8174962: Better interface invocations
Reviewed-by: jrose, coleenp, ahgross, acorn, iignatyev
/*
* Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#ifndef _WINDOWS
#include "alloca.h"
#endif
#include "asm/macroAssembler.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "code/debugInfoRec.hpp"
#include "code/icBuffer.hpp"
#include "code/nativeInst.hpp"
#include "code/vtableStubs.hpp"
#include "interpreter/interpreter.hpp"
#include "logging/log.hpp"
#include "memory/resourceArea.hpp"
#include "oops/compiledICHolder.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/align.hpp"
#include "vm_version_x86.hpp"
#include "vmreg_x86.inline.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif
#ifdef COMPILER2
#include "opto/runtime.hpp"
#endif
#if INCLUDE_JVMCI
#include "jvmci/jvmciJavaClasses.hpp"
#endif
#define __ masm->
const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
class SimpleRuntimeFrame {
public:
// Most of the runtime stubs have this simple frame layout.
// This class exists to make the layout shared in one place.
// Offsets are for compiler stack slots, which are jints.
enum layout {
// The frame sender code expects that rbp will be in the "natural" place and
// will override any oopMap setting for it. We must therefore force the layout
// so that it agrees with the frame sender code.
rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
rbp_off2,
return_off, return_off2,
framesize
};
};
class RegisterSaver {
// Capture info about frame layout. Layout offsets are in jint
// units because compiler frame slots are jints.
#define XSAVE_AREA_BEGIN 160
#define XSAVE_AREA_YMM_BEGIN 576
#define XSAVE_AREA_ZMM_BEGIN 1152
#define XSAVE_AREA_UPPERBANK 1664
#define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
#define DEF_YMM_OFFS(regnum) ymm ## regnum ## _off = ymm_off + (regnum)*16/BytesPerInt, ymm ## regnum ## H_off
#define DEF_ZMM_OFFS(regnum) zmm ## regnum ## _off = zmm_off + (regnum-16)*64/BytesPerInt, zmm ## regnum ## H_off
enum layout {
fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
xmm_off = fpu_state_off + XSAVE_AREA_BEGIN/BytesPerInt, // offset in fxsave save area
DEF_XMM_OFFS(0),
DEF_XMM_OFFS(1),
// 2..15 are implied in range usage
ymm_off = xmm_off + (XSAVE_AREA_YMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
DEF_YMM_OFFS(0),
DEF_YMM_OFFS(1),
// 2..15 are implied in range usage
zmm_high = xmm_off + (XSAVE_AREA_ZMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
zmm_off = xmm_off + (XSAVE_AREA_UPPERBANK - XSAVE_AREA_BEGIN)/BytesPerInt,
DEF_ZMM_OFFS(16),
DEF_ZMM_OFFS(17),
// 18..31 are implied in range usage
fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
fpu_stateH_end,
r15_off, r15H_off,
r14_off, r14H_off,
r13_off, r13H_off,
r12_off, r12H_off,
r11_off, r11H_off,
r10_off, r10H_off,
r9_off, r9H_off,
r8_off, r8H_off,
rdi_off, rdiH_off,
rsi_off, rsiH_off,
ignore_off, ignoreH_off, // extra copy of rbp
rsp_off, rspH_off,
rbx_off, rbxH_off,
rdx_off, rdxH_off,
rcx_off, rcxH_off,
rax_off, raxH_off,
// 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
align_off, alignH_off,
flags_off, flagsH_off,
// The frame sender code expects that rbp will be in the "natural" place and
// will override any oopMap setting for it. We must therefore force the layout
// so that it agrees with the frame sender code.
rbp_off, rbpH_off, // copy of rbp we will restore
return_off, returnH_off, // slot for return address
reg_save_size // size in compiler stack slots
};
public:
static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
// Offsets into the register save area
// Used by deoptimization when it is managing result register
// values on its own
static int rax_offset_in_bytes(void) { return BytesPerInt * rax_off; }
static int rdx_offset_in_bytes(void) { return BytesPerInt * rdx_off; }
static int rbx_offset_in_bytes(void) { return BytesPerInt * rbx_off; }
static int xmm0_offset_in_bytes(void) { return BytesPerInt * xmm0_off; }
static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
// During deoptimization only the result registers need to be restored,
// all the other values have already been extracted.
static void restore_result_registers(MacroAssembler* masm);
};
OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
int off = 0;
int num_xmm_regs = XMMRegisterImpl::number_of_registers;
if (UseAVX < 3) {
num_xmm_regs = num_xmm_regs/2;
}
#if COMPILER2_OR_JVMCI
if (save_vectors) {
assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
}
#else
assert(!save_vectors, "vectors are generated only by C2 and JVMCI");
#endif
// Always make the frame size 16-byte aligned, both vector and non vector stacks are always allocated
int frame_size_in_bytes = align_up(reg_save_size*BytesPerInt, num_xmm_regs);
// OopMap frame size is in compiler stack slots (jint's) not bytes or words
int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
// CodeBlob frame size is in words.
int frame_size_in_words = frame_size_in_bytes / wordSize;
*total_frame_words = frame_size_in_words;
// Save registers, fpu state, and flags.
// We assume caller has already pushed the return address onto the
// stack, so rsp is 8-byte aligned here.
// We push rpb twice in this sequence because we want the real rbp
// to be under the return like a normal enter.
__ enter(); // rsp becomes 16-byte aligned here
__ push_CPU_state(); // Push a multiple of 16 bytes
// push cpu state handles this on EVEX enabled targets
if (save_vectors) {
// Save upper half of YMM registers(0..15)
int base_addr = XSAVE_AREA_YMM_BEGIN;
for (int n = 0; n < 16; n++) {
__ vextractf128_high(Address(rsp, base_addr+n*16), as_XMMRegister(n));
}
if (VM_Version::supports_evex()) {
// Save upper half of ZMM registers(0..15)
base_addr = XSAVE_AREA_ZMM_BEGIN;
for (int n = 0; n < 16; n++) {
__ vextractf64x4_high(Address(rsp, base_addr+n*32), as_XMMRegister(n));
}
// Save full ZMM registers(16..num_xmm_regs)
base_addr = XSAVE_AREA_UPPERBANK;
off = 0;
int vector_len = Assembler::AVX_512bit;
for (int n = 16; n < num_xmm_regs; n++) {
__ evmovdqul(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n), vector_len);
}
}
} else {
if (VM_Version::supports_evex()) {
// Save upper bank of ZMM registers(16..31) for double/float usage
int base_addr = XSAVE_AREA_UPPERBANK;
off = 0;
for (int n = 16; n < num_xmm_regs; n++) {
__ movsd(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n));
}
}
}
__ vzeroupper();
if (frame::arg_reg_save_area_bytes != 0) {
// Allocate argument register save area
__ subptr(rsp, frame::arg_reg_save_area_bytes);
}
// Set an oopmap for the call site. This oopmap will map all
// oop-registers and debug-info registers as callee-saved. This
// will allow deoptimization at this safepoint to find all possible
// debug-info recordings, as well as let GC find all oops.
OopMapSet *oop_maps = new OopMapSet();
OopMap* map = new OopMap(frame_size_in_slots, 0);
#define STACK_OFFSET(x) VMRegImpl::stack2reg((x))
map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
// rbp location is known implicitly by the frame sender code, needs no oopmap
// and the location where rbp was saved by is ignored
map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
map->set_callee_saved(STACK_OFFSET( r8_off ), r8->as_VMReg());
map->set_callee_saved(STACK_OFFSET( r9_off ), r9->as_VMReg());
map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
// For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
// on EVEX enabled targets, we get it included in the xsave area
off = xmm0_off;
int delta = xmm1_off - off;
for (int n = 0; n < 16; n++) {
XMMRegister xmm_name = as_XMMRegister(n);
map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
off += delta;
}
if(UseAVX > 2) {
// Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
off = zmm16_off;
delta = zmm17_off - off;
for (int n = 16; n < num_xmm_regs; n++) {
XMMRegister zmm_name = as_XMMRegister(n);
map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg());
off += delta;
}
}
#if COMPILER2_OR_JVMCI
if (save_vectors) {
off = ymm0_off;
int delta = ymm1_off - off;
for (int n = 0; n < 16; n++) {
XMMRegister ymm_name = as_XMMRegister(n);
map->set_callee_saved(STACK_OFFSET(off), ymm_name->as_VMReg()->next(4));
off += delta;
}
}
#endif // COMPILER2_OR_JVMCI
// %%% These should all be a waste but we'll keep things as they were for now
if (true) {
map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
// rbp location is known implicitly by the frame sender code, needs no oopmap
map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
map->set_callee_saved(STACK_OFFSET( r8H_off ), r8->as_VMReg()->next());
map->set_callee_saved(STACK_OFFSET( r9H_off ), r9->as_VMReg()->next());
map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
// For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
// on EVEX enabled targets, we get it included in the xsave area
off = xmm0H_off;
delta = xmm1H_off - off;
for (int n = 0; n < 16; n++) {
XMMRegister xmm_name = as_XMMRegister(n);
map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()->next());
off += delta;
}
if (UseAVX > 2) {
// Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
off = zmm16H_off;
delta = zmm17H_off - off;
for (int n = 16; n < num_xmm_regs; n++) {
XMMRegister zmm_name = as_XMMRegister(n);
map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg()->next());
off += delta;
}
}
}
return map;
}
void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
int num_xmm_regs = XMMRegisterImpl::number_of_registers;
if (UseAVX < 3) {
num_xmm_regs = num_xmm_regs/2;
}
if (frame::arg_reg_save_area_bytes != 0) {
// Pop arg register save area
__ addptr(rsp, frame::arg_reg_save_area_bytes);
}
#if COMPILER2_OR_JVMCI
if (restore_vectors) {
assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
}
#else
assert(!restore_vectors, "vectors are generated only by C2");
#endif
__ vzeroupper();
// On EVEX enabled targets everything is handled in pop fpu state
if (restore_vectors) {
// Restore upper half of YMM registers (0..15)
int base_addr = XSAVE_AREA_YMM_BEGIN;
for (int n = 0; n < 16; n++) {
__ vinsertf128_high(as_XMMRegister(n), Address(rsp, base_addr+n*16));
}
if (VM_Version::supports_evex()) {
// Restore upper half of ZMM registers (0..15)
base_addr = XSAVE_AREA_ZMM_BEGIN;
for (int n = 0; n < 16; n++) {
__ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, base_addr+n*32));
}
// Restore full ZMM registers(16..num_xmm_regs)
base_addr = XSAVE_AREA_UPPERBANK;
int vector_len = Assembler::AVX_512bit;
int off = 0;
for (int n = 16; n < num_xmm_regs; n++) {
__ evmovdqul(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)), vector_len);
}
}
} else {
if (VM_Version::supports_evex()) {
// Restore upper bank of ZMM registers(16..31) for double/float usage
int base_addr = XSAVE_AREA_UPPERBANK;
int off = 0;
for (int n = 16; n < num_xmm_regs; n++) {
__ movsd(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)));
}
}
}
// Recover CPU state
__ pop_CPU_state();
// Get the rbp described implicitly by the calling convention (no oopMap)
__ pop(rbp);
}
void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
// Just restore result register. Only used by deoptimization. By
// now any callee save register that needs to be restored to a c2
// caller of the deoptee has been extracted into the vframeArray
// and will be stuffed into the c2i adapter we create for later
// restoration so only result registers need to be restored here.
// Restore fp result register
__ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
// Restore integer result register
__ movptr(rax, Address(rsp, rax_offset_in_bytes()));
__ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
// Pop all of the register save are off the stack except the return address
__ addptr(rsp, return_offset_in_bytes());
}
// Is vector's size (in bytes) bigger than a size saved by default?
