirty_region(r);
    }
    return false;
  }
};

void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  // All of the region should be clean.
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  MemRegion mr(hr->bottom(), hr->end());
  ct_bs->verify_not_dirty_region(mr);
}

void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  // dirty allocated blocks as they allocate them. The thread that
  // retires each region and replaces it with a new one will do a
  // maximal allocation to fill in [pre_dummy_top(),end()] but will
  // not dirty that area (one less thing to have to do while holding
  // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  // is dirty.
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  if (hr->is_young()) {
    ct_bs->verify_g1_young_region(mr);
  } else {
    ct_bs->verify_dirty_region(mr);
  }
}

void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
    verify_dirty_region(hr);
  }
}

void G1CollectedHeap::verify_dirty_young_regions() {
  verify_dirty_young_list(_young_list->first_region());
}

bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
                                               HeapWord* tams, HeapWord* end) {
  guarantee(tams <= end,
            "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
  HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
  if (result < end) {
    gclog_or_tty->cr();
    gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
                           bitmap_name, p2i(result));
    gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
                           bitmap_name, p2i(tams), p2i(end));
    return false;
  }
  return true;
}

bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
  CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
  CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();

  HeapWord* bottom = hr->bottom();
  HeapWord* ptams  = hr->prev_top_at_mark_start();
  HeapWord* ntams  = hr->next_top_at_mark_start();
  HeapWord* end    = hr->end();

  bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);

  bool res_n = true;
  // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
  // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
  // if we happen to be in that state.
  if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
    res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
  }
  if (!res_p || !res_n) {
    gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
                           HR_FORMAT_PARAMS(hr));
    gclog_or_tty->print_cr("#### Caller: %s", caller);
    return false;
  }
  return true;
}

void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
  if (!G1VerifyBitmaps) return;

  guarantee(verify_bitmaps(caller, hr), "bitmap verification");
}

class G1VerifyBitmapClosure : public HeapRegionClosure {
private:
  const char* _caller;
  G1CollectedHeap* _g1h;
  bool _failures;

public:
  G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
    _caller(caller), _g1h(g1h), _failures(false) { }

  bool failures() { return _failures; }

  virtual bool doHeapRegion(HeapRegion* hr) {
    bool result = _g1h->verify_bitmaps(_caller, hr);
    if (!result) {
      _failures = true;
    }
    return false;
  }
};

void G1CollectedHeap::check_bitmaps(const char* caller) {
  if (!G1VerifyBitmaps) return;

  G1VerifyBitmapClosure cl(caller, this);
  heap_region_iterate(&cl);
  guarantee(!cl.failures(), "bitmap verification");
}

class G1CheckCSetFastTableClosure : public HeapRegionClosure {
 private:
  bool _failures;
 public:
  G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }

  virtual bool doHeapRegion(HeapRegion* hr) {
    uint i = hr->hrm_index();
    InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
    if (hr->is_humongous()) {
      if (hr->in_collection_set()) {
        gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
        _failures = true;
        return true;
      }
      if (cset_state.is_in_cset()) {
        gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
        _failures = true;
        return true;
      }
      if (hr->is_continues_humongous() && cset_state.is_humongous()) {
        gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
        _failures = true;
        return true;
      }
    } else {
      if (cset_state.is_humongous()) {
        gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
        _failures = true;
        return true;
      }
      if (hr->in_collection_set() != cset_state.is_in_cset()) {
        gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
                               hr->in_collection_set(), cset_state.value(), i);
        _failures = true;
        return true;
      }
      if (cset_state.is_in_cset()) {
        if (hr->is_young() != (cset_state.is_young())) {
          gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
                                 hr->is_young(), cset_state.value(), i);
          _failures = true;
          return true;
        }
        if (hr->is_old() != (cset_state.is_old())) {
          gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
                                 hr->is_old(), cset_state.value(), i);
          _failures = true;
          return true;
        }
      }
    }
    return false;
  }

  bool failures() const { return _failures; }
};

bool G1CollectedHeap::check_cset_fast_test() {
  G1CheckCSetFastTableClosure cl;
  _hrm.iterate(&cl);
  return !cl.failures();
}
#endif // PRODUCT

void G1CollectedHeap::cleanUpCardTable() {
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  double start = os::elapsedTime();

