8010319: Implementation of JEP 181: Nest-Based Access Control
Reviewed-by: alanb, psandoz, mchung, coleenp, acorn, mcimadamore, forax, jlahoda, sspitsyn, abuckley
Contributed-by: alex.buckley@oracle.com, maurizio.mimadamore@oracle.com, mandy.chung@oracle.com, tobias.hartmann@oracle.com, david.holmes@oracle.com, vladimir.x.ivanov@oracle.com, karen.kinnear@oracle.com, vladimir.kozlov@oracle.com, john.r.rose@oracle.com, daniel.smith@oracle.com, serguei.spitsyn@oracle.com, kumardotsrinivasan@gmail.com, boris.ulasevich@bell-sw.com
/*
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/nmethod.hpp"
#include "compiler/compileBroker.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/linkResolver.hpp"
#include "memory/universe.hpp"
#include "oops/method.inline.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jniCheck.hpp"
#include "runtime/compilationPolicy.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/jniHandles.inline.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/os.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/signature.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.inline.hpp"
#if INCLUDE_JVMCI
#include "jvmci/jvmciJavaClasses.hpp"
#include "jvmci/jvmciRuntime.hpp"
#endif
// -----------------------------------------------------
// Implementation of JavaCallWrapper
JavaCallWrapper::JavaCallWrapper(const methodHandle& callee_method, Handle receiver, JavaValue* result, TRAPS) {
JavaThread* thread = (JavaThread *)THREAD;
bool clear_pending_exception = true;
guarantee(thread->is_Java_thread(), "crucial check - the VM thread cannot and must not escape to Java code");
assert(!thread->owns_locks(), "must release all locks when leaving VM");
guarantee(thread->can_call_java(), "cannot make java calls from the native compiler");
_result = result;
// Allocate handle block for Java code. This must be done before we change thread_state to _thread_in_Java_or_stub,
// since it can potentially block.
JNIHandleBlock* new_handles = JNIHandleBlock::allocate_block(thread);
// After this, we are official in JavaCode. This needs to be done before we change any of the thread local
// info, since we cannot find oops before the new information is set up completely.
ThreadStateTransition::transition(thread, _thread_in_vm, _thread_in_Java);
// Make sure that we handle asynchronous stops and suspends _before_ we clear all thread state
// in JavaCallWrapper::JavaCallWrapper(). This way, we can decide if we need to do any pd actions
// to prepare for stop/suspend (flush register windows on sparcs, cache sp, or other state).
if (thread->has_special_runtime_exit_condition()) {
thread->handle_special_runtime_exit_condition();
if (HAS_PENDING_EXCEPTION) {
clear_pending_exception = false;
}
}
// Make sure to set the oop's after the thread transition - since we can block there. No one is GC'ing
// the JavaCallWrapper before the entry frame is on the stack.
_callee_method = callee_method();
_receiver = receiver();
#ifdef CHECK_UNHANDLED_OOPS
THREAD->allow_unhandled_oop(&_receiver);
#endif // CHECK_UNHANDLED_OOPS
_thread = (JavaThread *)thread;
_handles = _thread->active_handles(); // save previous handle block & Java frame linkage
// For the profiler, the last_Java_frame information in thread must always be in
// legal state. We have no last Java frame if last_Java_sp == NULL so
// the valid transition is to clear _last_Java_sp and then reset the rest of
// the (platform specific) state.
_anchor.copy(_thread->frame_anchor());
_thread->frame_anchor()->clear();
debug_only(_thread->inc_java_call_counter());
_thread->set_active_handles(new_handles); // install new handle block and reset Java frame linkage
assert (_thread->thread_state() != _thread_in_native, "cannot set native pc to NULL");
// clear any pending exception in thread (native calls start with no exception pending)
if(clear_pending_exception) {
_thread->clear_pending_exception();
}
if (_anchor.last_Java_sp() == NULL) {
_thread->record_base_of_stack_pointer();
}
}
JavaCallWrapper::~JavaCallWrapper() {
assert(_thread == JavaThread::current(), "must still be the same thread");
// restore previous handle block & Java frame linkage
JNIHandleBlock *_old_handles = _thread->active_handles();
_thread->set_active_handles(_handles);
_thread->frame_anchor()->zap();
debug_only(_thread->dec_java_call_counter());
if (_anchor.last_Java_sp() == NULL) {
_thread->set_base_of_stack_pointer(NULL);
}
// Old thread-local info. has been restored. We are not back in the VM.
