8010319: Implementation of JEP 181: Nest-Based Access Control
Reviewed-by: alanb, psandoz, mchung, coleenp, acorn, mcimadamore, forax, jlahoda, sspitsyn, abuckley
Contributed-by: alex.buckley@oracle.com, maurizio.mimadamore@oracle.com, mandy.chung@oracle.com, tobias.hartmann@oracle.com, david.holmes@oracle.com, vladimir.x.ivanov@oracle.com, karen.kinnear@oracle.com, vladimir.kozlov@oracle.com, john.r.rose@oracle.com, daniel.smith@oracle.com, serguei.spitsyn@oracle.com, kumardotsrinivasan@gmail.com, boris.ulasevich@bell-sw.com
/*
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/javaClasses.inline.hpp"
#include "code/codeCache.hpp"
#include "code/debugInfoRec.hpp"
#include "code/nmethod.hpp"
#include "code/pcDesc.hpp"
#include "code/scopeDesc.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/oopMapCache.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/basicLock.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/monitorChunk.hpp"
#include "runtime/signature.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/vframeArray.hpp"
#include "runtime/vframe_hp.hpp"
#ifdef COMPILER2
#include "opto/matcher.hpp"
#endif
// ------------- compiledVFrame --------------
StackValueCollection* compiledVFrame::locals() const {
// Natives has no scope
if (scope() == NULL) return new StackValueCollection(0);
GrowableArray<ScopeValue*>* scv_list = scope()->locals();
if (scv_list == NULL) return new StackValueCollection(0);
// scv_list is the list of ScopeValues describing the JVM stack state.
// There is one scv_list entry for every JVM stack state in use.
int length = scv_list->length();
StackValueCollection* result = new StackValueCollection(length);
for (int i = 0; i < length; i++) {
result->add(create_stack_value(scv_list->at(i)));
}
// Replace the original values with any stores that have been
// performed through compiledVFrame::update_locals.
GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread()->deferred_locals();
if (list != NULL ) {
// In real life this never happens or is typically a single element search
for (int i = 0; i < list->length(); i++) {
if (list->at(i)->matches(this)) {
list->at(i)->update_locals(result);
break;
}
}
}
return result;
}
void compiledVFrame::set_locals(StackValueCollection* values) const {
fatal("Should use update_local for each local update");
}
void compiledVFrame::update_local(BasicType type, int index, jvalue value) {
assert(index >= 0 && index < method()->max_locals(), "out of bounds");
update_deferred_value(type, index, value);
}
void compiledVFrame::update_stack(BasicType type, int index, jvalue value) {
assert(index >= 0 && index < method()->max_stack(), "out of bounds");
update_deferred_value(type, index + method()->max_locals(), value);
}
void compiledVFrame::update_monitor(int index, MonitorInfo* val) {
assert(index >= 0, "out of bounds");
jvalue value;
value.l = (jobject) val->owner();
update_deferred_value(T_OBJECT, index + method()->max_locals() + method()->max_stack(), value);
}
void compiledVFrame::update_deferred_value(BasicType type, int index, jvalue value) {
assert(fr().is_deoptimized_frame(), "frame must be scheduled for deoptimization");
GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = thread()->deferred_locals();
jvmtiDeferredLocalVariableSet* locals = NULL;
if (deferred != NULL ) {
// See if this vframe has already had locals with deferred writes
for (int f = 0; f < deferred->length(); f++ ) {
if (deferred->at(f)->matches(this)) {
locals = deferred->at(f);
break;
}
}
// No matching vframe must push a new vframe
} else {
// No deferred updates pending for this thread.
// allocate in C heap
deferred = new(ResourceObj::C_HEAP, mtCompiler) GrowableArray<jvmtiDeferredLocalVariableSet*> (1, true);
thread()->set_deferred_locals(deferred);
}
if (locals == NULL) {
locals = new jvmtiDeferredLocalVariableSet(method(), bci(), fr().id(), vframe_id());
deferred->push(locals);
assert(locals->id() == fr().id(), "Huh? Must match");
}
locals->set_value_at(index, type, value);
}
StackValueCollection* compiledVFrame::expressions() const {
// Natives has no scope
if (scope() == NULL) return new StackValueCollection(0);
GrowableArray<ScopeValue*>* scv_list = scope()->expressions();
if (scv_list == NULL) return new StackValueCollection(0);
// scv_list is the list of ScopeValues describing the JVM stack state.
// There is one scv_list entry for every JVM stack state in use.
int length = scv_list->length();
StackValueCollection* result = new StackValueCollection(length);
for (int i = 0; i < length; i++) {
result->add(create_stack_value(scv_list->at(i)));
}
// Replace the original values with any stores that have been
// performed through compiledVFrame::update_stack.
GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread()->deferred_locals();
if (list != NULL ) {
// In real life this never happens or is typically a single element search
for (int i = 0; i < list->length(); i++) {
if (list->at(i)->matches(this)) {
list->at(i)->update_stack(result);
break;
}
}
}
return result;
}
// The implementation of the following two methods was factorized into the
// class StackValue because it is also used from within deoptimization.cpp for
// rematerialization and relocking of non-escaping objects.