  {
    // Iterate over the dirty cards region list.
    G1ParCleanupCTTask cleanup_task(ct_bs, this);

    workers()->run_task(&cleanup_task);
#ifndef PRODUCT
    if (G1VerifyCTCleanup || VerifyAfterGC) {
      G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
      heap_region_iterate(&cleanup_verifier);
    }
#endif
  }

  double elapsed = os::elapsedTime() - start;
  g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
}

void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
  size_t pre_used = 0;
  FreeRegionList local_free_list("Local List for CSet Freeing");

  double young_time_ms     = 0.0;
  double non_young_time_ms = 0.0;

  // Since the collection set is a superset of the the young list,
  // all we need to do to clear the young list is clear its
  // head and length, and unlink any young regions in the code below
  _young_list->clear();

  G1CollectorPolicy* policy = g1_policy();

  double start_sec = os::elapsedTime();
  bool non_young = true;

  HeapRegion* cur = cs_head;
  int age_bound = -1;
  size_t rs_lengths = 0;

  while (cur != NULL) {
    assert(!is_on_master_free_list(cur), "sanity");
    if (non_young) {
      if (cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        non_young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = false;
      }
    } else {
      if (!cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = true;
      }
    }

    rs_lengths += cur->rem_set()->occupied_locked();

    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    clear_in_cset(cur);

    if (cur->is_young()) {
      int index = cur->young_index_in_cset();
      assert(index != -1, "invariant");
      assert((uint) index < policy->young_cset_region_length(), "invariant");
      size_t words_survived = surviving_young_words[index];
      cur->record_surv_words_in_group(words_survived);

      // At this point the we have 'popped' cur from the collection set
      // (linked via next_in_collection_set()) but it is still in the
      // young list (linked via next_young_region()). Clear the
      // _next_young_region field.
      cur->set_next_young_region(NULL);
    } else {
      int index = cur->young_index_in_cset();
      assert(index == -1, "invariant");
    }

    assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
            (!cur->is_young() && cur->young_index_in_cset() == -1),
            "invariant" );

    if (!cur->evacuation_failed()) {
      MemRegion used_mr = cur->used_region();

      // And the region is empty.
      assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
      pre_used += cur->used();
      free_region(cur, &local_free_list, false /* par */, true /* locked */);
    } else {
      cur->uninstall_surv_rate_group();
      if (cur->is_young()) {
        cur->set_young_index_in_cset(-1);
      }
      cur->set_evacuation_failed(false);
      // The region is now considered to be old.
      cur->set_old();
      // Do some allocation statistics accounting. Regions that failed evacuation
      // are always made old, so there is no need to update anything in the young
      // gen statistics, but we need to update old gen statistics.
      size_t used_words = cur->marked_bytes() / HeapWordSize;
      _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
      _old_set.add(cur);
      evacuation_info.increment_collectionset_used_after(cur->used());
    }
    cur = next;
  }

  evacuation_info.set_regions_freed(local_free_list.length());
  policy->record_max_rs_lengths(rs_lengths);
  policy->cset_regions_freed();

  double end_sec = os::elapsedTime();
  double elapsed_ms = (end_sec - start_sec) * 1000.0;

  if (non_young) {
    non_young_time_ms += elapsed_ms;
  } else {
    young_time_ms += elapsed_ms;
  }

  prepend_to_freelist(&local_free_list);
  decrement_summary_bytes(pre_used);
  policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
}

class G1FreeHumongousRegionClosure : public HeapRegionClosure {
 private:
  FreeRegionList* _free_region_list;
  HeapRegionSet* _proxy_set;
  HeapRegionSetCount _humongous_regions_removed;
  size_t _freed_bytes;
 public:

  G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
    _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
  }

  virtual bool doHeapRegion(HeapRegion* r) {
    if (!r->is_starts_humongous()) {
      return false;
    }

    G1CollectedHeap* g1h = G1CollectedHeap::heap();

    oop obj = (oop)r->bottom();
    CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();