ThreadStateTransition::transition_from_java(_thread, _thread_in_vm);
// State has been restored now make the anchor frame visible for the profiler.
// Do this after the transition because this allows us to put an assert
// the Java->vm transition which checks to see that stack is not walkable
// on sparc/ia64 which will catch violations of the reseting of last_Java_frame
// invariants (i.e. _flags always cleared on return to Java)
_thread->frame_anchor()->copy(&_anchor);
// Release handles after we are marked as being inside the VM again, since this
// operation might block
JNIHandleBlock::release_block(_old_handles, _thread);
}
void JavaCallWrapper::oops_do(OopClosure* f) {
f->do_oop((oop*)&_receiver);
handles()->oops_do(f);
}
// Helper methods
static BasicType runtime_type_from(JavaValue* result) {
switch (result->get_type()) {
case T_BOOLEAN: // fall through
case T_CHAR : // fall through
case T_SHORT : // fall through
case T_INT : // fall through
#ifndef _LP64
case T_OBJECT : // fall through
case T_ARRAY : // fall through
#endif
case T_BYTE : // fall through
case T_VOID : return T_INT;
case T_LONG : return T_LONG;
case T_FLOAT : return T_FLOAT;
case T_DOUBLE : return T_DOUBLE;
#ifdef _LP64
case T_ARRAY : // fall through
case T_OBJECT: return T_OBJECT;
#endif
default:
ShouldNotReachHere();
return T_ILLEGAL;
}
}
// ============ Virtual calls ============
void JavaCalls::call_virtual(JavaValue* result, Klass* spec_klass, Symbol* name, Symbol* signature, JavaCallArguments* args, TRAPS) {
CallInfo callinfo;
Handle receiver = args->receiver();
Klass* recvrKlass = receiver.is_null() ? (Klass*)NULL : receiver->klass();
LinkInfo link_info(spec_klass, name, signature);
LinkResolver::resolve_virtual_call(
callinfo, receiver, recvrKlass, link_info, true, CHECK);
methodHandle method = callinfo.selected_method();
assert(method.not_null(), "should have thrown exception");
// Invoke the method
JavaCalls::call(result, method, args, CHECK);
}
void JavaCalls::call_virtual(JavaValue* result, Handle receiver, Klass* spec_klass, Symbol* name, Symbol* signature, TRAPS) {
JavaCallArguments args(receiver);
call_virtual(result, spec_klass, name, signature, &args, CHECK);
}
void JavaCalls::call_virtual(JavaValue* result, Handle receiver, Klass* spec_klass, Symbol* name, Symbol* signature, Handle arg1, TRAPS) {
JavaCallArguments args(receiver);
args.push_oop(arg1);
call_virtual(result, spec_klass, name, signature, &args, CHECK);
}
void JavaCalls::call_virtual(JavaValue* result, Handle receiver, Klass* spec_klass, Symbol* name, Symbol* signature, Handle arg1, Handle arg2, TRAPS) {
JavaCallArguments args(receiver);
args.push_oop(arg1);
args.push_oop(arg2);
call_virtual(result, spec_klass, name, signature, &args, CHECK);
}
// ============ Special calls ============
void JavaCalls::call_special(JavaValue* result, Klass* klass, Symbol* name, Symbol* signature, JavaCallArguments* args, TRAPS) {
CallInfo callinfo;
LinkInfo link_info(klass, name, signature);
LinkResolver::resolve_special_call(callinfo, args->receiver(), link_info, CHECK);
methodHandle method = callinfo.selected_method();
assert(method.not_null(), "should have thrown exception");
// Invoke the method
JavaCalls::call(result, method, args, CHECK);
}
void JavaCalls::call_special(JavaValue* result, Handle receiver, Klass* klass, Symbol* name, Symbol* signature, TRAPS) {
JavaCallArguments args(receiver);
call_special(result, klass, name, signature, &args, CHECK);
}
void JavaCalls::call_special(JavaValue* result, Handle receiver, Klass* klass, Symbol* name, Symbol* signature, Handle arg1, TRAPS) {
JavaCallArguments args(receiver);
args.push_oop(arg1);
call_special(result, klass, name, signature, &args, CHECK);
}
void JavaCalls::call_special(JavaValue* result, Handle receiver, Klass* klass, Symbol* name, Symbol* signature, Handle arg1, Handle arg2, TRAPS) {
JavaCallArguments args(receiver);
args.push_oop(arg1);
args.push_oop(arg2);
call_special(result, klass, name, signature, &args, CHECK);
}
// ============ Static calls ============
void JavaCalls::call_static(JavaValue* result, Klass* klass, Symbol* name, Symbol* signature, JavaCallArguments* args, TRAPS) {
CallInfo callinfo;
LinkInfo link_info(klass, name, signature);
LinkResolver::resolve_static_call(callinfo, link_info, true, CHECK);
methodHandle method = callinfo.selected_method();
assert(method.not_null(), "should have thrown exception");
// Invoke the method
JavaCalls::call(result, method, args, CHECK);
}