StackValue *compiledVFrame::create_stack_value(ScopeValue *sv) const {
return StackValue::create_stack_value(&_fr, register_map(), sv);
}
BasicLock* compiledVFrame::resolve_monitor_lock(Location location) const {
return StackValue::resolve_monitor_lock(&_fr, location);
}
GrowableArray<MonitorInfo*>* compiledVFrame::monitors() const {
// Natives has no scope
if (scope() == NULL) {
CompiledMethod* nm = code();
Method* method = nm->method();
assert(method->is_native() || nm->is_aot(), "Expect a native method or precompiled method");
if (!method->is_synchronized()) {
return new GrowableArray<MonitorInfo*>(0);
}
// This monitor is really only needed for UseBiasedLocking, but
// return it in all cases for now as it might be useful for stack
// traces and tools as well
GrowableArray<MonitorInfo*> *monitors = new GrowableArray<MonitorInfo*>(1);
// Casting away const
frame& fr = (frame&) _fr;
MonitorInfo* info = new MonitorInfo(
fr.get_native_receiver(), fr.get_native_monitor(), false, false);
monitors->push(info);
return monitors;
}
GrowableArray<MonitorValue*>* monitors = scope()->monitors();
if (monitors == NULL) {
return new GrowableArray<MonitorInfo*>(0);
}
GrowableArray<MonitorInfo*>* result = new GrowableArray<MonitorInfo*>(monitors->length());
for (int index = 0; index < monitors->length(); index++) {
MonitorValue* mv = monitors->at(index);
ScopeValue* ov = mv->owner();
StackValue *owner_sv = create_stack_value(ov); // it is an oop
if (ov->is_object() && owner_sv->obj_is_scalar_replaced()) { // The owner object was scalar replaced
assert(mv->eliminated(), "monitor should be eliminated for scalar replaced object");
// Put klass for scalar replaced object.
ScopeValue* kv = ((ObjectValue *)ov)->klass();
assert(kv->is_constant_oop(), "klass should be oop constant for scalar replaced object");
Handle k(Thread::current(), ((ConstantOopReadValue*)kv)->value()());
assert(java_lang_Class::is_instance(k()), "must be");
result->push(new MonitorInfo(k(), resolve_monitor_lock(mv->basic_lock()),
mv->eliminated(), true));
} else {
result->push(new MonitorInfo(owner_sv->get_obj()(), resolve_monitor_lock(mv->basic_lock()),
mv->eliminated(), false));
}
}
// Replace the original values with any stores that have been
// performed through compiledVFrame::update_monitors.
GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread()->deferred_locals();
if (list != NULL ) {
// In real life this never happens or is typically a single element search
for (int i = 0; i < list->length(); i++) {
if (list->at(i)->matches(this)) {
list->at(i)->update_monitors(result);
break;
}
}
}
return result;
}
compiledVFrame::compiledVFrame(const frame* fr, const RegisterMap* reg_map, JavaThread* thread, CompiledMethod* nm)
: javaVFrame(fr, reg_map, thread) {
_scope = NULL;
_vframe_id = 0;
// Compiled method (native stub or Java code)
// native wrappers have no scope data, it is implied
if (!nm->is_compiled() || !nm->as_compiled_method()->is_native_method()) {
_scope = nm->scope_desc_at(_fr.pc());
}
}
compiledVFrame::compiledVFrame(const frame* fr, const RegisterMap* reg_map, JavaThread* thread, ScopeDesc* scope, int vframe_id)
: javaVFrame(fr, reg_map, thread) {
_scope = scope;
_vframe_id = vframe_id;
guarantee(_scope != NULL, "scope must be present");
}
bool compiledVFrame::is_top() const {
// FIX IT: Remove this when new native stubs are in place
if (scope() == NULL) return true;
return scope()->is_top();
}
CompiledMethod* compiledVFrame::code() const {
return CodeCache::find_compiled(_fr.pc());
}
Method* compiledVFrame::method() const {
if (scope() == NULL) {
// native nmethods have no scope the method is implied
nmethod* nm = code()->as_nmethod();
assert(nm->is_native_method(), "must be native");
return nm->method();
}
return scope()->method();
}
int compiledVFrame::bci() const {
int raw = raw_bci();
return raw == SynchronizationEntryBCI ? 0 : raw;
}
int compiledVFrame::raw_bci() const {
if (scope() == NULL) {
// native nmethods have no scope the method/bci is implied
nmethod* nm = code()->as_nmethod();
assert(nm->is_native_method(), "must be native");
return 0;
}
return scope()->bci();
}
bool compiledVFrame::should_reexecute() const {
if (scope() == NULL) {
// native nmethods have no scope the method/bci is implied
nmethod* nm = code()->as_nmethod();
