8010319: Implementation of JEP 181: Nest-Based Access Control
Reviewed-by: alanb, psandoz, mchung, coleenp, acorn, mcimadamore, forax, jlahoda, sspitsyn, abuckley
Contributed-by: alex.buckley@oracle.com, maurizio.mimadamore@oracle.com, mandy.chung@oracle.com, tobias.hartmann@oracle.com, david.holmes@oracle.com, vladimir.x.ivanov@oracle.com, karen.kinnear@oracle.com, vladimir.kozlov@oracle.com, john.r.rose@oracle.com, daniel.smith@oracle.com, serguei.spitsyn@oracle.com, kumardotsrinivasan@gmail.com, boris.ulasevich@bell-sw.com
/*
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "jvm.h"
#include "classfile/javaClasses.hpp"
#include "classfile/moduleEntry.hpp"
#include "classfile/packageEntry.hpp"
#include "classfile/stringTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/verifier.hpp"
#include "classfile/vmSymbols.hpp"
#include "interpreter/linkResolver.hpp"
#include "logging/log.hpp"
#include "memory/oopFactory.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/objArrayOop.inline.hpp"
#include "oops/oop.inline.hpp"
#include "oops/typeArrayOop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "runtime/arguments.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/reflection.hpp"
#include "runtime/reflectionUtils.hpp"
#include "runtime/signature.hpp"
#include "runtime/vframe.inline.hpp"
static void trace_class_resolution(const Klass* to_class) {
ResourceMark rm;
int line_number = -1;
const char * source_file = NULL;
Klass* caller = NULL;
JavaThread* jthread = JavaThread::current();
if (jthread->has_last_Java_frame()) {
vframeStream vfst(jthread);
// skip over any frames belonging to java.lang.Class
while (!vfst.at_end() &&
vfst.method()->method_holder()->name() == vmSymbols::java_lang_Class()) {
vfst.next();
}
if (!vfst.at_end()) {
// this frame is a likely suspect
caller = vfst.method()->method_holder();
line_number = vfst.method()->line_number_from_bci(vfst.bci());
Symbol* s = vfst.method()->method_holder()->source_file_name();
if (s != NULL) {
source_file = s->as_C_string();
}
}
}
if (caller != NULL) {
const char * from = caller->external_name();
const char * to = to_class->external_name();
// print in a single call to reduce interleaving between threads
if (source_file != NULL) {
log_debug(class, resolve)("%s %s %s:%d (reflection)", from, to, source_file, line_number);
} else {
log_debug(class, resolve)("%s %s (reflection)", from, to);
}
}
}
oop Reflection::box(jvalue* value, BasicType type, TRAPS) {
if (type == T_VOID) {
return NULL;
}
if (type == T_OBJECT || type == T_ARRAY) {
// regular objects are not boxed
return (oop) value->l;
}
oop result = java_lang_boxing_object::create(type, value, CHECK_NULL);
if (result == NULL) {
THROW_(vmSymbols::java_lang_IllegalArgumentException(), result);
}
return result;
}
BasicType Reflection::unbox_for_primitive(oop box, jvalue* value, TRAPS) {
if (box == NULL) {
THROW_(vmSymbols::java_lang_IllegalArgumentException(), T_ILLEGAL);
}
return java_lang_boxing_object::get_value(box, value);
}
BasicType Reflection::unbox_for_regular_object(oop box, jvalue* value) {
// Note: box is really the unboxed oop. It might even be a Short, etc.!
value->l = (jobject) box;
return T_OBJECT;
}
void Reflection::widen(jvalue* value, BasicType current_type, BasicType wide_type, TRAPS) {
assert(wide_type != current_type, "widen should not be called with identical types");
switch (wide_type) {
case T_BOOLEAN:
case T_BYTE:
case T_CHAR:
break; // fail
case T_SHORT:
switch (current_type) {
case T_BYTE:
value->s = (jshort) value->b;
return;
default:
break;
}
break; // fail
case T_INT:
switch (current_type) {
case T_BYTE:
value->i = (jint) value->b;
return;
case T_CHAR:
value->i = (jint) value->c;
return;
case T_SHORT:
value->i = (jint) value->s;
return;
default:
break;
}
break; // fail
case T_LONG:
switch (current_type) {
case T_BYTE:
value->j = (jlong) value->b;
return;
case T_CHAR:
value->j = (jlong) value->c;
return;
case T_SHORT:
value->j = (jlong) value->s;
return;
case T_INT:
value->j = (jlong) value->i;
return;
default:
break;
}
break; // fail
case T_FLOAT:
switch (current_type) {
case T_BYTE:
value->f = (jfloat) value->b;
return;
case T_CHAR:
value->f = (jfloat) value->c;
return;
case T_SHORT:
value->f = (jfloat) value->s;
return;
case T_INT:
value->f = (jfloat) value->i;
return;
case T_LONG:
value->f = (jfloat) value->j;
return;
default:
break;
}
break; // fail
case T_DOUBLE:
switch (current_type) {
case T_BYTE:
value->d = (jdouble) value->b;
return;
case T_CHAR:
value->d = (jdouble) value->c;
return;
case T_SHORT:
value->d = (jdouble) value->s;
return;
case T_INT:
value->d = (jdouble) value->i;
return;
case T_FLOAT:
value->d = (jdouble) value->f;
return;
case T_LONG:
value->d = (jdouble) value->j;
return;
default:
break;
}
break; // fail
default:
break; // fail
}
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "argument type mismatch");
}
BasicType Reflection::array_get(jvalue* value, arrayOop a, int index, TRAPS) {
if (!a->is_within_bounds(index)) {
THROW_(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), T_ILLEGAL);
}
if (a->is_objArray()) {
value->l = (jobject) objArrayOop(a)->obj_at(index);
return T_OBJECT;
} else {
assert(a->is_typeArray(), "just checking");
BasicType type = TypeArrayKlass::cast(a->klass())->element_type();
switch (type) {
case T_BOOLEAN:
value->z = typeArrayOop(a)->bool_at(index);
break;
case T_CHAR:
value->c = typeArrayOop(a)->char_at(index);
break;
case T_FLOAT:
value->f = typeArrayOop(a)->float_at(index);
break;
case T_DOUBLE:
value->d = typeArrayOop(a)->double_at(index);
break;
case T_BYTE:
value->b = typeArrayOop(a)->byte_at(index);
break;
case T_SHORT:
value->s = typeArrayOop(a)->short_at(index);
break;
case T_INT:
value->i = typeArrayOop(a)->int_at(index);
break;
case T_LONG:
value->j = typeArrayOop(a)->long_at(index);
break;
default:
return T_ILLEGAL;
}
return type;
}
}
void Reflection::array_set(jvalue* value, arrayOop a, int index, BasicType value_type, TRAPS) {
if (!a->is_within_bounds(index)) {
THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException());
}
if (a->is_objArray()) {
if (value_type == T_OBJECT) {
oop obj = (oop) value->l;
if (obj != NULL) {
Klass* element_klass = ObjArrayKlass::cast(a->klass())->element_klass();
if (!obj->is_a(element_klass)) {
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "array element type mismatch");
}
}
objArrayOop(a)->obj_at_put(index, obj);
}
} else {
assert(a->is_typeArray(), "just checking");
BasicType array_type = TypeArrayKlass::cast(a->klass())->element_type();
if (array_type != value_type) {
// The widen operation can potentially throw an exception, but cannot block,
// so typeArrayOop a is safe if the call succeeds.