// 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
bool SharedRuntime::is_wide_vector(int size) {
return size > 16;
}
size_t SharedRuntime::trampoline_size() {
return 16;
}
void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
__ jump(RuntimeAddress(destination));
}
// The java_calling_convention describes stack locations as ideal slots on
// a frame with no abi restrictions. Since we must observe abi restrictions
// (like the placement of the register window) the slots must be biased by
// the following value.
static int reg2offset_in(VMReg r) {
// Account for saved rbp and return address
// This should really be in_preserve_stack_slots
return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
}
static int reg2offset_out(VMReg r) {
return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
}
// ---------------------------------------------------------------------------
// Read the array of BasicTypes from a signature, and compute where the
// arguments should go. Values in the VMRegPair regs array refer to 4-byte
// quantities. Values less than VMRegImpl::stack0 are registers, those above
// refer to 4-byte stack slots. All stack slots are based off of the stack pointer
// as framesizes are fixed.
// VMRegImpl::stack0 refers to the first slot 0(sp).
// and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register
// up to RegisterImpl::number_of_registers) are the 64-bit
// integer registers.
// Note: the INPUTS in sig_bt are in units of Java argument words, which are
// either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
// units regardless of build. Of course for i486 there is no 64 bit build
// The Java calling convention is a "shifted" version of the C ABI.
// By skipping the first C ABI register we can call non-static jni methods
// with small numbers of arguments without having to shuffle the arguments
// at all. Since we control the java ABI we ought to at least get some
// advantage out of it.
int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
VMRegPair *regs,
int total_args_passed,
int is_outgoing) {
// Create the mapping between argument positions and
// registers.
static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
};
static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
j_farg0, j_farg1, j_farg2, j_farg3,
j_farg4, j_farg5, j_farg6, j_farg7
};
uint int_args = 0;
uint fp_args = 0;
uint stk_args = 0; // inc by 2 each time
for (int i = 0; i < total_args_passed; i++) {
switch (sig_bt[i]) {
case T_BOOLEAN:
case T_CHAR:
case T_BYTE:
case T_SHORT:
case T_INT:
if (int_args < Argument::n_int_register_parameters_j) {
regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
} else {
regs[i].set1(VMRegImpl::stack2reg(stk_args));
stk_args += 2;
}
break;
case T_VOID:
// halves of T_LONG or T_DOUBLE
assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
regs[i].set_bad();
break;
case T_LONG:
assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
// fall through
case T_OBJECT:
case T_ARRAY:
case T_ADDRESS:
if (int_args < Argument::n_int_register_parameters_j) {
regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
} else {
regs[i].set2(VMRegImpl::stack2reg(stk_args));
stk_args += 2;
}
break;
case T_FLOAT:
if (fp_args < Argument::n_float_register_parameters_j) {
regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
} else {
regs[i].set1(VMRegImpl::stack2reg(stk_args));
stk_args += 2;
}
break;
case T_DOUBLE:
assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
if (fp_args < Argument::n_float_register_parameters_j) {
regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
} else {
regs[i].set2(VMRegImpl::stack2reg(stk_args));
stk_args += 2;
}
break;
default:
ShouldNotReachHere();
break;
}
}
return align_up(stk_args, 2);
}
// Patch the callers callsite with entry to compiled code if it exists.
static void patch_callers_callsite(MacroAssembler *masm) {
Label L;
__ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
__ jcc(Assembler::equal, L);
// Save the current stack pointer
__ mov(r13, rsp);
// Schedule the branch target address early.
// Call into the VM to patch the caller, then jump to compiled callee
// rax isn't live so capture return address while we easily can
__ movptr(rax, Address(rsp, 0));
// align stack so push_CPU_state doesn't fault
__ andptr(rsp, -(StackAlignmentInBytes));
__ push_CPU_state();
__ vzeroupper();
// VM needs caller's callsite
// VM needs target method
// This needs to be a long call since we will relocate this adapter to
// the codeBuffer and it may not reach
// Allocate argument register save area
if (frame::arg_reg_save_area_bytes != 0) {
__ subptr(rsp, frame::arg_reg_save_area_bytes);
}
__ mov(c_rarg0, rbx);
__ mov(c_rarg1, rax);
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
// De-allocate argument register save area
if (frame::arg_reg_save_area_bytes != 0) {
__ addptr(rsp, frame::arg_reg_save_area_bytes);
}
__ vzeroupper();
__ pop_CPU_state();
// restore sp
__ mov(rsp, r13);
__ bind(L);
}
static void gen_c2i_adapter(MacroAssembler *masm,
int total_args_passed,
int comp_args_on_stack,
const BasicType *sig_bt,
const VMRegPair *regs,
Label& skip_fixup) {
// Before we get into the guts of the C2I adapter, see if we should be here
// at all. We've come from compiled code and are attempting to jump to the
// interpreter, which means the caller made a static call to get here
// (vcalls always get a compiled target if there is one). Check for a
// compiled target. If there is one, we need to patch the caller's call.
patch_callers_callsite(masm);
__ bind(skip_fixup);
// Since all args are passed on the stack, total_args_passed *
// Interpreter::stackElementSize is the space we need. Plus 1 because
// we also account for the return address location since
// we store it first rather than hold it in rax across all the shuffling
int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
// stack is aligned, keep it that way
extraspace = align_up(extraspace, 2*wordSize);
// Get return address
__ pop(rax);
// set senderSP value
__ mov(r13, rsp);
__ subptr(rsp, extraspace);
// Store the return address in the expected location
__ movptr(Address(rsp, 0), rax);
// Now write the args into the outgoing interpreter space
for (int i = 0; i < total_args_passed; i++) {
if (sig_bt[i] == T_VOID) {
assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
continue;
}
// offset to start parameters
int st_off = (total_args_passed - i) * Interpreter::stackElementSize;
int next_off = st_off - Interpreter::stackElementSize;
// Say 4 args:
// i st_off
// 0 32 T_LONG
// 1 24 T_VOID
// 2 16 T_OBJECT
// 3 8 T_BOOL
// - 0 return address
//
// However to make thing extra confusing. Because we can fit a long/double in
// a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
// leaves one slot empty and only stores to a single slot. In this case the
// slot that is occupied is the T_VOID slot. See I said it was confusing.
VMReg r_1 = regs[i].first();
VMReg r_2 = regs[i].second();
if (!r_1->is_valid()) {
assert(!r_2->is_valid(), "");
continue;
}
if (r_1->is_stack()) {
// memory to memory use rax
int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
if (!r_2->is_valid()) {
// sign extend??
__ movl(rax, Address(rsp, ld_off));
__ movptr(Address(rsp, st_off), rax);
} else {
__ movq(rax, Address(rsp, ld_off));
// Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
// T_DOUBLE and T_LONG use two slots in the interpreter
if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
// ld_off == LSW, ld_off+wordSize == MSW
// st_off == MSW, next_off == LSW
__ movq(Address(rsp, next_off), rax);
#ifdef ASSERT
// Overwrite the unused slot with known junk
__ mov64(rax, CONST64(0xdeadffffdeadaaaa));
__ movptr(Address(rsp, st_off), rax);
#endif /* ASSERT */
} else {
__ movq(Address(rsp, st_off), rax);
}
}
} else if (r_1->is_Register()) {
Register r = r_1->as_Register();
if (!r_2->is_valid()) {
// must be only an int (or less ) so move only 32bits to slot
// why not sign extend??
__ movl(Address(rsp, st_off), r);
} else {
// Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
// T_DOUBLE and T_LONG use two slots in the interpreter
if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
// long/double in gpr
#ifdef ASSERT
// Overwrite the unused slot with known junk
__ mov64(rax, CONST64(0xdeadffffdeadaaab));
__ movptr(Address(rsp, st_off), rax);
#endif /* ASSERT */
__ movq(Address(rsp, next_off), r);
} else {
__ movptr(Address(rsp, st_off), r);
}
}
} else {
assert(r_1->is_XMMRegister(), "");
if (!r_2->is_valid()) {
// only a float use just part of the slot
__ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
} else {
#ifdef ASSERT
// Overwrite the unused slot with known junk
__ mov64(rax, CONST64(0xdeadffffdeadaaac));
__ movptr(Address(rsp, st_off), rax);
#endif /* ASSERT */
__ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
}
}
}
// Schedule the branch target address early.
__ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
__ jmp(rcx);
}
static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
address code_start, address code_end,
Label& L_ok) {
Label L_fail;
__ lea(temp_reg, ExternalAddress(code_start));
__ cmpptr(pc_reg, temp_reg);
__ jcc(Assembler::belowEqual, L_fail);
__ lea(temp_reg, ExternalAddress(code_end));
__ cmpptr(pc_reg, temp_reg);
__ jcc(Assembler::below, L_ok);
__ bind(L_fail);
}
void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
int total_args_passed,
int comp_args_on_stack,
const BasicType *sig_bt,
const VMRegPair *regs) {
// Note: r13 contains the senderSP on entry. We must preserve it since
// we may do a i2c -> c2i transition if we lose a race where compiled
// code goes non-entrant while we get args ready.
// In addition we use r13 to locate all the interpreter args as
// we must align the stack to 16 bytes on an i2c entry else we
// lose alignment we expect in all compiled code and register
// save code can segv when fxsave instructions find improperly
// aligned stack pointer.
// Adapters can be frameless because they do not require the caller
// to perform additional cleanup work, such as correcting the stack pointer.
// An i2c adapter is frameless because the *caller* frame, which is interpreted,
// routinely repairs its own stack pointer (from interpreter_frame_last_sp),
// even if a callee has modified the stack pointer.
// A c2i adapter is frameless because the *callee* frame, which is interpreted,
// routinely repairs its caller's stack pointer (from sender_sp, which is set
// up via the senderSP register).
// In other words, if *either* the caller or callee is interpreted, we can
// get the stack pointer repaired after a call.
// This is why c2i and i2c adapters cannot be indefinitely composed.
// In particular, if a c2i adapter were to somehow call an i2c adapter,
// both caller and callee would be compiled methods, and neither would
// clean up the stack pointer changes performed by the two adapters.
// If this happens, control eventually transfers back to the compiled
// caller, but with an uncorrected stack, causing delayed havoc.
// Pick up the return address
__ movptr(rax, Address(rsp, 0));
if (VerifyAdapterCalls &&
(Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
// So, let's test for cascading c2i/i2c adapters right now.
// assert(Interpreter::contains($return_addr) ||
// StubRoutines::contains($return_addr),
// "i2c adapter must return to an interpreter frame");
__ block_comment("verify_i2c { ");
Label L_ok;
if (Interpreter::code() != NULL)
range_check(masm, rax, r11,
Interpreter::code()->code_start(), Interpreter::code()->code_end(),
L_ok);
if (StubRoutines::code1() != NULL)
range_check(masm, rax, r11,
StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
L_ok);
if (StubRoutines::code2() != NULL)
range_check(masm, rax, r11,
StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
L_ok);
const char* msg = "i2c adapter must return to an interpreter frame";
__ block_comment(msg);
__ stop(msg);
__ bind(L_ok);
__ block_comment("} verify_i2ce ");
}
// Must preserve original SP for loading incoming arguments because
// we need to align the outgoing SP for compiled code.
__ movptr(r11, rsp);
// Cut-out for having no stack args. Since up to 2 int/oop args are passed
// in registers, we will occasionally have no stack args.
int comp_words_on_stack = 0;
if (comp_args_on_stack) {
// Sig words on the stack are greater-than VMRegImpl::stack0. Those in
// registers are below. By subtracting stack0, we either get a negative
// number (all values in registers) or the maximum stack slot accessed.