void JavaCalls::call_static(JavaValue* result, Klass* klass, Symbol* name, Symbol* signature, TRAPS) {
JavaCallArguments args;
call_static(result, klass, name, signature, &args, CHECK);
}
void JavaCalls::call_static(JavaValue* result, Klass* klass, Symbol* name, Symbol* signature, Handle arg1, TRAPS) {
JavaCallArguments args(arg1);
call_static(result, klass, name, signature, &args, CHECK);
}
void JavaCalls::call_static(JavaValue* result, Klass* klass, Symbol* name, Symbol* signature, Handle arg1, Handle arg2, TRAPS) {
JavaCallArguments args;
args.push_oop(arg1);
args.push_oop(arg2);
call_static(result, klass, name, signature, &args, CHECK);
}
void JavaCalls::call_static(JavaValue* result, Klass* klass, Symbol* name, Symbol* signature, Handle arg1, Handle arg2, Handle arg3, TRAPS) {
JavaCallArguments args;
args.push_oop(arg1);
args.push_oop(arg2);
args.push_oop(arg3);
call_static(result, klass, name, signature, &args, CHECK);
}
// ============ allocate and initialize new object instance ============
Handle JavaCalls::construct_new_instance(InstanceKlass* klass, Symbol* constructor_signature, JavaCallArguments* args, TRAPS) {
klass->initialize(CHECK_NH); // Quick no-op if already initialized.
Handle obj = klass->allocate_instance_handle(CHECK_NH);
JavaValue void_result(T_VOID);
args->set_receiver(obj); // inserts <obj> as the first argument.
JavaCalls::call_special(&void_result, klass,
vmSymbols::object_initializer_name(),
constructor_signature, args, CHECK_NH);
return obj;
}
Handle JavaCalls::construct_new_instance(InstanceKlass* klass, Symbol* constructor_signature, TRAPS) {
JavaCallArguments args;
return JavaCalls::construct_new_instance(klass, constructor_signature, &args, CHECK_NH);
}
Handle JavaCalls::construct_new_instance(InstanceKlass* klass, Symbol* constructor_signature, Handle arg1, TRAPS) {
JavaCallArguments args;
args.push_oop(arg1);
return JavaCalls::construct_new_instance(klass, constructor_signature, &args, CHECK_NH);
}
Handle JavaCalls::construct_new_instance(InstanceKlass* klass, Symbol* constructor_signature, Handle arg1, Handle arg2, TRAPS) {
JavaCallArguments args;
args.push_oop(arg1);
args.push_oop(arg2);
return JavaCalls::construct_new_instance(klass, constructor_signature, &args, CHECK_NH);
}
// -------------------------------------------------
// Implementation of JavaCalls (low level)
void JavaCalls::call(JavaValue* result, const methodHandle& method, JavaCallArguments* args, TRAPS) {
// Check if we need to wrap a potential OS exception handler around thread
// This is used for e.g. Win32 structured exception handlers
assert(THREAD->is_Java_thread(), "only JavaThreads can make JavaCalls");
// Need to wrap each and every time, since there might be native code down the
// stack that has installed its own exception handlers
os::os_exception_wrapper(call_helper, result, method, args, THREAD);
}
void JavaCalls::call_helper(JavaValue* result, const methodHandle& method, JavaCallArguments* args, TRAPS) {
JavaThread* thread = (JavaThread*)THREAD;
assert(thread->is_Java_thread(), "must be called by a java thread");
assert(method.not_null(), "must have a method to call");
assert(!SafepointSynchronize::is_at_safepoint(), "call to Java code during VM operation");
assert(!thread->handle_area()->no_handle_mark_active(), "cannot call out to Java here");
CHECK_UNHANDLED_OOPS_ONLY(thread->clear_unhandled_oops();)
#if INCLUDE_JVMCI
// Gets the nmethod (if any) that should be called instead of normal target
nmethod* alternative_target = args->alternative_target();
if (alternative_target == NULL) {
#endif
// Verify the arguments
if (CheckJNICalls) {
args->verify(method, result->get_type());
}
else debug_only(args->verify(method, result->get_type()));
#if INCLUDE_JVMCI
}
#else
// Ignore call if method is empty
if (method->is_empty_method()) {
assert(result->get_type() == T_VOID, "an empty method must return a void value");
return;
}
#endif
#ifdef ASSERT
{ InstanceKlass* holder = method->method_holder();
// A klass might not be initialized since JavaCall's might be used during the executing of
// the <clinit>. For example, a Thread.start might start executing on an object that is
// not fully initialized! (bad Java programming style)
assert(holder->is_linked(), "rewriting must have taken place");
}
#endif
CompilationPolicy::compile_if_required(method, CHECK);
// Since the call stub sets up like the interpreter we call the from_interpreted_entry
// so we can go compiled via a i2c. Otherwise initial entry method will always
// run interpreted.