widen(value, value_type, array_type, CHECK);
}
switch (array_type) {
case T_BOOLEAN:
typeArrayOop(a)->bool_at_put(index, value->z);
break;
case T_CHAR:
typeArrayOop(a)->char_at_put(index, value->c);
break;
case T_FLOAT:
typeArrayOop(a)->float_at_put(index, value->f);
break;
case T_DOUBLE:
typeArrayOop(a)->double_at_put(index, value->d);
break;
case T_BYTE:
typeArrayOop(a)->byte_at_put(index, value->b);
break;
case T_SHORT:
typeArrayOop(a)->short_at_put(index, value->s);
break;
case T_INT:
typeArrayOop(a)->int_at_put(index, value->i);
break;
case T_LONG:
typeArrayOop(a)->long_at_put(index, value->j);
break;
default:
THROW(vmSymbols::java_lang_IllegalArgumentException());
}
}
}
static Klass* basic_type_mirror_to_arrayklass(oop basic_type_mirror, TRAPS) {
assert(java_lang_Class::is_primitive(basic_type_mirror), "just checking");
BasicType type = java_lang_Class::primitive_type(basic_type_mirror);
if (type == T_VOID) {
THROW_0(vmSymbols::java_lang_IllegalArgumentException());
}
else {
return Universe::typeArrayKlassObj(type);
}
}
#ifdef ASSERT
static oop basic_type_arrayklass_to_mirror(Klass* basic_type_arrayklass, TRAPS) {
BasicType type = TypeArrayKlass::cast(basic_type_arrayklass)->element_type();
return Universe::java_mirror(type);
}
#endif
arrayOop Reflection::reflect_new_array(oop element_mirror, jint length, TRAPS) {
if (element_mirror == NULL) {
THROW_0(vmSymbols::java_lang_NullPointerException());
}
if (length < 0) {
THROW_MSG_0(vmSymbols::java_lang_NegativeArraySizeException(), err_msg("%d", length));
}
if (java_lang_Class::is_primitive(element_mirror)) {
Klass* tak = basic_type_mirror_to_arrayklass(element_mirror, CHECK_NULL);
return TypeArrayKlass::cast(tak)->allocate(length, THREAD);
} else {
Klass* k = java_lang_Class::as_Klass(element_mirror);
if (k->is_array_klass() && ArrayKlass::cast(k)->dimension() >= MAX_DIM) {
THROW_0(vmSymbols::java_lang_IllegalArgumentException());
}
return oopFactory::new_objArray(k, length, THREAD);
}
}
arrayOop Reflection::reflect_new_multi_array(oop element_mirror, typeArrayOop dim_array, TRAPS) {
assert(dim_array->is_typeArray(), "just checking");
assert(TypeArrayKlass::cast(dim_array->klass())->element_type() == T_INT, "just checking");
if (element_mirror == NULL) {
THROW_0(vmSymbols::java_lang_NullPointerException());
}
int len = dim_array->length();
if (len <= 0 || len > MAX_DIM) {
THROW_0(vmSymbols::java_lang_IllegalArgumentException());
}
jint dimensions[MAX_DIM]; // C array copy of intArrayOop
for (int i = 0; i < len; i++) {
int d = dim_array->int_at(i);
if (d < 0) {
THROW_MSG_0(vmSymbols::java_lang_NegativeArraySizeException(), err_msg("%d", d));
}
dimensions[i] = d;
}
Klass* klass;
int dim = len;
if (java_lang_Class::is_primitive(element_mirror)) {
klass = basic_type_mirror_to_arrayklass(element_mirror, CHECK_NULL);
} else {
klass = java_lang_Class::as_Klass(element_mirror);
if (klass->is_array_klass()) {
int k_dim = ArrayKlass::cast(klass)->dimension();
if (k_dim + len > MAX_DIM) {
THROW_0(vmSymbols::java_lang_IllegalArgumentException());
}
dim += k_dim;
}
}
klass = klass->array_klass(dim, CHECK_NULL);
oop obj = ArrayKlass::cast(klass)->multi_allocate(len, dimensions, CHECK_NULL);
assert(obj->is_array(), "just checking");
return arrayOop(obj);
}
oop Reflection::array_component_type(oop mirror, TRAPS) {
if (java_lang_Class::is_primitive(mirror)) {
return NULL;
}
Klass* klass = java_lang_Class::as_Klass(mirror);
if (!klass->is_array_klass()) {
return NULL;
}
oop result = java_lang_Class::component_mirror(mirror);
#ifdef ASSERT
oop result2 = NULL;
if (ArrayKlass::cast(klass)->dimension() == 1) {
if (klass->is_typeArray_klass()) {
result2 = basic_type_arrayklass_to_mirror(klass, CHECK_NULL);
} else {
result2 = ObjArrayKlass::cast(klass)->element_klass()->java_mirror();
}
} else {
Klass* lower_dim = ArrayKlass::cast(klass)->lower_dimension();
assert(lower_dim->is_array_klass(), "just checking");
result2 = lower_dim->java_mirror();
}
assert(oopDesc::equals(result, result2), "results must be consistent");
#endif //ASSERT
return result;
}
static bool under_host_klass(const InstanceKlass* ik, const InstanceKlass* host_klass) {
DEBUG_ONLY(int inf_loop_check = 1000 * 1000 * 1000);
for (;;) {
const InstanceKlass* hc = ik->host_klass();
if (hc == NULL) return false;
if (hc == host_klass) return true;
ik = hc;
// There's no way to make a host class loop short of patching memory.