// Convert 4-byte c2 stack slots to words.
comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
// Round up to miminum stack alignment, in wordSize
comp_words_on_stack = align_up(comp_words_on_stack, 2);
__ subptr(rsp, comp_words_on_stack * wordSize);
}
// Ensure compiled code always sees stack at proper alignment
__ andptr(rsp, -16);
// push the return address and misalign the stack that youngest frame always sees
// as far as the placement of the call instruction
__ push(rax);
// Put saved SP in another register
const Register saved_sp = rax;
__ movptr(saved_sp, r11);
// Will jump to the compiled code just as if compiled code was doing it.
// Pre-load the register-jump target early, to schedule it better.
__ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
#if INCLUDE_JVMCI
if (EnableJVMCI || UseAOT) {
// check if this call should be routed towards a specific entry point
__ cmpptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
Label no_alternative_target;
__ jcc(Assembler::equal, no_alternative_target);
__ movptr(r11, Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
__ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
__ bind(no_alternative_target);
}
#endif // INCLUDE_JVMCI
// Now generate the shuffle code. Pick up all register args and move the
// rest through the floating point stack top.
for (int i = 0; i < total_args_passed; i++) {
if (sig_bt[i] == T_VOID) {
// Longs and doubles are passed in native word order, but misaligned
// in the 32-bit build.
assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
continue;
}
// Pick up 0, 1 or 2 words from SP+offset.
assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
"scrambled load targets?");
// Load in argument order going down.
int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
// Point to interpreter value (vs. tag)
int next_off = ld_off - Interpreter::stackElementSize;
//
//
//
VMReg r_1 = regs[i].first();
VMReg r_2 = regs[i].second();
if (!r_1->is_valid()) {
assert(!r_2->is_valid(), "");
continue;
}
if (r_1->is_stack()) {
// Convert stack slot to an SP offset (+ wordSize to account for return address )
int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
// We can use r13 as a temp here because compiled code doesn't need r13 as an input
// and if we end up going thru a c2i because of a miss a reasonable value of r13
// will be generated.
if (!r_2->is_valid()) {
// sign extend???
__ movl(r13, Address(saved_sp, ld_off));
__ movptr(Address(rsp, st_off), r13);
} else {
//
// We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
// the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
// So we must adjust where to pick up the data to match the interpreter.
//
// Interpreter local[n] == MSW, local[n+1] == LSW however locals
// are accessed as negative so LSW is at LOW address
// ld_off is MSW so get LSW
const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
next_off : ld_off;
__ movq(r13, Address(saved_sp, offset));
// st_off is LSW (i.e. reg.first())
__ movq(Address(rsp, st_off), r13);
}
} else if (r_1->is_Register()) { // Register argument
Register r = r_1->as_Register();
assert(r != rax, "must be different");
if (r_2->is_valid()) {
//
// We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
// the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
// So we must adjust where to pick up the data to match the interpreter.
const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
next_off : ld_off;
// this can be a misaligned move
__ movq(r, Address(saved_sp, offset));
} else {
// sign extend and use a full word?
__ movl(r, Address(saved_sp, ld_off));
}
} else {
if (!r_2->is_valid()) {
__ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
} else {
__ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
}
}
}
// 6243940 We might end up in handle_wrong_method if
// the callee is deoptimized as we race thru here. If that
// happens we don't want to take a safepoint because the
// caller frame will look interpreted and arguments are now
// "compiled" so it is much better to make this transition
// invisible to the stack walking code. Unfortunately if
// we try and find the callee by normal means a safepoint
// is possible. So we stash the desired callee in the thread
// and the vm will find there should this case occur.
__ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
// put Method* where a c2i would expect should we end up there
// only needed becaus eof c2 resolve stubs return Method* as a result in
// rax
__ mov(rax, rbx);
__ jmp(r11);
}
// ---------------------------------------------------------------
AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
int total_args_passed,
int comp_args_on_stack,
const BasicType *sig_bt,
const VMRegPair *regs,
AdapterFingerPrint* fingerprint) {
address i2c_entry = __ pc();
gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
// -------------------------------------------------------------------------
// Generate a C2I adapter. On entry we know rbx holds the Method* during calls
// to the interpreter. The args start out packed in the compiled layout. They
// need to be unpacked into the interpreter layout. This will almost always
// require some stack space. We grow the current (compiled) stack, then repack
// the args. We finally end in a jump to the generic interpreter entry point.
// On exit from the interpreter, the interpreter will restore our SP (lest the
// compiled code, which relys solely on SP and not RBP, get sick).
address c2i_unverified_entry = __ pc();
Label skip_fixup;
Label ok;
Register holder = rax;
Register receiver = j_rarg0;
Register temp = rbx;
{
__ load_klass(temp, receiver);
__ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
__ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset()));
__ jcc(Assembler::equal, ok);
__ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
__ bind(ok);
// Method might have been compiled since the call site was patched to
// interpreted if that is the case treat it as a miss so we can get
// the call site corrected.
__ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
__ jcc(Assembler::equal, skip_fixup);
__ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
}
address c2i_entry = __ pc();
gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
__ flush();
return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
}
int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
VMRegPair *regs,
VMRegPair *regs2,
int total_args_passed) {
assert(regs2 == NULL, "not needed on x86");
// We return the amount of VMRegImpl stack slots we need to reserve for all
// the arguments NOT counting out_preserve_stack_slots.
// NOTE: These arrays will have to change when c1 is ported
#ifdef _WIN64
static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
c_rarg0, c_rarg1, c_rarg2, c_rarg3
};
static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
c_farg0, c_farg1, c_farg2, c_farg3
};
#else
static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
};
static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
c_farg0, c_farg1, c_farg2, c_farg3,
c_farg4, c_farg5, c_farg6, c_farg7
};
#endif // _WIN64
uint int_args = 0;
uint fp_args = 0;
uint stk_args = 0; // inc by 2 each time
for (int i = 0; i < total_args_passed; i++) {
switch (sig_bt[i]) {
case T_BOOLEAN:
case T_CHAR:
case T_BYTE:
case T_SHORT:
case T_INT:
if (int_args < Argument::n_int_register_parameters_c) {
regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
#ifdef _WIN64
fp_args++;
// Allocate slots for callee to stuff register args the stack.
stk_args += 2;
#endif
} else {
regs[i].set1(VMRegImpl::stack2reg(stk_args));
stk_args += 2;
}
break;
case T_LONG:
assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
// fall through
case T_OBJECT:
case T_ARRAY:
case T_ADDRESS:
case T_METADATA:
if (int_args < Argument::n_int_register_parameters_c) {
regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
#ifdef _WIN64
fp_args++;
stk_args += 2;
#endif
} else {
regs[i].set2(VMRegImpl::stack2reg(stk_args));
stk_args += 2;
}
break;
case T_FLOAT:
if (fp_args < Argument::n_float_register_parameters_c) {
regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
#ifdef _WIN64
int_args++;
// Allocate slots for callee to stuff register args the stack.
stk_args += 2;
#endif
} else {
regs[i].set1(VMRegImpl::stack2reg(stk_args));
stk_args += 2;
}
break;
case T_DOUBLE:
assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
if (fp_args < Argument::n_float_register_parameters_c) {
regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
#ifdef _WIN64
int_args++;
// Allocate slots for callee to stuff register args the stack.
stk_args += 2;
#endif
} else {
regs[i].set2(VMRegImpl::stack2reg(stk_args));
stk_args += 2;
}
break;
case T_VOID: // Halves of longs and doubles
assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
regs[i].set_bad();
break;
default:
ShouldNotReachHere();
break;
}
}
#ifdef _WIN64
// windows abi requires that we always allocate enough stack space
// for 4 64bit registers to be stored down.
if (stk_args < 8) {
stk_args = 8;
}
#endif // _WIN64
return stk_args;
}
// On 64 bit we will store integer like items to the stack as
// 64 bits items (sparc abi) even though java would only store
// 32bits for a parameter. On 32bit it will simply be 32 bits
// So this routine will do 32->32 on 32bit and 32->64 on 64bit
static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
if (src.first()->is_stack()) {
if (dst.first()->is_stack()) {
// stack to stack
__ movslq(rax, Address(rbp, reg2offset_in(src.first())));
__ movq(Address(rsp, reg2offset_out(dst.first())), rax);
} else {
// stack to reg
__ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
}
} else if (dst.first()->is_stack()) {
// reg to stack
// Do we really have to sign extend???
// __ movslq(src.first()->as_Register(), src.first()->as_Register());
__ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
} else {
// Do we really have to sign extend???
// __ movslq(dst.first()->as_Register(), src.first()->as_Register());
if (dst.first() != src.first()) {
__ movq(dst.first()->as_Register(), src.first()->as_Register());
}
}
}
static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
if (src.first()->is_stack()) {
if (dst.first()->is_stack()) {
// stack to stack
__ movq(rax, Address(rbp, reg2offset_in(src.first())));
__ movq(Address(rsp, reg2offset_out(dst.first())), rax);
} else {
// stack to reg
__ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
}
} else if (dst.first()->is_stack()) {
// reg to stack
__ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
} else {
if (dst.first() != src.first()) {
__ movq(dst.first()->as_Register(), src.first()->as_Register());
}
}
}
// An oop arg. Must pass a handle not the oop itself
static void object_move(MacroAssembler* masm,
OopMap* map,
int oop_handle_offset,
int framesize_in_slots,
VMRegPair src,
VMRegPair dst,
bool is_receiver,
int* receiver_offset) {
// must pass a handle. First figure out the location we use as a handle
Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
// See if oop is NULL if it is we need no handle
if (src.first()->is_stack()) {
// Oop is already on the stack as an argument
int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
if (is_receiver) {
*receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
}
__ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
__ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
// conditionally move a NULL
__ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
} else {
// Oop is in an a register we must store it to the space we reserve
// on the stack for oop_handles and pass a handle if oop is non-NULL
const Register rOop = src.first()->as_Register();
int oop_slot;
if (rOop == j_rarg0)
oop_slot = 0;
else if (rOop == j_rarg1)
oop_slot = 1;
else if (rOop == j_rarg2)
oop_slot = 2;
else if (rOop == j_rarg3)
oop_slot = 3;
else if (rOop == j_rarg4)
oop_slot = 4;
else {
assert(rOop == j_rarg5, "wrong register");
oop_slot = 5;
}
oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
int offset = oop_slot*VMRegImpl::stack_slot_size;
map->set_oop(VMRegImpl::stack2reg(oop_slot));
// Store oop in handle area, may be NULL
__ movptr(Address(rsp, offset), rOop);
if (is_receiver) {
*receiver_offset = offset;
}
__ cmpptr(rOop, (int32_t)NULL_WORD);
__ lea(rHandle, Address(rsp, offset));
// conditionally move a NULL from the handle area where it was just stored
__ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
}
// If arg is on the stack then place it otherwise it is already in correct reg.
if (dst.first()->is_stack()) {
__ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
}
}
// A float arg may have to do float reg int reg conversion
static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
// The calling conventions assures us that each VMregpair is either
// all really one physical register or adjacent stack slots.
// This greatly simplifies the cases here compared to sparc.
if (src.first()->is_stack()) {
if (dst.first()->is_stack()) {
__ movl(rax, Address(rbp, reg2offset_in(src.first())));
__ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
} else {
// stack to reg
assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
__ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
}
} else if (dst.first()->is_stack()) {
// reg to stack
assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
__ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
} else {
// reg to reg
// In theory these overlap but the ordering is such that this is likely a nop
if ( src.first() != dst.first()) {
__ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
}
}
}
// A long move
static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
// The calling conventions assures us that each VMregpair is either
// all really one physical register or adjacent stack slots.