address entry_point = method->from_interpreted_entry();
if (JvmtiExport::can_post_interpreter_events() && thread->is_interp_only_mode()) {
entry_point = method->interpreter_entry();
}
// Figure out if the result value is an oop or not (Note: This is a different value
// than result_type. result_type will be T_INT of oops. (it is about size)
BasicType result_type = runtime_type_from(result);
bool oop_result_flag = (result->get_type() == T_OBJECT || result->get_type() == T_ARRAY);
// NOTE: if we move the computation of the result_val_address inside
// the call to call_stub, the optimizer produces wrong code.
intptr_t* result_val_address = (intptr_t*)(result->get_value_addr());
// Find receiver
Handle receiver = (!method->is_static()) ? args->receiver() : Handle();
// When we reenter Java, we need to reenable the reserved/yellow zone which
// might already be disabled when we are in VM.
if (!thread->stack_guards_enabled()) {
thread->reguard_stack();
}
// Check that there are shadow pages available before changing thread state
// to Java. Calculate current_stack_pointer here to make sure
// stack_shadow_pages_available() and bang_stack_shadow_pages() use the same sp.
address sp = os::current_stack_pointer();
if (!os::stack_shadow_pages_available(THREAD, method, sp)) {
// Throw stack overflow exception with preinitialized exception.
Exceptions::throw_stack_overflow_exception(THREAD, __FILE__, __LINE__, method);
return;
} else {
// Touch pages checked if the OS needs them to be touched to be mapped.
os::map_stack_shadow_pages(sp);
}
#if INCLUDE_JVMCI
if (alternative_target != NULL) {
if (alternative_target->is_alive()) {
thread->set_jvmci_alternate_call_target(alternative_target->verified_entry_point());
entry_point = method->adapter()->get_i2c_entry();
} else {
THROW(vmSymbols::jdk_vm_ci_code_InvalidInstalledCodeException());
}
}
#endif
// do call
{ JavaCallWrapper link(method, receiver, result, CHECK);
{ HandleMark hm(thread); // HandleMark used by HandleMarkCleaner
StubRoutines::call_stub()(
(address)&link,
// (intptr_t*)&(result->_value), // see NOTE above (compiler problem)
result_val_address, // see NOTE above (compiler problem)
result_type,
method(),
entry_point,
args->parameters(),
args->size_of_parameters(),
CHECK
);
result = link.result(); // circumvent MS C++ 5.0 compiler bug (result is clobbered across call)
// Preserve oop return value across possible gc points
if (oop_result_flag) {
thread->set_vm_result((oop) result->get_jobject());
}
}
} // Exit JavaCallWrapper (can block - potential return oop must be preserved)
// Check if a thread stop or suspend should be executed
// The following assert was not realistic. Thread.stop can set that bit at any moment.