// Therefore there cannot be a loop here unless there's another bug.
// Still, let's check for it.
assert(--inf_loop_check > 0, "no host_klass loop");
}
}
static bool can_relax_access_check_for(const Klass* accessor,
const Klass* accessee,
bool classloader_only) {
const InstanceKlass* accessor_ik = InstanceKlass::cast(accessor);
const InstanceKlass* accessee_ik = InstanceKlass::cast(accessee);
// If either is on the other's host_klass chain, access is OK,
// because one is inside the other.
if (under_host_klass(accessor_ik, accessee_ik) ||
under_host_klass(accessee_ik, accessor_ik))
return true;
if ((RelaxAccessControlCheck &&
accessor_ik->major_version() < Verifier::NO_RELAX_ACCESS_CTRL_CHECK_VERSION &&
accessee_ik->major_version() < Verifier::NO_RELAX_ACCESS_CTRL_CHECK_VERSION) ||
(accessor_ik->major_version() < Verifier::STRICTER_ACCESS_CTRL_CHECK_VERSION &&
accessee_ik->major_version() < Verifier::STRICTER_ACCESS_CTRL_CHECK_VERSION)) {
return classloader_only &&
Verifier::relax_access_for(accessor_ik->class_loader()) &&
accessor_ik->protection_domain() == accessee_ik->protection_domain() &&
accessor_ik->class_loader() == accessee_ik->class_loader();
}
return false;
}
/*
Type Accessibility check for public types: Callee Type T is accessible to Caller Type S if:
Callee T in Callee T in package PT,
unnamed module runtime module MT
------------------------------------------------------------------------------------------------
Caller S in package If MS is loose: YES If same classloader/package (PS == PT): YES
PS, runtime module MS If MS can read T's If same runtime module: (MS == MT): YES
unnamed module: YES
Else if (MS can read MT (establish readability) &&
((MT exports PT to MS or to all modules) ||
(MT is open))): YES
------------------------------------------------------------------------------------------------
Caller S in unnamed YES Readability exists because unnamed module
module UM "reads" all modules
if (MT exports PT to UM or to all modules): YES
------------------------------------------------------------------------------------------------
Note: a loose module is a module that can read all current and future unnamed modules.
*/
Reflection::VerifyClassAccessResults Reflection::verify_class_access(
const Klass* current_class, const InstanceKlass* new_class, bool classloader_only) {
// Verify that current_class can access new_class. If the classloader_only
// flag is set, we automatically allow any accesses in which current_class
// doesn't have a classloader.
if ((current_class == NULL) ||
(current_class == new_class) ||
is_same_class_package(current_class, new_class)) {
return ACCESS_OK;
}
// Allow all accesses from jdk/internal/reflect/MagicAccessorImpl subclasses to
// succeed trivially.
if (current_class->is_subclass_of(SystemDictionary::reflect_MagicAccessorImpl_klass())) {
return ACCESS_OK;
}
// module boundaries
if (new_class->is_public()) {
// Ignore modules for DumpSharedSpaces because we do not have any package
// or module information for modules other than java.base.
if (DumpSharedSpaces) {
return ACCESS_OK;
}
// Find the module entry for current_class, the accessor
ModuleEntry* module_from = current_class->module();
// Find the module entry for new_class, the accessee
ModuleEntry* module_to = new_class->module();
// both in same (possibly unnamed) module
if (module_from == module_to) {
return ACCESS_OK;
}
// Acceptable access to a type in an unnamed module. Note that since
// unnamed modules can read all unnamed modules, this also handles the
// case where module_from is also unnamed but in a different class loader.
if (!module_to->is_named() &&
(module_from->can_read_all_unnamed() || module_from->can_read(module_to))) {
return ACCESS_OK;
}
// Establish readability, check if module_from is allowed to read module_to.
if (!module_from->can_read(module_to)) {
return MODULE_NOT_READABLE;
}
// Access is allowed if module_to is open, i.e. all its packages are unqualifiedly exported
if (module_to->is_open()) {
return ACCESS_OK;
}
PackageEntry* package_to = new_class->package();
assert(package_to != NULL, "can not obtain new_class' package");
{
MutexLocker m1(Module_lock);
// Once readability is established, if module_to exports T unqualifiedly,
// (to all modules), than whether module_from is in the unnamed module
// or not does not matter, access is allowed.
if (package_to->is_unqual_exported()) {
return ACCESS_OK;
}
// Access is allowed if both 1 & 2 hold:
// 1. Readability, module_from can read module_to (established above).
// 2. Either module_to exports T to module_from qualifiedly.
// or
// module_to exports T to all unnamed modules and module_from is unnamed.