    // The following checks whether the humongous object is live are sufficient.
    // The main additional check (in addition to having a reference from the roots
    // or the young gen) is whether the humongous object has a remembered set entry.
    //
    // A humongous object cannot be live if there is no remembered set for it
    // because:
    // - there can be no references from within humongous starts regions referencing
    // the object because we never allocate other objects into them.
    // (I.e. there are no intra-region references that may be missed by the
    // remembered set)
    // - as soon there is a remembered set entry to the humongous starts region
    // (i.e. it has "escaped" to an old object) this remembered set entry will stay
    // until the end of a concurrent mark.
    //
    // It is not required to check whether the object has been found dead by marking
    // or not, in fact it would prevent reclamation within a concurrent cycle, as
    // all objects allocated during that time are considered live.
    // SATB marking is even more conservative than the remembered set.
    // So if at this point in the collection there is no remembered set entry,
    // nobody has a reference to it.
    // At the start of collection we flush all refinement logs, and remembered sets
    // are completely up-to-date wrt to references to the humongous object.
    //
    // Other implementation considerations:
    // - never consider object arrays at this time because they would pose
    // considerable effort for cleaning up the the remembered sets. This is
    // required because stale remembered sets might reference locations that
    // are currently allocated into.
    uint region_idx = r->hrm_index();
    if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
        !r->rem_set()->is_empty()) {

      if (G1TraceEagerReclaimHumongousObjects) {
        gclog_or_tty->print_cr("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
                               region_idx,
                               (size_t)obj->size() * HeapWordSize,
                               p2i(r->bottom()),
                               r->rem_set()->occupied(),
                               r->rem_set()->strong_code_roots_list_length(),
                               next_bitmap->isMarked(r->bottom()),
                               g1h->is_humongous_reclaim_candidate(region_idx),
                               obj->is_typeArray()
                              );
      }

      return false;
    }

    guarantee(obj->is_typeArray(),
              "Only eagerly reclaiming type arrays is supported, but the object "
              PTR_FORMAT " is not.", p2i(r->bottom()));

    if (G1TraceEagerReclaimHumongousObjects) {
      gclog_or_tty->print_cr("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
                             region_idx,
                             (size_t)obj->size() * HeapWordSize,
                             p2i(r->bottom()),
                             r->rem_set()->occupied(),
                             r->rem_set()->strong_code_roots_list_length(),
                             next_bitmap->isMarked(r->bottom()),
                             g1h->is_humongous_reclaim_candidate(region_idx),
                             obj->is_typeArray()
                            );
    }
    // Need to clear mark bit of the humongous object if already set.
    if (next_bitmap->isMarked(r->bottom())) {
      next_bitmap->clear(r->bottom());
    }
    do {
      HeapRegion* next = g1h->next_region_in_humongous(r);
      _freed_bytes += r->used();
      r->set_containing_set(NULL);
      _humongous_regions_removed.increment(1u, r->capacity());
      g1h->free_humongous_region(r, _free_region_list, false);
      r = next;
    } while (r != NULL);

    return false;
  }

  HeapRegionSetCount& humongous_free_count() {
    return _humongous_regions_removed;
  }

  size_t bytes_freed() const {
    return _freed_bytes;
  }

  size_t humongous_reclaimed() const {
    return _humongous_regions_removed.length();
  }
};

void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
  assert_at_safepoint(true);

  if (!G1EagerReclaimHumongousObjects ||
      (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
    g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
    return;
  }

  double start_time = os::elapsedTime();

  FreeRegionList local_cleanup_list("Local Humongous Cleanup List");

  G1FreeHumongousRegionClosure cl(&local_cleanup_list);
  heap_region_iterate(&cl);

  HeapRegionSetCount empty_set;
  remove_from_old_sets(empty_set, cl.humongous_free_count());

  G1HRPrinter* hrp = hr_printer();
  if (hrp->is_active()) {
    FreeRegionListIterator iter(&local_cleanup_list);
    while (iter.more_available()) {
      HeapRegion* hr = iter.get_next();
      hrp->cleanup(hr);
    }
  }

  prepend_to_freelist(&local_cleanup_list);
  decrement_summary_bytes(cl.bytes_freed());

  g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
                                                                    cl.humongous_reclaimed());
}

// This routine is similar to the above but does not record
// any policy statistics or update free lists; we are abandoning
// the current incremental collection set in preparation of a
// full collection. After the full GC we will start to build up
// the incremental collection set again.
// This is only called when we're doing a full collection
// and is immediately followed by the tearing down of the young list.

void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  HeapRegion* cur = cs_head;