// This greatly simplifies the cases here compared to sparc.
if (src.is_single_phys_reg() ) {
if (dst.is_single_phys_reg()) {
if (dst.first() != src.first()) {
__ mov(dst.first()->as_Register(), src.first()->as_Register());
}
} else {
assert(dst.is_single_reg(), "not a stack pair");
__ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
}
} else if (dst.is_single_phys_reg()) {
assert(src.is_single_reg(), "not a stack pair");
__ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
} else {
assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
__ movq(rax, Address(rbp, reg2offset_in(src.first())));
__ movq(Address(rsp, reg2offset_out(dst.first())), rax);
}
}
// A double move
static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
// The calling conventions assures us that each VMregpair is either
// all really one physical register or adjacent stack slots.
// This greatly simplifies the cases here compared to sparc.
if (src.is_single_phys_reg() ) {
if (dst.is_single_phys_reg()) {
// In theory these overlap but the ordering is such that this is likely a nop
if ( src.first() != dst.first()) {
__ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
}
} else {
assert(dst.is_single_reg(), "not a stack pair");
__ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
}
} else if (dst.is_single_phys_reg()) {
assert(src.is_single_reg(), "not a stack pair");
__ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
} else {
assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
__ movq(rax, Address(rbp, reg2offset_in(src.first())));
__ movq(Address(rsp, reg2offset_out(dst.first())), rax);
}
}
void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
// We always ignore the frame_slots arg and just use the space just below frame pointer
// which by this time is free to use
switch (ret_type) {
case T_FLOAT:
__ movflt(Address(rbp, -wordSize), xmm0);
break;
case T_DOUBLE:
__ movdbl(Address(rbp, -wordSize), xmm0);
break;
case T_VOID: break;
default: {
__ movptr(Address(rbp, -wordSize), rax);
}
}
}
void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
// We always ignore the frame_slots arg and just use the space just below frame pointer
// which by this time is free to use
switch (ret_type) {
case T_FLOAT:
__ movflt(xmm0, Address(rbp, -wordSize));
break;
case T_DOUBLE:
__ movdbl(xmm0, Address(rbp, -wordSize));
break;
case T_VOID: break;
default: {
__ movptr(rax, Address(rbp, -wordSize));
}
}
}
static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
for ( int i = first_arg ; i < arg_count ; i++ ) {
if (args[i].first()->is_Register()) {
__ push(args[i].first()->as_Register());
} else if (args[i].first()->is_XMMRegister()) {
__ subptr(rsp, 2*wordSize);
__ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
}
}
}
static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
if (args[i].first()->is_Register()) {
__ pop(args[i].first()->as_Register());
} else if (args[i].first()->is_XMMRegister()) {
__ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
__ addptr(rsp, 2*wordSize);
}
}
}
static void save_or_restore_arguments(MacroAssembler* masm,
const int stack_slots,
const int total_in_args,
const int arg_save_area,
OopMap* map,
VMRegPair* in_regs,
BasicType* in_sig_bt) {
// if map is non-NULL then the code should store the values,
// otherwise it should load them.
int slot = arg_save_area;
// Save down double word first
for ( int i = 0; i < total_in_args; i++) {
if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
int offset = slot * VMRegImpl::stack_slot_size;
slot += VMRegImpl::slots_per_word;
assert(slot <= stack_slots, "overflow");
if (map != NULL) {
__ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
} else {
__ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
}
}
if (in_regs[i].first()->is_Register() &&
(in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
int offset = slot * VMRegImpl::stack_slot_size;
if (map != NULL) {
__ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
if (in_sig_bt[i] == T_ARRAY) {
map->set_oop(VMRegImpl::stack2reg(slot));;
}
} else {
__ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
}
slot += VMRegImpl::slots_per_word;
}
}
// Save or restore single word registers
for ( int i = 0; i < total_in_args; i++) {
if (in_regs[i].first()->is_Register()) {
int offset = slot * VMRegImpl::stack_slot_size;
slot++;
assert(slot <= stack_slots, "overflow");
// Value is in an input register pass we must flush it to the stack
const Register reg = in_regs[i].first()->as_Register();
switch (in_sig_bt[i]) {
case T_BOOLEAN:
case T_CHAR:
case T_BYTE:
case T_SHORT:
case T_INT:
if (map != NULL) {
__ movl(Address(rsp, offset), reg);
} else {
__ movl(reg, Address(rsp, offset));
}
break;
case T_ARRAY:
case T_LONG:
// handled above
break;
case T_OBJECT:
default: ShouldNotReachHere();
}
} else if (in_regs[i].first()->is_XMMRegister()) {
if (in_sig_bt[i] == T_FLOAT) {
int offset = slot * VMRegImpl::stack_slot_size;
slot++;
assert(slot <= stack_slots, "overflow");
if (map != NULL) {
__ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
} else {
__ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
}
}
} else if (in_regs[i].first()->is_stack()) {
if (in_sig_bt[i] == T_ARRAY && map != NULL) {
int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
}
}
}
}
// Check GCLocker::needs_gc and enter the runtime if it's true. This
// keeps a new JNI critical region from starting until a GC has been
// forced. Save down any oops in registers and describe them in an
// OopMap.
static void check_needs_gc_for_critical_native(MacroAssembler* masm,
int stack_slots,
int total_c_args,
int total_in_args,
int arg_save_area,
OopMapSet* oop_maps,
VMRegPair* in_regs,
BasicType* in_sig_bt) {
__ block_comment("check GCLocker::needs_gc");
Label cont;
__ cmp8(ExternalAddress((address)GCLocker::needs_gc_address()), false);
__ jcc(Assembler::equal, cont);
// Save down any incoming oops and call into the runtime to halt for a GC
OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
save_or_restore_arguments(masm, stack_slots, total_in_args,
arg_save_area, map, in_regs, in_sig_bt);
address the_pc = __ pc();
oop_maps->add_gc_map( __ offset(), map);
__ set_last_Java_frame(rsp, noreg, the_pc);
__ block_comment("block_for_jni_critical");
__ movptr(c_rarg0, r15_thread);
__ mov(r12, rsp); // remember sp
__ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
__ andptr(rsp, -16); // align stack as required by ABI
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
__ mov(rsp, r12); // restore sp
__ reinit_heapbase();
__ reset_last_Java_frame(false);
save_or_restore_arguments(masm, stack_slots, total_in_args,
arg_save_area, NULL, in_regs, in_sig_bt);
__ bind(cont);
#ifdef ASSERT
if (StressCriticalJNINatives) {
// Stress register saving
OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
save_or_restore_arguments(masm, stack_slots, total_in_args,
arg_save_area, map, in_regs, in_sig_bt);
// Destroy argument registers
for (int i = 0; i < total_in_args - 1; i++) {
if (in_regs[i].first()->is_Register()) {
const Register reg = in_regs[i].first()->as_Register();
__ xorptr(reg, reg);
} else if (in_regs[i].first()->is_XMMRegister()) {
__ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
} else if (in_regs[i].first()->is_FloatRegister()) {
ShouldNotReachHere();
} else if (in_regs[i].first()->is_stack()) {
// Nothing to do
} else {
ShouldNotReachHere();
}
if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
i++;
}
}
save_or_restore_arguments(masm, stack_slots, total_in_args,
arg_save_area, NULL, in_regs, in_sig_bt);
}
#endif
}
// Unpack an array argument into a pointer to the body and the length
// if the array is non-null, otherwise pass 0 for both.
static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
Register tmp_reg = rax;
assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
"possible collision");
assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
"possible collision");
__ block_comment("unpack_array_argument {");
// Pass the length, ptr pair
Label is_null, done;
VMRegPair tmp;
tmp.set_ptr(tmp_reg->as_VMReg());
if (reg.first()->is_stack()) {
// Load the arg up from the stack
move_ptr(masm, reg, tmp);
reg = tmp;
}
__ testptr(reg.first()->as_Register(), reg.first()->as_Register());
__ jccb(Assembler::equal, is_null);
__ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
move_ptr(masm, tmp, body_arg);
// load the length relative to the body.
__ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
arrayOopDesc::base_offset_in_bytes(in_elem_type)));
move32_64(masm, tmp, length_arg);
__ jmpb(done);
__ bind(is_null);
// Pass zeros
__ xorptr(tmp_reg, tmp_reg);
move_ptr(masm, tmp, body_arg);
move32_64(masm, tmp, length_arg);
__ bind(done);
__ block_comment("} unpack_array_argument");
}
// Different signatures may require very different orders for the move
// to avoid clobbering other arguments. There's no simple way to
// order them safely. Compute a safe order for issuing stores and
// break any cycles in those stores. This code is fairly general but
// it's not necessary on the other platforms so we keep it in the
// platform dependent code instead of moving it into a shared file.
// (See bugs 7013347 & 7145024.)
// Note that this code is specific to LP64.
class ComputeMoveOrder: public StackObj {
class MoveOperation: public ResourceObj {
friend class ComputeMoveOrder;
private:
VMRegPair _src;
VMRegPair _dst;
int _src_index;
int _dst_index;
bool _processed;
MoveOperation* _next;
MoveOperation* _prev;
static int get_id(VMRegPair r) {
return r.first()->value();
}
public:
MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
_src(src)
, _src_index(src_index)
, _dst(dst)
, _dst_index(dst_index)
, _next(NULL)
, _prev(NULL)
, _processed(false) {
}
VMRegPair src() const { return _src; }
int src_id() const { return get_id(src()); }
int src_index() const { return _src_index; }
VMRegPair dst() const { return _dst; }
void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
int dst_index() const { return _dst_index; }
int dst_id() const { return get_id(dst()); }
MoveOperation* next() const { return _next; }
MoveOperation* prev() const { return _prev; }
void set_processed() { _processed = true; }
bool is_processed() const { return _processed; }
// insert
void break_cycle(VMRegPair temp_register) {
// create a new store following the last store
// to move from the temp_register to the original
MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
// break the cycle of links and insert new_store at the end
// break the reverse link.
MoveOperation* p = prev();
assert(p->next() == this, "must be");
_prev = NULL;
p->_next = new_store;
new_store->_prev = p;
// change the original store to save it's value in the temp.
set_dst(-1, temp_register);
}
void link(GrowableArray<MoveOperation*>& killer) {
// link this store in front the store that it depends on
MoveOperation* n = killer.at_grow(src_id(), NULL);
if (n != NULL) {
assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
_next = n;
n->_prev = this;
}
}
};
private:
GrowableArray<MoveOperation*> edges;
public:
ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
// Move operations where the dest is the stack can all be
// scheduled first since they can't interfere with the other moves.
for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
if (in_sig_bt[i] == T_ARRAY) {
c_arg--;
if (out_regs[c_arg].first()->is_stack() &&
out_regs[c_arg + 1].first()->is_stack()) {
arg_order.push(i);
arg_order.push(c_arg);
} else {
if (out_regs[c_arg].first()->is_stack() ||
in_regs[i].first() == out_regs[c_arg].first()) {
add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
} else {
add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
}
}
} else if (in_sig_bt[i] == T_VOID) {
arg_order.push(i);
arg_order.push(c_arg);
} else {
if (out_regs[c_arg].first()->is_stack() ||
in_regs[i].first() == out_regs[c_arg].first()) {
arg_order.push(i);
arg_order.push(c_arg);
} else {
add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
}
}
}
// Break any cycles in the register moves and emit the in the
// proper order.
GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
for (int i = 0; i < stores->length(); i++) {
arg_order.push(stores->at(i)->src_index());
arg_order.push(stores->at(i)->dst_index());
}
}
// Collected all the move operations
void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
if (src.first() == dst.first()) return;
edges.append(new MoveOperation(src_index, src, dst_index, dst));
}
// Walk the edges breaking cycles between moves. The result list
// can be walked in order to produce the proper set of loads
GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
// Record which moves kill which values
GrowableArray<MoveOperation*> killer;
for (int i = 0; i < edges.length(); i++) {
MoveOperation* s = edges.at(i);
assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
killer.at_put_grow(s->dst_id(), s, NULL);
}
assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
"make sure temp isn't in the registers that are killed");
// create links between loads and stores
for (int i = 0; i < edges.length(); i++) {
edges.at(i)->link(killer);
}
// at this point, all the move operations are chained together
// in a doubly linked list. Processing it backwards finds
// the beginning of the chain, forwards finds the end. If there's
// a cycle it can be broken at any point, so pick an edge and walk
// backward until the list ends or we end where we started.
GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
for (int e = 0; e < edges.length(); e++) {
MoveOperation* s = edges.at(e);
if (!s->is_processed()) {
MoveOperation* start = s;
// search for the beginning of the chain or cycle
while (start->prev() != NULL && start->prev() != s) {
start = start->prev();
}
if (start->prev() == s) {
start->break_cycle(temp_register);
}
// walk the chain forward inserting to store list
while (start != NULL) {
stores->append(start);
start->set_processed();
start = start->next();
}
}
}
return stores;
}
};
static void verify_oop_args(MacroAssembler* masm,
const methodHandle& method,
const BasicType* sig_bt,
const VMRegPair* regs) {
Register temp_reg = rbx; // not part of any compiled calling seq
if (VerifyOops) {
for (int i = 0; i < method->size_of_parameters(); i++) {
if (sig_bt[i] == T_OBJECT ||
sig_bt[i] == T_ARRAY) {
VMReg r = regs[i].first();
assert(r->is_valid(), "bad oop arg");
if (r->is_stack()) {
__ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
__ verify_oop(temp_reg);
} else {
__ verify_oop(r->as_Register());
}
}
}
}
}
static void gen_special_dispatch(MacroAssembler* masm,
const methodHandle& method,
const BasicType* sig_bt,
const VMRegPair* regs) {
verify_oop_args(masm, method, sig_bt, regs);
vmIntrinsics::ID iid = method->intrinsic_id();
// Now write the args into the outgoing interpreter space
bool has_receiver = false;
Register receiver_reg = noreg;
int member_arg_pos = -1;
Register member_reg = noreg;
int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
if (ref_kind != 0) {
member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument
member_reg = rbx; // known to be free at this point
has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
} else if (iid == vmIntrinsics::_invokeBasic) {
has_receiver = true;
} else {
fatal("unexpected intrinsic id %d", iid);
}
if (member_reg != noreg) {
// Load the member_arg into register, if necessary.
SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
VMReg r = regs[member_arg_pos].first();
if (r->is_stack()) {
__ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
} else {
// no data motion is needed
member_reg = r->as_Register();
}
}
if (has_receiver) {
// Make sure the receiver is loaded into a register.
assert(method->size_of_parameters() > 0, "oob");
assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
VMReg r = regs[0].first();
assert(r->is_valid(), "bad receiver arg");
if (r->is_stack()) {
// Porting note: This assumes that compiled calling conventions always
// pass the receiver oop in a register. If this is not true on some
// platform, pick a temp and load the receiver from stack.
fatal("receiver always in a register");
receiver_reg = j_rarg0; // known to be free at this point
__ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
} else {
// no data motion is needed
receiver_reg = r->as_Register();
}
}
// Figure out which address we are really jumping to:
MethodHandles::generate_method_handle_dispatch(masm, iid,
receiver_reg, member_reg, /*for_compiler_entry:*/ true);
}
// ---------------------------------------------------------------------------
// Generate a native wrapper for a given method. The method takes arguments
// in the Java compiled code convention, marshals them to the native
// convention (handlizes oops, etc), transitions to native, makes the call,
// returns to java state (possibly blocking), unhandlizes any result and
// returns.
//
// Critical native functions are a shorthand for the use of
// GetPrimtiveArrayCritical and disallow the use of any other JNI
// functions. The wrapper is expected to unpack the arguments before
// passing them to the callee and perform checks before and after the
// native call to ensure that they GCLocker
// lock_critical/unlock_critical semantics are followed. Some other
// parts of JNI setup are skipped like the tear down of the JNI handle
// block and the check for pending exceptions it's impossible for them
// to be thrown.
//
// They are roughly structured like this:
// if (GCLocker::needs_gc())
// SharedRuntime::block_for_jni_critical();
// tranistion to thread_in_native
// unpack arrray arguments and call native entry point
// check for safepoint in progress
// check if any thread suspend flags are set
// call into JVM and possible unlock the JNI critical
// if a GC was suppressed while in the critical native.
// transition back to thread_in_Java
// return to caller
//
nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
const methodHandle& method,
int compile_id,
BasicType* in_sig_bt,
VMRegPair* in_regs,
BasicType ret_type) {
if (method->is_method_handle_intrinsic()) {
vmIntrinsics::ID iid = method->intrinsic_id();
intptr_t start = (intptr_t)__ pc();
int vep_offset = ((intptr_t)__ pc()) - start;
gen_special_dispatch(masm,
method,
in_sig_bt,
in_regs);
int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period
__ flush();
int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually
return nmethod::new_native_nmethod(method,
compile_id,
masm->code(),
vep_offset,
frame_complete,
stack_slots / VMRegImpl::slots_per_word,
in_ByteSize(-1),
in_ByteSize(-1),
(OopMapSet*)NULL);
}
bool is_critical_native = true;
address native_func = method->critical_native_function();
if (native_func == NULL) {
native_func = method->native_function();
is_critical_native = false;
}
assert(native_func != NULL, "must have function");
// An OopMap for lock (and class if static)
OopMapSet *oop_maps = new OopMapSet();
intptr_t start = (intptr_t)__ pc();
// We have received a description of where all the java arg are located
// on entry to the wrapper. We need to convert these args to where
// the jni function will expect them. To figure out where they go
// we convert the java signature to a C signature by inserting
// the hidden arguments as arg[0] and possibly arg[1] (static method)
const int total_in_args = method->size_of_parameters();
int total_c_args = total_in_args;
if (!is_critical_native) {
total_c_args += 1;
if (method->is_static()) {
total_c_args++;
}
} else {
for (int i = 0; i < total_in_args; i++) {
if (in_sig_bt[i] == T_ARRAY) {
total_c_args++;
}
}
}
BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
BasicType* in_elem_bt = NULL;
int argc = 0;
if (!is_critical_native) {
out_sig_bt[argc++] = T_ADDRESS;
if (method->is_static()) {
out_sig_bt[argc++] = T_OBJECT;
}
for (int i = 0; i < total_in_args ; i++ ) {
out_sig_bt[argc++] = in_sig_bt[i];
}
} else {
Thread* THREAD = Thread::current();
in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
SignatureStream ss(method->signature());
for (int i = 0; i < total_in_args ; i++ ) {
if (in_sig_bt[i] == T_ARRAY) {
// Arrays are passed as int, elem* pair
out_sig_bt[argc++] = T_INT;
out_sig_bt[argc++] = T_ADDRESS;
Symbol* atype = ss.as_symbol(CHECK_NULL);
const char* at = atype->as_C_string();
if (strlen(at) == 2) {
assert(at[0] == '[', "must be");
switch (at[1]) {
case 'B': in_elem_bt[i] = T_BYTE; break;
case 'C': in_elem_bt[i] = T_CHAR; break;
case 'D': in_elem_bt[i] = T_DOUBLE; break;
case 'F': in_elem_bt[i] = T_FLOAT; break;
case 'I': in_elem_bt[i] = T_INT; break;
case 'J': in_elem_bt[i] = T_LONG; break;
case 'S': in_elem_bt[i] = T_SHORT; break;
case 'Z': in_elem_bt[i] = T_BOOLEAN; break;
default: ShouldNotReachHere();
}
}
} else {
out_sig_bt[argc++] = in_sig_bt[i];
in_elem_bt[i] = T_VOID;
}
if (in_sig_bt[i] != T_VOID) {
assert(in_sig_bt[i] == ss.type(), "must match");
ss.next();
}
}
}
// Now figure out where the args must be stored and how much stack space
// they require.
int out_arg_slots;
out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
// Compute framesize for the wrapper. We need to handlize all oops in
// incoming registers
// Calculate the total number of stack slots we will need.
// First count the abi requirement plus all of the outgoing args
int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
// Now the space for the inbound oop handle area
int total_save_slots = 6 * VMRegImpl::slots_per_word; // 6 arguments passed in registers
if (is_critical_native) {
// Critical natives may have to call out so they need a save area
// for register arguments.
int double_slots = 0;
int single_slots = 0;
for ( int i = 0; i < total_in_args; i++) {
if (in_regs[i].first()->is_Register()) {
const Register reg = in_regs[i].first()->as_Register();
switch (in_sig_bt[i]) {
case T_BOOLEAN:
case T_BYTE:
case T_SHORT:
case T_CHAR:
case T_INT: single_slots++; break;
case T_ARRAY: // specific to LP64 (7145024)
case T_LONG: double_slots++; break;
default: ShouldNotReachHere();
}
} else if (in_regs[i].first()->is_XMMRegister()) {
switch (in_sig_bt[i]) {
case T_FLOAT: single_slots++; break;
case T_DOUBLE: double_slots++; break;
default: ShouldNotReachHere();
}
} else if (in_regs[i].first()->is_FloatRegister()) {
ShouldNotReachHere();
}
}
total_save_slots = double_slots * 2 + single_slots;
// align the save area
if (double_slots != 0) {
stack_slots = align_up(stack_slots, 2);
}
}
int oop_handle_offset = stack_slots;
stack_slots += total_save_slots;
// Now any space we need for handlizing a klass if static method
int klass_slot_offset = 0;
int klass_offset = -1;
int lock_slot_offset = 0;
bool is_static = false;
if (method->is_static()) {
klass_slot_offset = stack_slots;
stack_slots += VMRegImpl::slots_per_word;
klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
is_static = true;
}
// Plus a lock if needed
if (method->is_synchronized()) {
lock_slot_offset = stack_slots;
stack_slots += VMRegImpl::slots_per_word;
}
// Now a place (+2) to save return values or temp during shuffling
// + 4 for return address (which we own) and saved rbp
stack_slots += 6;
// Ok The space we have allocated will look like:
//
//
// FP-> | |
// |---------------------|
// | 2 slots for moves |
// |---------------------|
// | lock box (if sync) |
// |---------------------| <- lock_slot_offset
// | klass (if static) |
// |---------------------| <- klass_slot_offset
// | oopHandle area |
// |---------------------| <- oop_handle_offset (6 java arg registers)
// | outbound memory |
// | based arguments |
// | |
// |---------------------|
// | |
// SP-> | out_preserved_slots |
//
//
// Now compute actual number of stack words we need rounding to make
// stack properly aligned.
stack_slots = align_up(stack_slots, StackAlignmentInSlots);
int stack_size = stack_slots * VMRegImpl::stack_slot_size;
// First thing make an ic check to see if we should even be here
// We are free to use all registers as temps without saving them and
// restoring them except rbp. rbp is the only callee save register
// as far as the interpreter and the compiler(s) are concerned.
const Register ic_reg = rax;
const Register receiver = j_rarg0;
Label hit;
Label exception_pending;
assert_different_registers(ic_reg, receiver, rscratch1);
__ verify_oop(receiver);
__ load_klass(rscratch1, receiver);
__ cmpq(ic_reg, rscratch1);
__ jcc(Assembler::equal, hit);
__ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
// Verified entry point must be aligned
__ align(8);
__ bind(hit);
int vep_offset = ((intptr_t)__ pc()) - start;
#ifdef COMPILER1
// For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
inline_check_hashcode_from_object_header(masm, method, j_rarg0 /*obj_reg*/, rax /*result*/);
}
#endif // COMPILER1
// The instruction at the verified entry point must be 5 bytes or longer
// because it can be patched on the fly by make_non_entrant. The stack bang
// instruction fits that requirement.
// Generate stack overflow check
if (UseStackBanging) {
__ bang_stack_with_offset((int)JavaThread::stack_shadow_zone_size());
} else {
// need a 5 byte instruction to allow MT safe patching to non-entrant
__ fat_nop();
}
// Generate a new frame for the wrapper.