// or
// module_to exports T unqualifiedly to all modules (checked above).
if (!package_to->is_qexported_to(module_from)) {
return TYPE_NOT_EXPORTED;
}
}
return ACCESS_OK;
}
if (can_relax_access_check_for(current_class, new_class, classloader_only)) {
return ACCESS_OK;
}
return OTHER_PROBLEM;
}
// Return an error message specific to the specified Klass*'s and result.
// This function must be called from within a block containing a ResourceMark.
char* Reflection::verify_class_access_msg(const Klass* current_class,
const InstanceKlass* new_class,
const VerifyClassAccessResults result) {
assert(result != ACCESS_OK, "must be failure result");
char * msg = NULL;
if (result != OTHER_PROBLEM && new_class != NULL && current_class != NULL) {
// Find the module entry for current_class, the accessor
ModuleEntry* module_from = current_class->module();
const char * module_from_name = module_from->is_named() ? module_from->name()->as_C_string() : UNNAMED_MODULE;
const char * current_class_name = current_class->external_name();
// Find the module entry for new_class, the accessee
ModuleEntry* module_to = NULL;
module_to = new_class->module();
const char * module_to_name = module_to->is_named() ? module_to->name()->as_C_string() : UNNAMED_MODULE;
const char * new_class_name = new_class->external_name();
if (result == MODULE_NOT_READABLE) {
assert(module_from->is_named(), "Unnamed modules can read all modules");
if (module_to->is_named()) {
size_t len = 100 + strlen(current_class_name) + 2*strlen(module_from_name) +
strlen(new_class_name) + 2*strlen(module_to_name);
msg = NEW_RESOURCE_ARRAY(char, len);
jio_snprintf(msg, len - 1,
"class %s (in module %s) cannot access class %s (in module %s) because module %s does not read module %s",
current_class_name, module_from_name, new_class_name,
module_to_name, module_from_name, module_to_name);
} else {
oop jlm = module_to->module();
assert(jlm != NULL, "Null jlm in module_to ModuleEntry");
intptr_t identity_hash = jlm->identity_hash();
size_t len = 160 + strlen(current_class_name) + 2*strlen(module_from_name) +
strlen(new_class_name) + 2*sizeof(uintx);
msg = NEW_RESOURCE_ARRAY(char, len);
jio_snprintf(msg, len - 1,
"class %s (in module %s) cannot access class %s (in unnamed module @" SIZE_FORMAT_HEX ") because module %s does not read unnamed module @" SIZE_FORMAT_HEX,
current_class_name, module_from_name, new_class_name, uintx(identity_hash),
module_from_name, uintx(identity_hash));
}
} else if (result == TYPE_NOT_EXPORTED) {
assert(new_class->package() != NULL,
"Unnamed packages are always exported");
const char * package_name =
new_class->package()->name()->as_klass_external_name();
assert(module_to->is_named(), "Unnamed modules export all packages");
if (module_from->is_named()) {
size_t len = 118 + strlen(current_class_name) + 2*strlen(module_from_name) +
strlen(new_class_name) + 2*strlen(module_to_name) + strlen(package_name);
msg = NEW_RESOURCE_ARRAY(char, len);
jio_snprintf(msg, len - 1,
"class %s (in module %s) cannot access class %s (in module %s) because module %s does not export %s to module %s",
current_class_name, module_from_name, new_class_name,
module_to_name, module_to_name, package_name, module_from_name);
} else {
oop jlm = module_from->module();
assert(jlm != NULL, "Null jlm in module_from ModuleEntry");
intptr_t identity_hash = jlm->identity_hash();
size_t len = 170 + strlen(current_class_name) + strlen(new_class_name) +
2*strlen(module_to_name) + strlen(package_name) + 2*sizeof(uintx);
msg = NEW_RESOURCE_ARRAY(char, len);
jio_snprintf(msg, len - 1,
"class %s (in unnamed module @" SIZE_FORMAT_HEX ") cannot access class %s (in module %s) because module %s does not export %s to unnamed module @" SIZE_FORMAT_HEX,
current_class_name, uintx(identity_hash), new_class_name, module_to_name,
module_to_name, package_name, uintx(identity_hash));
}
} else {
ShouldNotReachHere();
}
} // result != OTHER_PROBLEM...
return msg;
}
bool Reflection::verify_member_access(const Klass* current_class,
const Klass* resolved_class,
const Klass* member_class,
AccessFlags access,
bool classloader_only,
bool protected_restriction,
TRAPS) {
// Verify that current_class can access a member of member_class, where that
// field's access bits are "access". We assume that we've already verified
// that current_class can access member_class.
//
// If the classloader_only flag is set, we automatically allow any accesses
// in which current_class doesn't have a classloader.
//
// "resolved_class" is the runtime type of "member_class". Sometimes we don't
// need this distinction (e.g. if all we have is the runtime type, or during
// class file parsing when we only care about the static type); in that case
// callers should ensure that resolved_class == member_class.
//
if ((current_class == NULL) ||
(current_class == member_class) ||
access.is_public()) {
return true;
}
const Klass* host_class = current_class;
if (host_class->is_instance_klass() &&
InstanceKlass::cast(host_class)->is_anonymous()) {
host_class = InstanceKlass::cast(host_class)->host_klass();
assert(host_class != NULL, "Anonymous class has null host class");
assert(!(host_class->is_instance_klass() &&
InstanceKlass::cast(host_class)->is_anonymous()),
"host_class should not be anonymous");
}
if (host_class == member_class) {
return true;
}
if (access.is_protected()) {
if (!protected_restriction) {
// See if current_class (or outermost host class) is a subclass of member_class
// An interface may not access protected members of j.l.Object
if (!host_class->is_interface() && host_class->is_subclass_of(member_class)) {
if (access.is_static() || // static fields are ok, see 6622385
current_class == resolved_class ||
member_class == resolved_class ||
host_class->is_subclass_of(resolved_class) ||
resolved_class->is_subclass_of(host_class)) {
return true;
}
}
}
}
// package access
if (!access.is_private() && is_same_class_package(current_class, member_class)) {
return true;
}
// private access between different classes needs a nestmate check, but
// not for anonymous classes - so check host_class
if (access.is_private() && host_class == current_class) {
if (current_class->is_instance_klass() && member_class->is_instance_klass() ) {
InstanceKlass* cur_ik = const_cast<InstanceKlass*>(InstanceKlass::cast(current_class));
InstanceKlass* field_ik = const_cast<InstanceKlass*>(InstanceKlass::cast(member_class));
// Nestmate access checks may require resolution and validation of the nest-host.