  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    clear_in_cset(cur);
    cur->set_young_index_in_cset(-1);
    cur = next;
  }
}

void G1CollectedHeap::set_free_regions_coming() {
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "setting free regions coming");
  }

  assert(!free_regions_coming(), "pre-condition");
  _free_regions_coming = true;
}

void G1CollectedHeap::reset_free_regions_coming() {
  assert(free_regions_coming(), "pre-condition");

  {
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_regions_coming = false;
    SecondaryFreeList_lock->notify_all();
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "reset free regions coming");
  }
}

void G1CollectedHeap::wait_while_free_regions_coming() {
  // Most of the time we won't have to wait, so let's do a quick test
  // first before we take the lock.
  if (!free_regions_coming()) {
    return;
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "waiting for free regions");
  }

  {
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    while (free_regions_coming()) {
      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
    }
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "done waiting for free regions");
  }
}

bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
  return _allocator->is_retained_old_region(hr);
}

void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  _young_list->push_region(hr);
}

class NoYoungRegionsClosure: public HeapRegionClosure {
private:
  bool _success;
public:
  NoYoungRegionsClosure() : _success(true) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_young()) {
      gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
                             p2i(r->bottom()), p2i(r->end()));
      _success = false;
    }
    return false;
  }
  bool success() { return _success; }
};

bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  bool ret = _young_list->check_list_empty(check_sample);

  if (check_heap) {
    NoYoungRegionsClosure closure;
    heap_region_iterate(&closure);
    ret = ret && closure.success();
  }

  return ret;
}

class TearDownRegionSetsClosure : public HeapRegionClosure {
private:
  HeapRegionSet *_old_set;

public:
  TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }

  bool doHeapRegion(HeapRegion* r) {
    if (r->is_old()) {
      _old_set->remove(r);
    } else {
      // We ignore free regions, we'll empty the free list afterwards.
      // We ignore young regions, we'll empty the young list afterwards.
      // We ignore humongous regions, we're not tearing down the
      // humongous regions set.
      assert(r->is_free() || r->is_young() || r->is_humongous(),
             "it cannot be another type");
    }
    return false;
  }

  ~TearDownRegionSetsClosure() {
    assert(_old_set->is_empty(), "post-condition");
  }
};

void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  if (!free_list_only) {
    TearDownRegionSetsClosure cl(&_old_set);
    heap_region_iterate(&cl);

    // Note that emptying the _young_list is postponed and instead done as
    // the first step when rebuilding the regions sets again. The reason for
    // this is that during a full GC string deduplication needs to know if
    // a collected region was young or old when the full GC was initiated.
  }
  _hrm.remove_all_free_regions();
}

void G1CollectedHeap::increase_used(size_t bytes) {
  _summary_bytes_used += bytes;
}

void G1CollectedHeap::decrease_used(size_t bytes) {
  assert(_summary_bytes_used >= bytes,
         "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
         _summary_bytes_used, bytes);
  _summary_bytes_used -= bytes;
}

void G1CollectedHeap::set_used(size_t bytes) {
  _summary_bytes_used = bytes;
}

class RebuildRegionSetsClosure : public HeapRegionClosure {
private:
  bool            _free_list_only;
  HeapRegionSet*   _old_set;
  HeapRegionManager*   _hrm;
  size_t          _total_used;

public:
  RebuildRegionSetsClosure(bool free_list_only,
                           HeapRegionSet* old_set, HeapRegionManager* hrm) :
    _free_list_only(free_list_only),
    _old_set(old_set), _hrm(hrm), _total_used(0) {
    assert(_hrm->num_free_regions() == 0, "pre-condition");
    if (!free_list_only) {
      assert(_old_set->is_empty(), "pre-condition");
    }
  }

  bool doHeapRegion(HeapRegion* r) {
    if (r->is_empty()) {
      // Add free regions to the free list
      r->set_free();
      r->set_allocation_context(AllocationContext::system());
      _hrm->insert_into_free_list(r);
    } else if (!_free_list_only) {
      assert(!r->is_young(), "we should not come across young regions");

      if (r->is_humongous()) {
        // We ignore humongous regions. We left the humongous set unchanged.
      } else {
        // Objects that were compacted would have ended up on regions
        // that were previously old or free.  Archive regions (which are
        // old) will not have been touched.
        assert(r->is_free() || r->is_old(), "invariant");
        // We now consider them old, so register as such. Leave
        // archive regions set that way, however, while still adding
        // them to the old set.
        if (!r->is_archive()) {
          r->set_old();
        }
        _old_set->add(r);
      }
      _total_used += r->used();
    }

    return false;
  }

  size_t total_used() {
    return _total_used;
  }
};

void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  if (!free_list_only) {
    _young_list->empty_list();
  }

  RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
  heap_region_iterate(&cl);

  if (!free_list_only) {
    set_used(cl.total_used());
    if (_archive_allocator != NULL) {
      _archive_allocator->clear_used();
    }
  }
  assert(used_unlocked() == recalculate_used(),
         "inconsistent used_unlocked(), "
         "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
         used_unlocked(), recalculate_used());
}

void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  _refine_cte_cl->set_concurrent(concurrent);
}

bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  HeapRegion* hr = heap_region_containing(p);
  return hr->is_in(p);
}

// Methods for the mutator alloc region

HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
                                                      bool force) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(!force || g1_policy()->can_expand_young_list(),
         "if force is true we should be able to expand the young list");
  bool young_list_full = g1_policy()->is_young_list_full();
  if (force || !young_list_full) {
    HeapRegion* new_alloc_region = new_region(word_size,
                                              false /* is_old */,
                                              false /* do_expand */);
    if (new_alloc_region != NULL) {
      set_region_short_lived_locked(new_alloc_region);
      _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
      check_bitmaps("Mutator Region Allocation", new_alloc_region);
      return new_alloc_region;
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
                                                  size_t allocated_bytes) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");

  g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  increase_used(allocated_bytes);
  _hr_printer.retire(alloc_region);
  // We update the eden sizes here, when the region is retired,
  // instead of when it's allocated, since this is the point that its
  // used space has been recored in _summary_bytes_used.
  g1mm()->update_eden_size();
}

// Methods for the GC alloc regions

HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
                                                 uint count,
                                                 InCSetState dest) {
  assert(FreeList_lock->owned_by_self(), "pre-condition");

  if (count < g1_policy()->max_regions(dest)) {
    const bool is_survivor = (dest.is_young());
    HeapRegion* new_alloc_region = new_region(word_size,
                                              !is_survivor,
                                              true /* do_expand */);
    if (new_alloc_region != NULL) {
      // We really only need to do this for old regions given that we
      // should never scan survivors. But it doesn't hurt to do it
      // for survivors too.
      new_alloc_region->record_timestamp();
      if (is_survivor) {
        new_alloc_region->set_survivor();
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
        check_bitmaps("Survivor Region Allocation", new_alloc_region);
      } else {
        new_alloc_region->set_old();
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
        check_bitmaps("Old Region Allocation", new_alloc_region);
      }
      bool during_im = collector_state()->during_initial_mark_pause();
      new_alloc_region->note_start_of_copying(during_im);
      return new_alloc_region;
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
                                             size_t allocated_bytes,
                                             InCSetState dest) {
  bool during_im = collector_state()->during_initial_mark_pause();
  alloc_region->note_end_of_copying(during_im);
  g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  if (dest.is_young()) {
    young_list()->add_survivor_region(alloc_region);
  } else {
    _old_set.add(alloc_region);
  }
  _hr_printer.retire(alloc_region);
}

HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
  bool expanded = false;
  uint index = _hrm.find_highest_free(&expanded);

  if (index != G1_NO_HRM_INDEX) {
    if (expanded) {
      ergo_verbose1(ErgoHeapSizing,
                    "attempt heap expansion",
                    ergo_format_reason("requested address range outside heap bounds")
                    ergo_format_byte("region size"),
                    HeapRegion::GrainWords * HeapWordSize);
    }
    _hrm.allocate_free_regions_starting_at(index, 1);
    return region_at(index);
  }
  return NULL;
}

// Heap region set verification

class VerifyRegionListsClosure : public HeapRegionClosure {
private:
  HeapRegionSet*   _old_set;
  HeapRegionSet*   _humongous_set;
  HeapRegionManager*   _hrm;

public:
  HeapRegionSetCount _old_count;
  HeapRegionSetCount _humongous_count;
  HeapRegionSetCount _free_count;

  VerifyRegionListsClosure(HeapRegionSet* old_set,
                           HeapRegionSet* humongous_set,
                           HeapRegionManager* hrm) :
    _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
    _old_count(), _humongous_count(), _free_count(){ }