__ enter();
// -2 because return address is already present and so is saved rbp
__ subptr(rsp, stack_size - 2*wordSize);
// Frame is now completed as far as size and linkage.
int frame_complete = ((intptr_t)__ pc()) - start;
if (UseRTMLocking) {
// Abort RTM transaction before calling JNI
// because critical section will be large and will be
// aborted anyway. Also nmethod could be deoptimized.
__ xabort(0);
}
#ifdef ASSERT
{
Label L;
__ mov(rax, rsp);
__ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
__ cmpptr(rax, rsp);
__ jcc(Assembler::equal, L);
__ stop("improperly aligned stack");
__ bind(L);
}
#endif /* ASSERT */
// We use r14 as the oop handle for the receiver/klass
// It is callee save so it survives the call to native
const Register oop_handle_reg = r14;
if (is_critical_native) {
check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
oop_handle_offset, oop_maps, in_regs, in_sig_bt);
}
//
// We immediately shuffle the arguments so that any vm call we have to
// make from here on out (sync slow path, jvmti, etc.) we will have
// captured the oops from our caller and have a valid oopMap for
// them.
// -----------------
// The Grand Shuffle
// The Java calling convention is either equal (linux) or denser (win64) than the
// c calling convention. However the because of the jni_env argument the c calling
// convention always has at least one more (and two for static) arguments than Java.
// Therefore if we move the args from java -> c backwards then we will never have
// a register->register conflict and we don't have to build a dependency graph
// and figure out how to break any cycles.
//
// Record esp-based slot for receiver on stack for non-static methods
int receiver_offset = -1;
// This is a trick. We double the stack slots so we can claim
// the oops in the caller's frame. Since we are sure to have
// more args than the caller doubling is enough to make
// sure we can capture all the incoming oop args from the
// caller.
//
OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
// Mark location of rbp (someday)
// map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
// Use eax, ebx as temporaries during any memory-memory moves we have to do
// All inbound args are referenced based on rbp and all outbound args via rsp.
#ifdef ASSERT
bool reg_destroyed[RegisterImpl::number_of_registers];
bool freg_destroyed[XMMRegisterImpl::number_of_registers];
for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
reg_destroyed[r] = false;
}
for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
freg_destroyed[f] = false;
}
#endif /* ASSERT */
// This may iterate in two different directions depending on the
// kind of native it is. The reason is that for regular JNI natives
// the incoming and outgoing registers are offset upwards and for
// critical natives they are offset down.
GrowableArray<int> arg_order(2 * total_in_args);
VMRegPair tmp_vmreg;
tmp_vmreg.set2(rbx->as_VMReg());
if (!is_critical_native) {
for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
arg_order.push(i);
arg_order.push(c_arg);
}
} else {
// Compute a valid move order, using tmp_vmreg to break any cycles
ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
}
int temploc = -1;
for (int ai = 0; ai < arg_order.length(); ai += 2) {
int i = arg_order.at(ai);
int c_arg = arg_order.at(ai + 1);
__ block_comment(err_msg("move %d -> %d", i, c_arg));
if (c_arg == -1) {
assert(is_critical_native, "should only be required for critical natives");
// This arg needs to be moved to a temporary
__ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
in_regs[i] = tmp_vmreg;
temploc = i;
continue;
} else if (i == -1) {
assert(is_critical_native, "should only be required for critical natives");
// Read from the temporary location
assert(temploc != -1, "must be valid");
i = temploc;
temploc = -1;
}
#ifdef ASSERT
if (in_regs[i].first()->is_Register()) {
assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
} else if (in_regs[i].first()->is_XMMRegister()) {
assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
}
if (out_regs[c_arg].first()->is_Register()) {
reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
} else if (out_regs[c_arg].first()->is_XMMRegister()) {
freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
}
#endif /* ASSERT */
switch (in_sig_bt[i]) {
case T_ARRAY:
if (is_critical_native) {
unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
c_arg++;
#ifdef ASSERT
if (out_regs[c_arg].first()->is_Register()) {
reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
} else if (out_regs[c_arg].first()->is_XMMRegister()) {
freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
}
#endif
break;
}
case T_OBJECT:
assert(!is_critical_native, "no oop arguments");
object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
((i == 0) && (!is_static)),
&receiver_offset);
break;
case T_VOID:
break;
case T_FLOAT:
float_move(masm, in_regs[i], out_regs[c_arg]);
break;
case T_DOUBLE:
assert( i + 1 < total_in_args &&
in_sig_bt[i + 1] == T_VOID &&
out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
double_move(masm, in_regs[i], out_regs[c_arg]);
break;
case T_LONG :
long_move(masm, in_regs[i], out_regs[c_arg]);
break;
case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
default:
move32_64(masm, in_regs[i], out_regs[c_arg]);
}
}
int c_arg;
// Pre-load a static method's oop into r14. Used both by locking code and
// the normal JNI call code.
if (!is_critical_native) {
// point c_arg at the first arg that is already loaded in case we
// need to spill before we call out
c_arg = total_c_args - total_in_args;
if (method->is_static()) {
// load oop into a register
__ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
// Now handlize the static class mirror it's known not-null.
__ movptr(Address(rsp, klass_offset), oop_handle_reg);
map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
// Now get the handle
__ lea(oop_handle_reg, Address(rsp, klass_offset));
// store the klass handle as second argument
__ movptr(c_rarg1, oop_handle_reg);
// and protect the arg if we must spill
c_arg--;
}
} else {
// For JNI critical methods we need to save all registers in save_args.
c_arg = 0;
}
// Change state to native (we save the return address in the thread, since it might not
// be pushed on the stack when we do a a stack traversal). It is enough that the pc()
// points into the right code segment. It does not have to be the correct return pc.
// We use the same pc/oopMap repeatedly when we call out
intptr_t the_pc = (intptr_t) __ pc();
oop_maps->add_gc_map(the_pc - start, map);
__ set_last_Java_frame(rsp, noreg, (address)the_pc);
// We have all of the arguments setup at this point. We must not touch any register
// argument registers at this point (what if we save/restore them there are no oop?
{
SkipIfEqual skip(masm, &DTraceMethodProbes, false);
// protect the args we've loaded
save_args(masm, total_c_args, c_arg, out_regs);
__ mov_metadata(c_rarg1, method());
__ call_VM_leaf(
CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
r15_thread, c_rarg1);
restore_args(masm, total_c_args, c_arg, out_regs);
}
// RedefineClasses() tracing support for obsolete method entry
if (log_is_enabled(Trace, redefine, class, obsolete)) {
// protect the args we've loaded
save_args(masm, total_c_args, c_arg, out_regs);
__ mov_metadata(c_rarg1, method());
__ call_VM_leaf(
CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
r15_thread, c_rarg1);
restore_args(masm, total_c_args, c_arg, out_regs);
}
// Lock a synchronized method
// Register definitions used by locking and unlocking
const Register swap_reg = rax; // Must use rax for cmpxchg instruction
const Register obj_reg = rbx; // Will contain the oop
const Register lock_reg = r13; // Address of compiler lock object (BasicLock)
const Register old_hdr = r13; // value of old header at unlock time
Label slow_path_lock;
Label lock_done;
if (method->is_synchronized()) {
assert(!is_critical_native, "unhandled");
const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
// Get the handle (the 2nd argument)
__ mov(oop_handle_reg, c_rarg1);
// Get address of the box
__ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
// Load the oop from the handle
__ movptr(obj_reg, Address(oop_handle_reg, 0));
if (UseBiasedLocking) {
__ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
}
// Load immediate 1 into swap_reg %rax
__ movl(swap_reg, 1);
// Load (object->mark() | 1) into swap_reg %rax
__ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
// Save (object->mark() | 1) into BasicLock's displaced header
__ movptr(Address(lock_reg, mark_word_offset), swap_reg);
if (os::is_MP()) {
__ lock();
}
// src -> dest iff dest == rax else rax <- dest
__ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
__ jcc(Assembler::equal, lock_done);
// Hmm should this move to the slow path code area???
// Test if the oopMark is an obvious stack pointer, i.e.,
// 1) (mark & 3) == 0, and
// 2) rsp <= mark < mark + os::pagesize()
// These 3 tests can be done by evaluating the following
// expression: ((mark - rsp) & (3 - os::vm_page_size())),
// assuming both stack pointer and pagesize have their
// least significant 2 bits clear.
// NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
__ subptr(swap_reg, rsp);
__ andptr(swap_reg, 3 - os::vm_page_size());
// Save the test result, for recursive case, the result is zero
__ movptr(Address(lock_reg, mark_word_offset), swap_reg);
__ jcc(Assembler::notEqual, slow_path_lock);
// Slow path will re-enter here
__ bind(lock_done);
}
// Finally just about ready to make the JNI call
// get JNIEnv* which is first argument to native
if (!is_critical_native) {
__ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
}
// Now set thread in native
__ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
__ call(RuntimeAddress(native_func));
// Verify or restore cpu control state after JNI call
__ restore_cpu_control_state_after_jni();
// Unpack native results.
switch (ret_type) {
case T_BOOLEAN: __ c2bool(rax); break;
case T_CHAR : __ movzwl(rax, rax); break;
case T_BYTE : __ sign_extend_byte (rax); break;
case T_SHORT : __ sign_extend_short(rax); break;
case T_INT : /* nothing to do */ break;
case T_DOUBLE :
case T_FLOAT :
// Result is in xmm0 we'll save as needed
break;
case T_ARRAY: // Really a handle
case T_OBJECT: // Really a handle
break; // can't de-handlize until after safepoint check
case T_VOID: break;
case T_LONG: break;
default : ShouldNotReachHere();
}
// Switch thread to "native transition" state before reading the synchronization state.
// This additional state is necessary because reading and testing the synchronization
// state is not atomic w.r.t. GC, as this scenario demonstrates:
// Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
// VM thread changes sync state to synchronizing and suspends threads for GC.
// Thread A is resumed to finish this native method, but doesn't block here since it
// didn't see any synchronization is progress, and escapes.
__ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
if(os::is_MP()) {
if (UseMembar) {
// Force this write out before the read below
__ membar(Assembler::Membar_mask_bits(
Assembler::LoadLoad | Assembler::LoadStore |
Assembler::StoreLoad | Assembler::StoreStore));
} else {
// Write serialization page so VM thread can do a pseudo remote membar.
// We use the current thread pointer to calculate a thread specific
// offset to write to within the page. This minimizes bus traffic
// due to cache line collision.
__ serialize_memory(r15_thread, rcx);
}
}
Label after_transition;
// check for safepoint operation in progress and/or pending suspend requests
{
Label Continue;
Label slow_path;
__ safepoint_poll(slow_path, r15_thread, rscratch1);
__ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
__ jcc(Assembler::equal, Continue);
__ bind(slow_path);
// Don't use call_VM as it will see a possible pending exception and forward it
// and never return here preventing us from clearing _last_native_pc down below.
// Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
// preserved and correspond to the bcp/locals pointers. So we do a runtime call
// by hand.
//
__ vzeroupper();
save_native_result(masm, ret_type, stack_slots);
__ mov(c_rarg0, r15_thread);
__ mov(r12, rsp); // remember sp
__ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
__ andptr(rsp, -16); // align stack as required by ABI
if (!is_critical_native) {
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
} else {
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
}
__ mov(rsp, r12); // restore sp
__ reinit_heapbase();
// Restore any method result value
restore_native_result(masm, ret_type, stack_slots);
if (is_critical_native) {
// The call above performed the transition to thread_in_Java so
// skip the transition logic below.