// It is up to the caller to check for pending exceptions and handle appropriately.
bool access = cur_ik->has_nestmate_access_to(field_ik, CHECK_false);
if (access) {
guarantee(resolved_class->is_subclass_of(member_class), "must be!");
return true;
}
}
}
// Allow all accesses from jdk/internal/reflect/MagicAccessorImpl subclasses to
// succeed trivially.
if (current_class->is_subclass_of(SystemDictionary::reflect_MagicAccessorImpl_klass())) {
return true;
}
// Check for special relaxations
return can_relax_access_check_for(current_class, member_class, classloader_only);
}
bool Reflection::is_same_class_package(const Klass* class1, const Klass* class2) {
return InstanceKlass::cast(class1)->is_same_class_package(class2);
}
// Checks that the 'outer' klass has declared 'inner' as being an inner klass. If not,
// throw an incompatible class change exception
// If inner_is_member, require the inner to be a member of the outer.
// If !inner_is_member, require the inner to be anonymous (a non-member).
// Caller is responsible for figuring out in advance which case must be true.
void Reflection::check_for_inner_class(const InstanceKlass* outer, const InstanceKlass* inner,
bool inner_is_member, TRAPS) {
InnerClassesIterator iter(outer);
constantPoolHandle cp (THREAD, outer->constants());
for (; !iter.done(); iter.next()) {
int ioff = iter.inner_class_info_index();
int ooff = iter.outer_class_info_index();
if (inner_is_member && ioff != 0 && ooff != 0) {
Klass* o = cp->klass_at(ooff, CHECK);
if (o == outer) {
Klass* i = cp->klass_at(ioff, CHECK);
if (i == inner) {
return;
}
}
}
if (!inner_is_member && ioff != 0 && ooff == 0 &&
cp->klass_name_at_matches(inner, ioff)) {
Klass* i = cp->klass_at(ioff, CHECK);
if (i == inner) {
return;
}
}
}
// 'inner' not declared as an inner klass in outer
ResourceMark rm(THREAD);
Exceptions::fthrow(
THREAD_AND_LOCATION,
vmSymbols::java_lang_IncompatibleClassChangeError(),
"%s and %s disagree on InnerClasses attribute",
outer->external_name(),
inner->external_name()
);
}
// Utility method converting a single SignatureStream element into java.lang.Class instance
static oop get_mirror_from_signature(const methodHandle& method,
SignatureStream* ss,
TRAPS) {
if (T_OBJECT == ss->type() || T_ARRAY == ss->type()) {
Symbol* name = ss->as_symbol(CHECK_NULL);
oop loader = method->method_holder()->class_loader();
oop protection_domain = method->method_holder()->protection_domain();
const Klass* k = SystemDictionary::resolve_or_fail(name,
Handle(THREAD, loader),
Handle(THREAD, protection_domain),
true,
CHECK_NULL);
if (log_is_enabled(Debug, class, resolve)) {
trace_class_resolution(k);
}
return k->java_mirror();
}
assert(ss->type() != T_VOID || ss->at_return_type(),
"T_VOID should only appear as return type");
return java_lang_Class::primitive_mirror(ss->type());
}
static objArrayHandle get_parameter_types(const methodHandle& method,
int parameter_count,
oop* return_type,
TRAPS) {
// Allocate array holding parameter types (java.lang.Class instances)
objArrayOop m = oopFactory::new_objArray(SystemDictionary::Class_klass(), parameter_count, CHECK_(objArrayHandle()));
objArrayHandle mirrors(THREAD, m);
int index = 0;
// Collect parameter types
ResourceMark rm(THREAD);
Symbol* signature = method->signature();
SignatureStream ss(signature);
while (!ss.at_return_type()) {
oop mirror = get_mirror_from_signature(method, &ss, CHECK_(objArrayHandle()));
mirrors->obj_at_put(index++, mirror);
ss.next();
}
assert(index == parameter_count, "invalid parameter count");
if (return_type != NULL) {
// Collect return type as well
assert(ss.at_return_type(), "return type should be present");
*return_type = get_mirror_from_signature(method, &ss, CHECK_(objArrayHandle()));
}
return mirrors;
}
static objArrayHandle get_exception_types(const methodHandle& method, TRAPS) {
return method->resolved_checked_exceptions(THREAD);
}
static Handle new_type(Symbol* signature, Klass* k, TRAPS) {
// Basic types
BasicType type = vmSymbols::signature_type(signature);
if (type != T_OBJECT) {
return Handle(THREAD, Universe::java_mirror(type));
}
Klass* result =
SystemDictionary::resolve_or_fail(signature,
Handle(THREAD, k->class_loader()),
Handle(THREAD, k->protection_domain()),
true, CHECK_(Handle()));
if (log_is_enabled(Debug, class, resolve)) {
trace_class_resolution(result);
}
oop nt = result->java_mirror();
return Handle(THREAD, nt);
}
oop Reflection::new_method(const methodHandle& method, bool for_constant_pool_access, TRAPS) {
// Allow sun.reflect.ConstantPool to refer to <clinit> methods as java.lang.reflect.Methods.