//assert(!thread->has_special_runtime_exit_condition(), "no async. exceptions should be installed");
// Restore possible oop return
if (oop_result_flag) {
result->set_jobject((jobject)thread->vm_result());
thread->set_vm_result(NULL);
}
}
//--------------------------------------------------------------------------------------
// Implementation of JavaCallArguments
inline bool is_value_state_indirect_oop(uint state) {
assert(state != JavaCallArguments::value_state_oop,
"Checking for handles after removal");
assert(state < JavaCallArguments::value_state_limit,
"Invalid value state %u", state);
return state != JavaCallArguments::value_state_primitive;
}
inline oop resolve_indirect_oop(intptr_t value, uint state) {
switch (state) {
case JavaCallArguments::value_state_handle:
{
oop* ptr = reinterpret_cast<oop*>(value);
return Handle::raw_resolve(ptr);
}
case JavaCallArguments::value_state_jobject:
{
jobject obj = reinterpret_cast<jobject>(value);
return JNIHandles::resolve(obj);
}
default:
ShouldNotReachHere();
return NULL;
}
}
intptr_t* JavaCallArguments::parameters() {
// First convert all handles to oops
for(int i = 0; i < _size; i++) {
uint state = _value_state[i];
assert(state != value_state_oop, "Multiple handle conversions");
if (is_value_state_indirect_oop(state)) {
oop obj = resolve_indirect_oop(_value[i], state);
_value[i] = cast_from_oop<intptr_t>(obj);
_value_state[i] = value_state_oop;
}
}
// Return argument vector
return _value;
}
class SignatureChekker : public SignatureIterator {
private:
int _pos;
BasicType _return_type;
u_char* _value_state;
intptr_t* _value;
public:
bool _is_return;
SignatureChekker(Symbol* signature,
BasicType return_type,
bool is_static,
u_char* value_state,
intptr_t* value) :
SignatureIterator(signature),
_pos(0),
_return_type(return_type),
_value_state(value_state),
_value(value),
_is_return(false)
{
if (!is_static) {
check_value(true); // Receiver must be an oop
}
}
void check_value(bool type) {
uint state = _value_state[_pos++];
if (type) {
guarantee(is_value_state_indirect_oop(state),
"signature does not match pushed arguments: %u at %d",
state, _pos - 1);
} else {
guarantee(state == JavaCallArguments::value_state_primitive,
"signature does not match pushed arguments: %u at %d",
state, _pos - 1);
}
}
void check_doing_return(bool state) { _is_return = state; }
void check_return_type(BasicType t) {
guarantee(_is_return && t == _return_type, "return type does not match");
}
void check_int(BasicType t) {
if (_is_return) {
check_return_type(t);
return;
}
check_value(false);
}
void check_double(BasicType t) { check_long(t); }
void check_long(BasicType t) {
if (_is_return) {
check_return_type(t);
return;
}
check_value(false);
check_value(false);
}
void check_obj(BasicType t) {
if (_is_return) {
check_return_type(t);
return;
}
intptr_t v = _value[_pos];
if (v != 0) {
// v is a "handle" referring to an oop, cast to integral type.
// There shouldn't be any handles in very low memory.
guarantee((size_t)v >= (size_t)os::vm_page_size(),
"Bad JNI oop argument %d: " PTR_FORMAT, _pos, v);
// Verify the pointee.
oop vv = resolve_indirect_oop(v, _value_state[_pos]);
guarantee(oopDesc::is_oop_or_null(vv, true),
"Bad JNI oop argument %d: " PTR_FORMAT " -> " PTR_FORMAT,
_pos, v, p2i(vv));
}
check_value(true); // Verify value state.
}
void do_bool() { check_int(T_BOOLEAN); }
void do_char() { check_int(T_CHAR); }
void do_float() { check_int(T_FLOAT); }
void do_double() { check_double(T_DOUBLE); }
void do_byte() { check_int(T_BYTE); }
void do_short() { check_int(T_SHORT); }
void do_int() { check_int(T_INT); }
void do_long() { check_long(T_LONG); }
void do_void() { check_return_type(T_VOID); }
void do_object(int begin, int end) { check_obj(T_OBJECT); }
void do_array(int begin, int end) { check_obj(T_OBJECT); }
};
void JavaCallArguments::verify(const methodHandle& method, BasicType return_type) {
guarantee(method->size_of_parameters() == size_of_parameters(), "wrong no. of arguments pushed");
// Treat T_OBJECT and T_ARRAY as the same
if (return_type == T_ARRAY) return_type = T_OBJECT;
// Check that oop information is correct
Symbol* signature = method->signature();
SignatureChekker sc(signature,
return_type,
method->is_static(),
_value_state,
_value);
sc.iterate_parameters();
sc.check_doing_return(true);
sc.iterate_returntype();
}