assert(nm->is_native_method(), "must be native");
return false;
}
return scope()->should_reexecute();
}
vframe* compiledVFrame::sender() const {
const frame f = fr();
if (scope() == NULL) {
// native nmethods have no scope the method/bci is implied
nmethod* nm = code()->as_nmethod();
assert(nm->is_native_method(), "must be native");
return vframe::sender();
} else {
return scope()->is_top()
? vframe::sender()
: new compiledVFrame(&f, register_map(), thread(), scope()->sender(), vframe_id() + 1);
}
}
jvmtiDeferredLocalVariableSet::jvmtiDeferredLocalVariableSet(Method* method, int bci, intptr_t* id, int vframe_id) {
_method = method;
_bci = bci;
_id = id;
_vframe_id = vframe_id;
// Alway will need at least one, must be on C heap
_locals = new(ResourceObj::C_HEAP, mtCompiler) GrowableArray<jvmtiDeferredLocalVariable*> (1, true);
}
jvmtiDeferredLocalVariableSet::~jvmtiDeferredLocalVariableSet() {
for (int i = 0; i < _locals->length(); i++ ) {
delete _locals->at(i);
}
// Free growableArray and c heap for elements
delete _locals;
}
bool jvmtiDeferredLocalVariableSet::matches(const vframe* vf) {
if (!vf->is_compiled_frame()) return false;
compiledVFrame* cvf = (compiledVFrame*)vf;
if (cvf->fr().id() == id() && cvf->vframe_id() == vframe_id()) {
assert(cvf->method() == method() && cvf->bci() == bci(), "must agree");
return true;
}
return false;
}
void jvmtiDeferredLocalVariableSet::set_value_at(int idx, BasicType type, jvalue val) {
for (int i = 0; i < _locals->length(); i++) {
if (_locals->at(i)->index() == idx) {
assert(_locals->at(i)->type() == type, "Wrong type");
_locals->at(i)->set_value(val);
return;
}
}
_locals->push(new jvmtiDeferredLocalVariable(idx, type, val));
}
void jvmtiDeferredLocalVariableSet::update_value(StackValueCollection* locals, BasicType type, int index, jvalue value) {
switch (type) {
case T_BOOLEAN:
locals->set_int_at(index, value.z);
break;
case T_CHAR:
locals->set_int_at(index, value.c);
break;
case T_FLOAT:
locals->set_float_at(index, value.f);
break;
case T_DOUBLE:
locals->set_double_at(index, value.d);
break;
case T_BYTE:
locals->set_int_at(index, value.b);
break;
case T_SHORT:
locals->set_int_at(index, value.s);
break;
case T_INT:
locals->set_int_at(index, value.i);
break;
case T_LONG:
locals->set_long_at(index, value.j);
break;
case T_OBJECT:
{
Handle obj(Thread::current(), (oop)value.l);
locals->set_obj_at(index, obj);
}
break;
default:
ShouldNotReachHere();
}
}
void jvmtiDeferredLocalVariableSet::update_locals(StackValueCollection* locals) {
for (int l = 0; l < _locals->length(); l ++) {
jvmtiDeferredLocalVariable* val = _locals->at(l);
if (val->index() >= 0 && val->index() < method()->max_locals()) {
update_value(locals, val->type(), val->index(), val->value());
}
}
}
void jvmtiDeferredLocalVariableSet::update_stack(StackValueCollection* expressions) {
for (int l = 0; l < _locals->length(); l ++) {
jvmtiDeferredLocalVariable* val = _locals->at(l);
if (val->index() >= method()->max_locals() && val->index() < method()->max_locals() + method()->max_stack()) {
update_value(expressions, val->type(), val->index() - method()->max_locals(), val->value());
}
}
}
void jvmtiDeferredLocalVariableSet::update_monitors(GrowableArray<MonitorInfo*>* monitors) {
for (int l = 0; l < _locals->length(); l ++) {
jvmtiDeferredLocalVariable* val = _locals->at(l);
if (val->index() >= method()->max_locals() + method()->max_stack()) {
int lock_index = val->index() - (method()->max_locals() + method()->max_stack());
MonitorInfo* info = monitors->at(lock_index);
MonitorInfo* new_info = new MonitorInfo((oopDesc*)val->value().l, info->lock(), info->eliminated(), info->owner_is_scalar_replaced());
monitors->at_put(lock_index, new_info);
}
}
}
void jvmtiDeferredLocalVariableSet::oops_do(OopClosure* f) {
// The Method* is on the stack so a live activation keeps it alive
// either by mirror in interpreter or code in compiled code.
for (int i = 0; i < _locals->length(); i++) {
if (_locals->at(i)->type() == T_OBJECT) {
f->do_oop(_locals->at(i)->oop_addr());
}
}
}
jvmtiDeferredLocalVariable::jvmtiDeferredLocalVariable(int index, BasicType type, jvalue value) {
_index = index;
_type = type;
_value = value;
}
#ifndef PRODUCT
void compiledVFrame::verify() const {
Unimplemented();
}
#endif // PRODUCT