assert(!method()->is_initializer() ||
(for_constant_pool_access && method()->is_static()),
"should call new_constructor instead");
InstanceKlass* holder = method->method_holder();
int slot = method->method_idnum();
Symbol* signature = method->signature();
int parameter_count = ArgumentCount(signature).size();
oop return_type_oop = NULL;
objArrayHandle parameter_types = get_parameter_types(method, parameter_count, &return_type_oop, CHECK_NULL);
if (parameter_types.is_null() || return_type_oop == NULL) return NULL;
Handle return_type(THREAD, return_type_oop);
objArrayHandle exception_types = get_exception_types(method, CHECK_NULL);
if (exception_types.is_null()) return NULL;
Symbol* method_name = method->name();
oop name_oop = StringTable::intern(method_name, CHECK_NULL);
Handle name = Handle(THREAD, name_oop);
if (name == NULL) return NULL;
const int modifiers = method->access_flags().as_int() & JVM_RECOGNIZED_METHOD_MODIFIERS;
Handle mh = java_lang_reflect_Method::create(CHECK_NULL);
java_lang_reflect_Method::set_clazz(mh(), holder->java_mirror());
java_lang_reflect_Method::set_slot(mh(), slot);
java_lang_reflect_Method::set_name(mh(), name());
java_lang_reflect_Method::set_return_type(mh(), return_type());
java_lang_reflect_Method::set_parameter_types(mh(), parameter_types());
java_lang_reflect_Method::set_exception_types(mh(), exception_types());
java_lang_reflect_Method::set_modifiers(mh(), modifiers);
java_lang_reflect_Method::set_override(mh(), false);
if (java_lang_reflect_Method::has_signature_field() &&
method->generic_signature() != NULL) {
Symbol* gs = method->generic_signature();
Handle sig = java_lang_String::create_from_symbol(gs, CHECK_NULL);
java_lang_reflect_Method::set_signature(mh(), sig());
}
if (java_lang_reflect_Method::has_annotations_field()) {
typeArrayOop an_oop = Annotations::make_java_array(method->annotations(), CHECK_NULL);
java_lang_reflect_Method::set_annotations(mh(), an_oop);
}
if (java_lang_reflect_Method::has_parameter_annotations_field()) {
typeArrayOop an_oop = Annotations::make_java_array(method->parameter_annotations(), CHECK_NULL);
java_lang_reflect_Method::set_parameter_annotations(mh(), an_oop);
}
if (java_lang_reflect_Method::has_annotation_default_field()) {
typeArrayOop an_oop = Annotations::make_java_array(method->annotation_default(), CHECK_NULL);
java_lang_reflect_Method::set_annotation_default(mh(), an_oop);
}
if (java_lang_reflect_Method::has_type_annotations_field()) {
typeArrayOop an_oop = Annotations::make_java_array(method->type_annotations(), CHECK_NULL);
java_lang_reflect_Method::set_type_annotations(mh(), an_oop);
}
return mh();
}
oop Reflection::new_constructor(const methodHandle& method, TRAPS) {
assert(method()->is_initializer(), "should call new_method instead");
InstanceKlass* holder = method->method_holder();
int slot = method->method_idnum();
Symbol* signature = method->signature();
int parameter_count = ArgumentCount(signature).size();
objArrayHandle parameter_types = get_parameter_types(method, parameter_count, NULL, CHECK_NULL);
if (parameter_types.is_null()) return NULL;
objArrayHandle exception_types = get_exception_types(method, CHECK_NULL);
if (exception_types.is_null()) return NULL;
const int modifiers = method->access_flags().as_int() & JVM_RECOGNIZED_METHOD_MODIFIERS;
Handle ch = java_lang_reflect_Constructor::create(CHECK_NULL);
java_lang_reflect_Constructor::set_clazz(ch(), holder->java_mirror());
java_lang_reflect_Constructor::set_slot(ch(), slot);
java_lang_reflect_Constructor::set_parameter_types(ch(), parameter_types());
java_lang_reflect_Constructor::set_exception_types(ch(), exception_types());
java_lang_reflect_Constructor::set_modifiers(ch(), modifiers);
java_lang_reflect_Constructor::set_override(ch(), false);
if (java_lang_reflect_Constructor::has_signature_field() &&
method->generic_signature() != NULL) {
Symbol* gs = method->generic_signature();
Handle sig = java_lang_String::create_from_symbol(gs, CHECK_NULL);
java_lang_reflect_Constructor::set_signature(ch(), sig());
}
if (java_lang_reflect_Constructor::has_annotations_field()) {
typeArrayOop an_oop = Annotations::make_java_array(method->annotations(), CHECK_NULL);
java_lang_reflect_Constructor::set_annotations(ch(), an_oop);
}
if (java_lang_reflect_Constructor::has_parameter_annotations_field()) {
typeArrayOop an_oop = Annotations::make_java_array(method->parameter_annotations(), CHECK_NULL);
java_lang_reflect_Constructor::set_parameter_annotations(ch(), an_oop);
}
if (java_lang_reflect_Constructor::has_type_annotations_field()) {
typeArrayOop an_oop = Annotations::make_java_array(method->type_annotations(), CHECK_NULL);
java_lang_reflect_Constructor::set_type_annotations(ch(), an_oop);
}
return ch();
}
oop Reflection::new_field(fieldDescriptor* fd, TRAPS) {
Symbol* field_name = fd->name();
oop name_oop = StringTable::intern(field_name, CHECK_NULL);
Handle name = Handle(THREAD, name_oop);
Symbol* signature = fd->signature();
InstanceKlass* holder = fd->field_holder();
Handle type = new_type(signature, holder, CHECK_NULL);
Handle rh = java_lang_reflect_Field::create(CHECK_NULL);
java_lang_reflect_Field::set_clazz(rh(), fd->field_holder()->java_mirror());
java_lang_reflect_Field::set_slot(rh(), fd->index());
java_lang_reflect_Field::set_name(rh(), name());
java_lang_reflect_Field::set_type(rh(), type());
// Note the ACC_ANNOTATION bit, which is a per-class access flag, is never set here.