__ jmpb(after_transition);
}
__ bind(Continue);
}
// change thread state
__ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
__ bind(after_transition);
Label reguard;
Label reguard_done;
__ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_reserved_disabled);
__ jcc(Assembler::equal, reguard);
__ bind(reguard_done);
// native result if any is live
// Unlock
Label unlock_done;
Label slow_path_unlock;
if (method->is_synchronized()) {
// Get locked oop from the handle we passed to jni
__ movptr(obj_reg, Address(oop_handle_reg, 0));
Label done;
if (UseBiasedLocking) {
__ biased_locking_exit(obj_reg, old_hdr, done);
}
// Simple recursive lock?
__ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
__ jcc(Assembler::equal, done);
// Must save rax if if it is live now because cmpxchg must use it
if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
save_native_result(masm, ret_type, stack_slots);
}
// get address of the stack lock
__ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
// get old displaced header
__ movptr(old_hdr, Address(rax, 0));
// Atomic swap old header if oop still contains the stack lock
if (os::is_MP()) {
__ lock();
}
__ cmpxchgptr(old_hdr, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
__ jcc(Assembler::notEqual, slow_path_unlock);
// slow path re-enters here
__ bind(unlock_done);
if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
restore_native_result(masm, ret_type, stack_slots);
}
__ bind(done);
}
{
SkipIfEqual skip(masm, &DTraceMethodProbes, false);
save_native_result(masm, ret_type, stack_slots);
__ mov_metadata(c_rarg1, method());
__ call_VM_leaf(
CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
r15_thread, c_rarg1);
restore_native_result(masm, ret_type, stack_slots);
}
__ reset_last_Java_frame(false);
// Unbox oop result, e.g. JNIHandles::resolve value.
if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
__ resolve_jobject(rax /* value */,
r15_thread /* thread */,
rcx /* tmp */);
}
if (CheckJNICalls) {
// clear_pending_jni_exception_check
__ movptr(Address(r15_thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
}
if (!is_critical_native) {
// reset handle block
__ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
__ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
}
// pop our frame
__ leave();
if (!is_critical_native) {
// Any exception pending?
__ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
__ jcc(Assembler::notEqual, exception_pending);
}
// Return
__ ret(0);
// Unexpected paths are out of line and go here
if (!is_critical_native) {
// forward the exception
__ bind(exception_pending);
// and forward the exception
__ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
}
// Slow path locking & unlocking
if (method->is_synchronized()) {
// BEGIN Slow path lock
__ bind(slow_path_lock);
// has last_Java_frame setup. No exceptions so do vanilla call not call_VM
// args are (oop obj, BasicLock* lock, JavaThread* thread)
// protect the args we've loaded
save_args(masm, total_c_args, c_arg, out_regs);
__ mov(c_rarg0, obj_reg);
__ mov(c_rarg1, lock_reg);
__ mov(c_rarg2, r15_thread);
// Not a leaf but we have last_Java_frame setup as we want
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
restore_args(masm, total_c_args, c_arg, out_regs);
#ifdef ASSERT
{ Label L;
__ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
__ jcc(Assembler::equal, L);
__ stop("no pending exception allowed on exit from monitorenter");
__ bind(L);
}
#endif
__ jmp(lock_done);
// END Slow path lock
// BEGIN Slow path unlock
__ bind(slow_path_unlock);
// If we haven't already saved the native result we must save it now as xmm registers
// are still exposed.
__ vzeroupper();
if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
save_native_result(masm, ret_type, stack_slots);
}
__ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
__ mov(c_rarg0, obj_reg);
__ mov(c_rarg2, r15_thread);
__ mov(r12, rsp); // remember sp
__ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
__ andptr(rsp, -16); // align stack as required by ABI
// Save pending exception around call to VM (which contains an EXCEPTION_MARK)
// NOTE that obj_reg == rbx currently
__ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
__ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
// args are (oop obj, BasicLock* lock, JavaThread* thread)
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
__ mov(rsp, r12); // restore sp
__ reinit_heapbase();
#ifdef ASSERT
{
Label L;
__ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
__ jcc(Assembler::equal, L);
__ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
__ bind(L);
}
#endif /* ASSERT */
__ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
restore_native_result(masm, ret_type, stack_slots);
}
__ jmp(unlock_done);
// END Slow path unlock
} // synchronized
// SLOW PATH Reguard the stack if needed
__ bind(reguard);
__ vzeroupper();
save_native_result(masm, ret_type, stack_slots);
__ mov(r12, rsp); // remember sp
__ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
__ andptr(rsp, -16); // align stack as required by ABI
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
__ mov(rsp, r12); // restore sp
__ reinit_heapbase();
restore_native_result(masm, ret_type, stack_slots);
// and continue
__ jmp(reguard_done);
__ flush();
nmethod *nm = nmethod::new_native_nmethod(method,
compile_id,
masm->code(),
vep_offset,
frame_complete,
stack_slots / VMRegImpl::slots_per_word,
(is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
oop_maps);
if (is_critical_native) {
nm->set_lazy_critical_native(true);
}
return nm;
}
// this function returns the adjust size (in number of words) to a c2i adapter
// activation for use during deoptimization
int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
}
uint SharedRuntime::out_preserve_stack_slots() {
return 0;
}
//------------------------------generate_deopt_blob----------------------------
void SharedRuntime::generate_deopt_blob() {
// Allocate space for the code
ResourceMark rm;
// Setup code generation tools
int pad = 0;
#if INCLUDE_JVMCI
if (EnableJVMCI || UseAOT) {
pad += 512; // Increase the buffer size when compiling for JVMCI
}
#endif
CodeBuffer buffer("deopt_blob", 2048+pad, 1024);
MacroAssembler* masm = new MacroAssembler(&buffer);
int frame_size_in_words;
OopMap* map = NULL;
OopMapSet *oop_maps = new OopMapSet();
// -------------
// This code enters when returning to a de-optimized nmethod. A return
// address has been pushed on the the stack, and return values are in
// registers.
// If we are doing a normal deopt then we were called from the patched
// nmethod from the point we returned to the nmethod. So the return
// address on the stack is wrong by NativeCall::instruction_size
// We will adjust the value so it looks like we have the original return
// address on the stack (like when we eagerly deoptimized).
// In the case of an exception pending when deoptimizing, we enter
// with a return address on the stack that points after the call we patched
// into the exception handler. We have the following register state from,
// e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
// rax: exception oop
// rbx: exception handler
// rdx: throwing pc
// So in this case we simply jam rdx into the useless return address and
// the stack looks just like we want.
//
// At this point we need to de-opt. We save the argument return
// registers. We call the first C routine, fetch_unroll_info(). This
// routine captures the return values and returns a structure which
// describes the current frame size and the sizes of all replacement frames.
// The current frame is compiled code and may contain many inlined
// functions, each with their own JVM state. We pop the current frame, then
// push all the new frames. Then we call the C routine unpack_frames() to
// populate these frames. Finally unpack_frames() returns us the new target
// address. Notice that callee-save registers are BLOWN here; they have
// already been captured in the vframeArray at the time the return PC was
// patched.
address start = __ pc();
Label cont;
// Prolog for non exception case!
// Save everything in sight.
map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
// Normal deoptimization. Save exec mode for unpack_frames.
__ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
__ jmp(cont);
int reexecute_offset = __ pc() - start;
#if INCLUDE_JVMCI && !defined(COMPILER1)
if (EnableJVMCI && UseJVMCICompiler) {
// JVMCI does not use this kind of deoptimization
__ should_not_reach_here();
}
#endif
// Reexecute case
// return address is the pc describes what bci to do re-execute at
// No need to update map as each call to save_live_registers will produce identical oopmap
(void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
__ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
__ jmp(cont);
#if INCLUDE_JVMCI
Label after_fetch_unroll_info_call;
int implicit_exception_uncommon_trap_offset = 0;
int uncommon_trap_offset = 0;
if (EnableJVMCI || UseAOT) {
implicit_exception_uncommon_trap_offset = __ pc() - start;
__ pushptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
__ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())), (int32_t)NULL_WORD);
uncommon_trap_offset = __ pc() - start;
// Save everything in sight.
RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
// fetch_unroll_info needs to call last_java_frame()
__ set_last_Java_frame(noreg, noreg, NULL);
__ movl(c_rarg1, Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())));
__ movl(Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())), -1);
__ movl(r14, (int32_t)Deoptimization::Unpack_reexecute);
__ mov(c_rarg0, r15_thread);
__ movl(c_rarg2, r14); // exec mode
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
oop_maps->add_gc_map( __ pc()-start, map->deep_copy());
__ reset_last_Java_frame(false);
__ jmp(after_fetch_unroll_info_call);
} // EnableJVMCI
#endif // INCLUDE_JVMCI
int exception_offset = __ pc() - start;
// Prolog for exception case
// all registers are dead at this entry point, except for rax, and
// rdx which contain the exception oop and exception pc
// respectively. Set them in TLS and fall thru to the
// unpack_with_exception_in_tls entry point.
__ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
__ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
int exception_in_tls_offset = __ pc() - start;
// new implementation because exception oop is now passed in JavaThread
// Prolog for exception case
// All registers must be preserved because they might be used by LinearScan
// Exceptiop oop and throwing PC are passed in JavaThread
// tos: stack at point of call to method that threw the exception (i.e. only
// args are on the stack, no return address)
// make room on stack for the return address
// It will be patched later with the throwing pc. The correct value is not
// available now because loading it from memory would destroy registers.
__ push(0);
// Save everything in sight.
map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
// Now it is safe to overwrite any register
// Deopt during an exception. Save exec mode for unpack_frames.
__ movl(r14, Deoptimization::Unpack_exception); // callee-saved
// load throwing pc from JavaThread and patch it as the return address
// of the current frame. Then clear the field in JavaThread
__ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
__ movptr(Address(rbp, wordSize), rdx);
__ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
#ifdef ASSERT
// verify that there is really an exception oop in JavaThread
__ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
__ verify_oop(rax);
// verify that there is no pending exception
Label no_pending_exception;
__ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
__ testptr(rax, rax);
__ jcc(Assembler::zero, no_pending_exception);
__ stop("must not have pending exception here");
__ bind(no_pending_exception);
#endif
__ bind(cont);
// Call C code. Need thread and this frame, but NOT official VM entry
// crud. We cannot block on this call, no GC can happen.
//
// UnrollBlock* fetch_unroll_info(JavaThread* thread)
// fetch_unroll_info needs to call last_java_frame().
__ set_last_Java_frame(noreg, noreg, NULL);
#ifdef ASSERT
{ Label L;
__ cmpptr(Address(r15_thread,
JavaThread::last_Java_fp_offset()),
(int32_t)0);
__ jcc(Assembler::equal, L);
__ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
__ bind(L);
}
#endif // ASSERT
__ mov(c_rarg0, r15_thread);
__ movl(c_rarg1, r14); // exec_mode
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
// Need to have an oopmap that tells fetch_unroll_info where to
// find any register it might need.
oop_maps->add_gc_map(__ pc() - start, map);
__ reset_last_Java_frame(false);
#if INCLUDE_JVMCI
if (EnableJVMCI || UseAOT) {
__ bind(after_fetch_unroll_info_call);
}
#endif
// Load UnrollBlock* into rdi
__ mov(rdi, rax);
__ movl(r14, Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
Label noException;
__ cmpl(r14, Deoptimization::Unpack_exception); // Was exception pending?
__ jcc(Assembler::notEqual, noException);
__ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
// QQQ this is useless it was NULL above
__ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
__ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
__ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
__ verify_oop(rax);
// Overwrite the result registers with the exception results.
__ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
// I think this is useless
__ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
__ bind(noException);
// Only register save data is on the stack.
// Now restore the result registers. Everything else is either dead
// or captured in the vframeArray.
RegisterSaver::restore_result_registers(masm);
// All of the register save area has been popped of the stack. Only the
// return address remains.
// Pop all the frames we must move/replace.
