8010319: Implementation of JEP 181: Nest-Based Access Control
Reviewed-by: alanb, psandoz, mchung, coleenp, acorn, mcimadamore, forax, jlahoda, sspitsyn, abuckley
Contributed-by: alex.buckley@oracle.com, maurizio.mimadamore@oracle.com, mandy.chung@oracle.com, tobias.hartmann@oracle.com, david.holmes@oracle.com, vladimir.x.ivanov@oracle.com, karen.kinnear@oracle.com, vladimir.kozlov@oracle.com, john.r.rose@oracle.com, daniel.smith@oracle.com, serguei.spitsyn@oracle.com, kumardotsrinivasan@gmail.com, boris.ulasevich@bell-sw.com
/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_RUNTIME_VFRAME_INLINE_HPP
#define SHARE_VM_RUNTIME_VFRAME_INLINE_HPP
#include "runtime/frame.inline.hpp"
#include "runtime/vframe.hpp"
inline vframeStreamCommon::vframeStreamCommon(JavaThread* thread) : _reg_map(thread, false) {
_thread = thread;
}
inline intptr_t* vframeStreamCommon::frame_id() const { return _frame.id(); }
inline bool vframeStreamCommon::is_interpreted_frame() const { return _frame.is_interpreted_frame(); }
inline bool vframeStreamCommon::is_entry_frame() const { return _frame.is_entry_frame(); }
inline void vframeStreamCommon::next() {
// handle frames with inlining
if (_mode == compiled_mode && fill_in_compiled_inlined_sender()) return;
// handle general case
do {
_frame = _frame.sender(&_reg_map);
} while (!fill_from_frame());
}
inline vframeStream::vframeStream(JavaThread* thread, bool stop_at_java_call_stub)
: vframeStreamCommon(thread) {
_stop_at_java_call_stub = stop_at_java_call_stub;
if (!thread->has_last_Java_frame()) {
_mode = at_end_mode;
return;
}
_frame = _thread->last_frame();
while (!fill_from_frame()) {
_frame = _frame.sender(&_reg_map);
}
}
inline bool vframeStreamCommon::fill_in_compiled_inlined_sender() {
if (_sender_decode_offset == DebugInformationRecorder::serialized_null) {
return false;
}
fill_from_compiled_frame(_sender_decode_offset);
return true;
}
inline void vframeStreamCommon::fill_from_compiled_frame(int decode_offset) {
_mode = compiled_mode;
// Range check to detect ridiculous offsets.
if (decode_offset == DebugInformationRecorder::serialized_null ||
decode_offset < 0 ||
decode_offset >= nm()->scopes_data_size()) {
// 6379830 AsyncGetCallTrace sometimes feeds us wild frames.
// If we read nmethod::scopes_data at serialized_null (== 0)
// or if read some at other invalid offset, invalid values will be decoded.
// Based on these values, invalid heap locations could be referenced
// that could lead to crashes in product mode.
// Therefore, do not use the decode offset if invalid, but fill the frame
// as it were a native compiled frame (no Java-level assumptions).
#ifdef ASSERT
if (WizardMode) {
ttyLocker ttyl;
tty->print_cr("Error in fill_from_frame: pc_desc for "
INTPTR_FORMAT " not found or invalid at %d",
p2i(_frame.pc()), decode_offset);
nm()->print();
nm()->method()->print_codes();
nm()->print_code();
nm()->print_pcs();
}
found_bad_method_frame();
#endif
// Provide a cheap fallback in product mode. (See comment above.)
fill_from_compiled_native_frame();
return;
}
// Decode first part of scopeDesc
DebugInfoReadStream buffer(nm(), decode_offset);
_sender_decode_offset = buffer.read_int();
_method = buffer.read_method();
_bci = buffer.read_bci();
assert(_method->is_method(), "checking type of decoded method");
}
// The native frames are handled specially. We do not rely on ScopeDesc info
// since the pc might not be exact due to the _last_native_pc trick.
inline void vframeStreamCommon::fill_from_compiled_native_frame() {
_mode = compiled_mode;
_sender_decode_offset = DebugInformationRecorder::serialized_null;
_method = nm()->method();
_bci = 0;
}
inline bool vframeStreamCommon::fill_from_frame() {
// Interpreted frame
if (_frame.is_interpreted_frame()) {
fill_from_interpreter_frame();
return true;
}
// Compiled frame
if (cb() != NULL && cb()->is_compiled()) {
if (nm()->is_native_method()) {
// Do not rely on scopeDesc since the pc might be unprecise due to the _last_native_pc trick.
fill_from_compiled_native_frame();
} else {
PcDesc* pc_desc = nm()->pc_desc_at(_frame.pc());
int decode_offset;
if (pc_desc == NULL) {
// Should not happen, but let fill_from_compiled_frame handle it.
// If we are trying to walk the stack of a thread that is not
// at a safepoint (like AsyncGetCallTrace would do) then this is an
// acceptable result. [ This is assuming that safe_for_sender
// is so bullet proof that we can trust the frames it produced. ]
//
// So if we see that the thread is not safepoint safe
// then simply produce the method and a bci of zero
// and skip the possibility of decoding any inlining that
// may be present. That is far better than simply stopping (or
// asserting. If however the thread is safepoint safe this
// is the sign of a compiler bug and we'll let
// fill_from_compiled_frame handle it.
JavaThreadState state = _thread->thread_state();
// in_Java should be good enough to test safepoint safety
// if state were say in_Java_trans then we'd expect that
// the pc would have already been slightly adjusted to
// one that would produce a pcDesc since the trans state
// would be one that might in fact anticipate a safepoint
if (state == _thread_in_Java ) {
// This will get a method a zero bci and no inlining.
// Might be nice to have a unique bci to signify this
// particular case but for now zero will do.
fill_from_compiled_native_frame();
// There is something to be said for setting the mode to
// at_end_mode to prevent trying to walk further up the
// stack. There is evidence that if we walk any further
// that we could produce a bad stack chain. However until
// we see evidence that allowing this causes us to find
// frames bad enough to cause segv's or assertion failures
// we don't do it as while we may get a bad call chain the
// probability is much higher (several magnitudes) that we
// get good data.
return true;
}
decode_offset = DebugInformationRecorder::serialized_null;
} else {
decode_offset = pc_desc->scope_decode_offset();
}
fill_from_compiled_frame(decode_offset);
}
return true;
}
// End of stack?
if (_frame.is_first_frame() || (_stop_at_java_call_stub && _frame.is_entry_frame())) {
_mode = at_end_mode;
return true;
}
return false;
}
inline void vframeStreamCommon::fill_from_interpreter_frame() {
Method* method = _frame.interpreter_frame_method();
address bcp = _frame.interpreter_frame_bcp();
int bci = method->validate_bci_from_bcp(bcp);
// 6379830 AsyncGetCallTrace sometimes feeds us wild frames.
// AsyncGetCallTrace interrupts the VM asynchronously. As a result
// it is possible to access an interpreter frame for which
// no Java-level information is yet available (e.g., becasue
// the frame was being created when the VM interrupted it).
// In this scenario, pretend that the interpreter is at the point
// of entering the method.
if (bci < 0) {
DEBUG_ONLY(found_bad_method_frame();)
bci = 0;
}
_mode = interpreted_mode;
_method = method;
_bci = bci;
}
#endif // SHARE_VM_RUNTIME_VFRAME_INLINE_HPP