java_lang_reflect_Field::set_modifiers(rh(), fd->access_flags().as_int() & JVM_RECOGNIZED_FIELD_MODIFIERS);
java_lang_reflect_Field::set_override(rh(), false);
if (java_lang_reflect_Field::has_signature_field() &&
fd->has_generic_signature()) {
Symbol* gs = fd->generic_signature();
Handle sig = java_lang_String::create_from_symbol(gs, CHECK_NULL);
java_lang_reflect_Field::set_signature(rh(), sig());
}
if (java_lang_reflect_Field::has_annotations_field()) {
typeArrayOop an_oop = Annotations::make_java_array(fd->annotations(), CHECK_NULL);
java_lang_reflect_Field::set_annotations(rh(), an_oop);
}
if (java_lang_reflect_Field::has_type_annotations_field()) {
typeArrayOop an_oop = Annotations::make_java_array(fd->type_annotations(), CHECK_NULL);
java_lang_reflect_Field::set_type_annotations(rh(), an_oop);
}
return rh();
}
oop Reflection::new_parameter(Handle method, int index, Symbol* sym,
int flags, TRAPS) {
Handle rh = java_lang_reflect_Parameter::create(CHECK_NULL);
if(NULL != sym) {
Handle name = java_lang_String::create_from_symbol(sym, CHECK_NULL);
java_lang_reflect_Parameter::set_name(rh(), name());
} else {
java_lang_reflect_Parameter::set_name(rh(), NULL);
}
java_lang_reflect_Parameter::set_modifiers(rh(), flags);
java_lang_reflect_Parameter::set_executable(rh(), method());
java_lang_reflect_Parameter::set_index(rh(), index);
return rh();
}
static methodHandle resolve_interface_call(InstanceKlass* klass,
const methodHandle& method,
Klass* recv_klass,
Handle receiver,
TRAPS) {
assert(!method.is_null() , "method should not be null");
CallInfo info;
Symbol* signature = method->signature();
Symbol* name = method->name();
LinkResolver::resolve_interface_call(info, receiver, recv_klass,
LinkInfo(klass, name, signature),
true,
CHECK_(methodHandle()));
return info.selected_method();
}
// Conversion
static BasicType basic_type_mirror_to_basic_type(oop basic_type_mirror, TRAPS) {
assert(java_lang_Class::is_primitive(basic_type_mirror),
"just checking");
return java_lang_Class::primitive_type(basic_type_mirror);
}
// Narrowing of basic types. Used to create correct jvalues for
// boolean, byte, char and short return return values from interpreter
// which are returned as ints. Throws IllegalArgumentException.
static void narrow(jvalue* value, BasicType narrow_type, TRAPS) {
switch (narrow_type) {
case T_BOOLEAN:
value->z = (jboolean) (value->i & 1);
return;
case T_BYTE:
value->b = (jbyte)value->i;
return;
case T_CHAR:
value->c = (jchar)value->i;
return;
case T_SHORT:
value->s = (jshort)value->i;
return;
default:
break; // fail
}
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "argument type mismatch");
}
// Method call (shared by invoke_method and invoke_constructor)
static oop invoke(InstanceKlass* klass,
const methodHandle& reflected_method,
Handle receiver,
bool override,
objArrayHandle ptypes,
BasicType rtype,
objArrayHandle args,
bool is_method_invoke,
TRAPS) {
ResourceMark rm(THREAD);
methodHandle method; // actual method to invoke
Klass* target_klass; // target klass, receiver's klass for non-static
// Ensure klass is initialized
klass->initialize(CHECK_NULL);
bool is_static = reflected_method->is_static();
if (is_static) {
// ignore receiver argument
method = reflected_method;
target_klass = klass;
} else {
// check for null receiver
if (receiver.is_null()) {
THROW_0(vmSymbols::java_lang_NullPointerException());
}
// Check class of receiver against class declaring method
if (!receiver->is_a(klass)) {
THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "object is not an instance of declaring class");
}
// target klass is receiver's klass
target_klass = receiver->klass();
// no need to resolve if method is private or <init>
if (reflected_method->is_private() || reflected_method->name() == vmSymbols::object_initializer_name()) {
method = reflected_method;
} else {
// resolve based on the receiver
if (reflected_method->method_holder()->is_interface()) {
// resolve interface call
//
// Match resolution errors with those thrown due to reflection inlining
// Linktime resolution & IllegalAccessCheck already done by Class.getMethod()
method = resolve_interface_call(klass, reflected_method, target_klass, receiver, THREAD);
if (HAS_PENDING_EXCEPTION) {
// Method resolution threw an exception; wrap it in an InvocationTargetException
oop resolution_exception = PENDING_EXCEPTION;
CLEAR_PENDING_EXCEPTION;
// JVMTI has already reported the pending exception
// JVMTI internal flag reset is needed in order to report InvocationTargetException
if (THREAD->is_Java_thread()) {
JvmtiExport::clear_detected_exception((JavaThread*)THREAD);
}
JavaCallArguments args(Handle(THREAD, resolution_exception));
THROW_ARG_0(vmSymbols::java_lang_reflect_InvocationTargetException(),
vmSymbols::throwable_void_signature(),
&args);
}
} else {
// if the method can be overridden, we resolve using the vtable index.
assert(!reflected_method->has_itable_index(), "");
int index = reflected_method->vtable_index();
method = reflected_method;
if (index != Method::nonvirtual_vtable_index) {
method = methodHandle(THREAD, target_klass->method_at_vtable(index));
}
if (!method.is_null()) {
// Check for abstract methods as well
if (method->is_abstract()) {
// new default: 6531596
ResourceMark rm(THREAD);
Handle h_origexception = Exceptions::new_exception(THREAD,
vmSymbols::java_lang_AbstractMethodError(),
Method::name_and_sig_as_C_string(target_klass,
method->name(),
method->signature()));
JavaCallArguments args(h_origexception);
THROW_ARG_0(vmSymbols::java_lang_reflect_InvocationTargetException(),
vmSymbols::throwable_void_signature(),
&args);
}
}
}
}
}
// I believe this is a ShouldNotGetHere case which requires
// an internal vtable bug. If you ever get this please let Karen know.