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->is_young()) {
      // TODO
    } else if (hr->is_humongous()) {
      assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
      _humongous_count.increment(1u, hr->capacity());
    } else if (hr->is_empty()) {
      assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
      _free_count.increment(1u, hr->capacity());
    } else if (hr->is_old()) {
      assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
      _old_count.increment(1u, hr->capacity());
    } else {
      // There are no other valid region types. Check for one invalid
      // one we can identify: pinned without old or humongous set.
      assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
      ShouldNotReachHere();
    }
    return false;
  }

  void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
    guarantee(old_set->length() == _old_count.length(), "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length());
    guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), "Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
              old_set->total_capacity_bytes(), _old_count.capacity());

    guarantee(humongous_set->length() == _humongous_count.length(), "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length());
    guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), "Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
              humongous_set->total_capacity_bytes(), _humongous_count.capacity());

    guarantee(free_list->num_free_regions() == _free_count.length(), "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length());
    guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), "Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
              free_list->total_capacity_bytes(), _free_count.capacity());
  }
};

void G1CollectedHeap::verify_region_sets() {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);

  // First, check the explicit lists.
  _hrm.verify();
  {
    // Given that a concurrent operation might be adding regions to
    // the secondary free list we have to take the lock before
    // verifying it.
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _secondary_free_list.verify_list();
  }

  // If a concurrent region freeing operation is in progress it will
  // be difficult to correctly attributed any free regions we come
  // across to the correct free list given that they might belong to
  // one of several (free_list, secondary_free_list, any local lists,
  // etc.). So, if that's the case we will skip the rest of the
  // verification operation. Alternatively, waiting for the concurrent
  // operation to complete will have a non-trivial effect on the GC's
  // operation (no concurrent operation will last longer than the
  // interval between two calls to verification) and it might hide
  // any issues that we would like to catch during testing.
  if (free_regions_coming()) {
    return;
  }

  // Make sure we append the secondary_free_list on the free_list so
  // that all free regions we will come across can be safely
  // attributed to the free_list.
  append_secondary_free_list_if_not_empty_with_lock();

  // Finally, make sure that the region accounting in the lists is
  // consistent with what we see in the heap.

  VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
  heap_region_iterate(&cl);
  cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
}

// Optimized nmethod scanning

class RegisterNMethodOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  nmethod* _nm;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      HeapRegion* hr = _g1h->heap_region_containing(obj);
      assert(!hr->is_continues_humongous(),
             "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
             " starting at " HR_FORMAT,
             p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));

      // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
      hr->add_strong_code_root_locked(_nm);
    }
  }

public:
  RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
    _g1h(g1h), _nm(nm) {}

  void do_oop(oop* p)       { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }
};

class UnregisterNMethodOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  nmethod* _nm;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      HeapRegion* hr = _g1h->heap_region_containing(obj);
      assert(!hr->is_continues_humongous(),
             "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
             " starting at " HR_FORMAT,
             p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));

      hr->remove_strong_code_root(_nm);
    }
  }

public:
  UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
    _g1h(g1h), _nm(nm) {}

  void do_oop(oop* p)       { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }
};

void G1CollectedHeap::register_nmethod(nmethod* nm) {
  CollectedHeap::register_nmethod(nm);

  guarantee(nm != NULL, "sanity");
  RegisterNMethodOopClosure reg_cl(this, nm);
  nm->oops_do(&reg_cl);
}

void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  CollectedHeap::unregister_nmethod(nm);

  guarantee(nm != NULL, "sanity");
  UnregisterNMethodOopClosure reg_cl(this, nm);
  nm->oops_do(&reg_cl, true);
}

void G1CollectedHeap::purge_code_root_memory() {
  double purge_start = os::elapsedTime();
  G1CodeRootSet::purge();
  double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
  g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
}

class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  G1CollectedHeap* _g1h;

public:
  RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
    _g1h(g1h) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
    if (nm == NULL) {
      return;
    }

    if (ScavengeRootsInCode) {
      _g1h->register_nmethod(nm);
    }
  }
};

void G1CollectedHeap::rebuild_strong_code_roots() {
  RebuildStrongCodeRootClosure blob_cl(this);
  CodeCache::blobs_do(&blob_cl);
}