if (method.is_null()) {
ResourceMark rm(THREAD);
THROW_MSG_0(vmSymbols::java_lang_NoSuchMethodError(),
Method::name_and_sig_as_C_string(klass,
reflected_method->name(),
reflected_method->signature()));
}
assert(ptypes->is_objArray(), "just checking");
int args_len = args.is_null() ? 0 : args->length();
// Check number of arguments
if (ptypes->length() != args_len) {
THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
"wrong number of arguments");
}
// Create object to contain parameters for the JavaCall
JavaCallArguments java_args(method->size_of_parameters());
if (!is_static) {
java_args.push_oop(receiver);
}
for (int i = 0; i < args_len; i++) {
oop type_mirror = ptypes->obj_at(i);
oop arg = args->obj_at(i);
if (java_lang_Class::is_primitive(type_mirror)) {
jvalue value;
BasicType ptype = basic_type_mirror_to_basic_type(type_mirror, CHECK_NULL);
BasicType atype = Reflection::unbox_for_primitive(arg, &value, CHECK_NULL);
if (ptype != atype) {
Reflection::widen(&value, atype, ptype, CHECK_NULL);
}
switch (ptype) {
case T_BOOLEAN: java_args.push_int(value.z); break;
case T_CHAR: java_args.push_int(value.c); break;
case T_BYTE: java_args.push_int(value.b); break;
case T_SHORT: java_args.push_int(value.s); break;
case T_INT: java_args.push_int(value.i); break;
case T_LONG: java_args.push_long(value.j); break;
case T_FLOAT: java_args.push_float(value.f); break;
case T_DOUBLE: java_args.push_double(value.d); break;
default:
THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "argument type mismatch");
}
} else {
if (arg != NULL) {
Klass* k = java_lang_Class::as_Klass(type_mirror);
if (!arg->is_a(k)) {
THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
"argument type mismatch");
}
}
Handle arg_handle(THREAD, arg); // Create handle for argument
java_args.push_oop(arg_handle); // Push handle
}
}
assert(java_args.size_of_parameters() == method->size_of_parameters(),
"just checking");
// All oops (including receiver) is passed in as Handles. An potential oop is returned as an
// oop (i.e., NOT as an handle)
JavaValue result(rtype);
JavaCalls::call(&result, method, &java_args, THREAD);
if (HAS_PENDING_EXCEPTION) {
// Method threw an exception; wrap it in an InvocationTargetException
oop target_exception = PENDING_EXCEPTION;
CLEAR_PENDING_EXCEPTION;
// JVMTI has already reported the pending exception
// JVMTI internal flag reset is needed in order to report InvocationTargetException
if (THREAD->is_Java_thread()) {
JvmtiExport::clear_detected_exception((JavaThread*)THREAD);
}
JavaCallArguments args(Handle(THREAD, target_exception));
THROW_ARG_0(vmSymbols::java_lang_reflect_InvocationTargetException(),
vmSymbols::throwable_void_signature(),
&args);
} else {
if (rtype == T_BOOLEAN || rtype == T_BYTE || rtype == T_CHAR || rtype == T_SHORT) {
narrow((jvalue*)result.get_value_addr(), rtype, CHECK_NULL);
}
return Reflection::box((jvalue*)result.get_value_addr(), rtype, THREAD);
}
}
// This would be nicer if, say, java.lang.reflect.Method was a subclass
// of java.lang.reflect.Constructor
oop Reflection::invoke_method(oop method_mirror, Handle receiver, objArrayHandle args, TRAPS) {
oop mirror = java_lang_reflect_Method::clazz(method_mirror);
int slot = java_lang_reflect_Method::slot(method_mirror);
bool override = java_lang_reflect_Method::override(method_mirror) != 0;
objArrayHandle ptypes(THREAD, objArrayOop(java_lang_reflect_Method::parameter_types(method_mirror)));
oop return_type_mirror = java_lang_reflect_Method::return_type(method_mirror);
BasicType rtype;
if (java_lang_Class::is_primitive(return_type_mirror)) {
rtype = basic_type_mirror_to_basic_type(return_type_mirror, CHECK_NULL);
} else {
rtype = T_OBJECT;
}
InstanceKlass* klass = InstanceKlass::cast(java_lang_Class::as_Klass(mirror));
Method* m = klass->method_with_idnum(slot);
if (m == NULL) {
THROW_MSG_0(vmSymbols::java_lang_InternalError(), "invoke");
}
methodHandle method(THREAD, m);
return invoke(klass, method, receiver, override, ptypes, rtype, args, true, THREAD);
}
oop Reflection::invoke_constructor(oop constructor_mirror, objArrayHandle args, TRAPS) {
oop mirror = java_lang_reflect_Constructor::clazz(constructor_mirror);
int slot = java_lang_reflect_Constructor::slot(constructor_mirror);
bool override = java_lang_reflect_Constructor::override(constructor_mirror) != 0;
objArrayHandle ptypes(THREAD, objArrayOop(java_lang_reflect_Constructor::parameter_types(constructor_mirror)));
InstanceKlass* klass = InstanceKlass::cast(java_lang_Class::as_Klass(mirror));
Method* m = klass->method_with_idnum(slot);
if (m == NULL) {
THROW_MSG_0(vmSymbols::java_lang_InternalError(), "invoke");
}
methodHandle method(THREAD, m);
assert(method->name() == vmSymbols::object_initializer_name(), "invalid constructor");
// Make sure klass gets initialize
klass->initialize(CHECK_NULL);
// Create new instance (the receiver)
klass->check_valid_for_instantiation(false, CHECK_NULL);
Handle receiver = klass->allocate_instance_handle(CHECK_NULL);
// Ignore result from call and return receiver
invoke(klass, method, receiver, override, ptypes, T_VOID, args, false, CHECK_NULL);
return receiver();
}