//
// Frame picture (youngest to oldest)
// 1: self-frame (no frame link)
// 2: deopting frame (no frame link)
// 3: caller of deopting frame (could be compiled/interpreted).
//
// Note: by leaving the return address of self-frame on the stack
// and using the size of frame 2 to adjust the stack
// when we are done the return to frame 3 will still be on the stack.
// Pop deoptimized frame
__ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
__ addptr(rsp, rcx);
// rsp should be pointing at the return address to the caller (3)
// Pick up the initial fp we should save
// restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
__ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
#ifdef ASSERT
// Compilers generate code that bang the stack by as much as the
// interpreter would need. So this stack banging should never
// trigger a fault. Verify that it does not on non product builds.
if (UseStackBanging) {
__ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
__ bang_stack_size(rbx, rcx);
}
#endif
// Load address of array of frame pcs into rcx
__ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
// Trash the old pc
__ addptr(rsp, wordSize);
// Load address of array of frame sizes into rsi
__ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
// Load counter into rdx
__ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
// Now adjust the caller's stack to make up for the extra locals
// but record the original sp so that we can save it in the skeletal interpreter
// frame and the stack walking of interpreter_sender will get the unextended sp
// value and not the "real" sp value.
const Register sender_sp = r8;
__ mov(sender_sp, rsp);
__ movl(rbx, Address(rdi,
Deoptimization::UnrollBlock::
caller_adjustment_offset_in_bytes()));
__ subptr(rsp, rbx);
// Push interpreter frames in a loop
Label loop;
__ bind(loop);
__ movptr(rbx, Address(rsi, 0)); // Load frame size
__ subptr(rbx, 2*wordSize); // We'll push pc and ebp by hand
__ pushptr(Address(rcx, 0)); // Save return address
__ enter(); // Save old & set new ebp
__ subptr(rsp, rbx); // Prolog
// This value is corrected by layout_activation_impl
__ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
__ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
__ mov(sender_sp, rsp); // Pass sender_sp to next frame
__ addptr(rsi, wordSize); // Bump array pointer (sizes)
__ addptr(rcx, wordSize); // Bump array pointer (pcs)
__ decrementl(rdx); // Decrement counter
__ jcc(Assembler::notZero, loop);
__ pushptr(Address(rcx, 0)); // Save final return address
// Re-push self-frame
__ enter(); // Save old & set new ebp
// Allocate a full sized register save area.
// Return address and rbp are in place, so we allocate two less words.
__ subptr(rsp, (frame_size_in_words - 2) * wordSize);
// Restore frame locals after moving the frame
__ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
__ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
// Call C code. Need thread but NOT official VM entry
// crud. We cannot block on this call, no GC can happen. Call should
// restore return values to their stack-slots with the new SP.
//
// void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
// Use rbp because the frames look interpreted now
// Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
// Don't need the precise return PC here, just precise enough to point into this code blob.
address the_pc = __ pc();
__ set_last_Java_frame(noreg, rbp, the_pc);
__ andptr(rsp, -(StackAlignmentInBytes)); // Fix stack alignment as required by ABI
__ mov(c_rarg0, r15_thread);
__ movl(c_rarg1, r14); // second arg: exec_mode
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
// Revert SP alignment after call since we're going to do some SP relative addressing below
__ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
// Set an oopmap for the call site
// Use the same PC we used for the last java frame
oop_maps->add_gc_map(the_pc - start,
new OopMap( frame_size_in_words, 0 ));
// Clear fp AND pc
__ reset_last_Java_frame(true);
// Collect return values
__ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
__ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
// I think this is useless (throwing pc?)
__ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
// Pop self-frame.
__ leave(); // Epilog
// Jump to interpreter
__ ret(0);
// Make sure all code is generated
masm->flush();
_deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
_deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
#if INCLUDE_JVMCI
if (EnableJVMCI || UseAOT) {
_deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
_deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
}
#endif
}
#ifdef COMPILER2
//------------------------------generate_uncommon_trap_blob--------------------
void SharedRuntime::generate_uncommon_trap_blob() {
// Allocate space for the code
ResourceMark rm;
// Setup code generation tools
CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
MacroAssembler* masm = new MacroAssembler(&buffer);
assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
address start = __ pc();
if (UseRTMLocking) {
// Abort RTM transaction before possible nmethod deoptimization.
__ xabort(0);
}
// Push self-frame. We get here with a return address on the
// stack, so rsp is 8-byte aligned until we allocate our frame.
__ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
// No callee saved registers. rbp is assumed implicitly saved
__ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
// compiler left unloaded_class_index in j_rarg0 move to where the
// runtime expects it.
__ movl(c_rarg1, j_rarg0);
__ set_last_Java_frame(noreg, noreg, NULL);
// Call C code. Need thread but NOT official VM entry
// crud. We cannot block on this call, no GC can happen. Call should
// capture callee-saved registers as well as return values.
// Thread is in rdi already.
//
// UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
__ mov(c_rarg0, r15_thread);
__ movl(c_rarg2, Deoptimization::Unpack_uncommon_trap);
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
// Set an oopmap for the call site
OopMapSet* oop_maps = new OopMapSet();
OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
// location of rbp is known implicitly by the frame sender code
oop_maps->add_gc_map(__ pc() - start, map);
__ reset_last_Java_frame(false);
// Load UnrollBlock* into rdi
__ mov(rdi, rax);
#ifdef ASSERT
{ Label L;
__ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()),
(int32_t)Deoptimization::Unpack_uncommon_trap);
__ jcc(Assembler::equal, L);
__ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap");
__ bind(L);
}
#endif
// Pop all the frames we must move/replace.
//
// Frame picture (youngest to oldest)
// 1: self-frame (no frame link)
// 2: deopting frame (no frame link)
// 3: caller of deopting frame (could be compiled/interpreted).
// Pop self-frame. We have no frame, and must rely only on rax and rsp.
__ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
// Pop deoptimized frame (int)
__ movl(rcx, Address(rdi,
Deoptimization::UnrollBlock::
size_of_deoptimized_frame_offset_in_bytes()));
__ addptr(rsp, rcx);
// rsp should be pointing at the return address to the caller (3)
// Pick up the initial fp we should save
// restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
__ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
#ifdef ASSERT
// Compilers generate code that bang the stack by as much as the
// interpreter would need. So this stack banging should never
// trigger a fault. Verify that it does not on non product builds.
if (UseStackBanging) {
__ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
__ bang_stack_size(rbx, rcx);
}
#endif
// Load address of array of frame pcs into rcx (address*)
__ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
// Trash the return pc
__ addptr(rsp, wordSize);
// Load address of array of frame sizes into rsi (intptr_t*)
__ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes()));
// Counter
__ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int)
// Now adjust the caller's stack to make up for the extra locals but
// record the original sp so that we can save it in the skeletal
// interpreter frame and the stack walking of interpreter_sender
// will get the unextended sp value and not the "real" sp value.
const Register sender_sp = r8;
__ mov(sender_sp, rsp);
__ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int)
__ subptr(rsp, rbx);
// Push interpreter frames in a loop
Label loop;
__ bind(loop);
__ movptr(rbx, Address(rsi, 0)); // Load frame size
__ subptr(rbx, 2 * wordSize); // We'll push pc and rbp by hand
__ pushptr(Address(rcx, 0)); // Save return address
__ enter(); // Save old & set new rbp
__ subptr(rsp, rbx); // Prolog
__ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
sender_sp); // Make it walkable
// This value is corrected by layout_activation_impl
__ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
__ mov(sender_sp, rsp); // Pass sender_sp to next frame
__ addptr(rsi, wordSize); // Bump array pointer (sizes)
__ addptr(rcx, wordSize); // Bump array pointer (pcs)
__ decrementl(rdx); // Decrement counter
__ jcc(Assembler::notZero, loop);
__ pushptr(Address(rcx, 0)); // Save final return address
// Re-push self-frame
__ enter(); // Save old & set new rbp
__ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
// Prolog
// Use rbp because the frames look interpreted now
// Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
// Don't need the precise return PC here, just precise enough to point into this code blob.
address the_pc = __ pc();
__ set_last_Java_frame(noreg, rbp, the_pc);
// Call C code. Need thread but NOT official VM entry
// crud. We cannot block on this call, no GC can happen. Call should
// restore return values to their stack-slots with the new SP.
// Thread is in rdi already.
//
// BasicType unpack_frames(JavaThread* thread, int exec_mode);
__ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
__ mov(c_rarg0, r15_thread);
__ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
// Set an oopmap for the call site
// Use the same PC we used for the last java frame
oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
// Clear fp AND pc
__ reset_last_Java_frame(true);
// Pop self-frame.
__ leave(); // Epilog
// Jump to interpreter
__ ret(0);
// Make sure all code is generated
masm->flush();
_uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps,
SimpleRuntimeFrame::framesize >> 1);
}
#endif // COMPILER2
//------------------------------generate_handler_blob------
//
// Generate a special Compile2Runtime blob that saves all registers,
// and setup oopmap.
//
SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
assert(StubRoutines::forward_exception_entry() != NULL,
"must be generated before");
ResourceMark rm;
OopMapSet *oop_maps = new OopMapSet();
OopMap* map;
// Allocate space for the code. Setup code generation tools.
CodeBuffer buffer("handler_blob", 2048, 1024);
MacroAssembler* masm = new MacroAssembler(&buffer);
address start = __ pc();
address call_pc = NULL;
int frame_size_in_words;
bool cause_return = (poll_type == POLL_AT_RETURN);
bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
if (UseRTMLocking) {
// Abort RTM transaction before calling runtime
// because critical section will be large and will be
// aborted anyway. Also nmethod could be deoptimized.
__ xabort(0);
}
// Make room for return address (or push it again)
if (!cause_return) {
__ push(rbx);
}
// Save registers, fpu state, and flags
map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
// The following is basically a call_VM. However, we need the precise
// address of the call in order to generate an oopmap. Hence, we do all the
// work outselves.
__ set_last_Java_frame(noreg, noreg, NULL);
// The return address must always be correct so that frame constructor never
// sees an invalid pc.
if (!cause_return) {
// Get the return pc saved by the signal handler and stash it in its appropriate place on the stack.
// Additionally, rbx is a callee saved register and we can look at it later to determine
// if someone changed the return address for us!
__ movptr(rbx, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
__ movptr(Address(rbp, wordSize), rbx);
}
// Do the call
__ mov(c_rarg0, r15_thread);
__ call(RuntimeAddress(call_ptr));
// Set an oopmap for the call site. This oopmap will map all
// oop-registers and debug-info registers as callee-saved. This
// will allow deoptimization at this safepoint to find all possible
// debug-info recordings, as well as let GC find all oops.
oop_maps->add_gc_map( __ pc() - start, map);
Label noException;
__ reset_last_Java_frame(false);
__ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
__ jcc(Assembler::equal, noException);
// Exception pending
RegisterSaver::restore_live_registers(masm, save_vectors);
__ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
// No exception case
__ bind(noException);
Label no_adjust, bail, no_prefix, not_special;
if (SafepointMechanism::uses_thread_local_poll() && !cause_return) {
// If our stashed return pc was modified by the runtime we avoid touching it
__ cmpptr(rbx, Address(rbp, wordSize));
__ jccb(Assembler::notEqual, no_adjust);
// Skip over the poll instruction.
// See NativeInstruction::is_safepoint_poll()
// Possible encodings:
// 85 00 test %eax,(%rax)
// 85 01 test %eax,(%rcx)
// 85 02 test %eax,(%rdx)
// 85 03 test %eax,(%rbx)
// 85 06 test %eax,(%rsi)
// 85 07 test %eax,(%rdi)
//
// 41 85 00 test %eax,(%r8)
// 41 85 01 test %eax,(%r9)
// 41 85 02 test %eax,(%r10)
// 41 85 03 test %eax,(%r11)
// 41 85 06 test %eax,(%r14)
// 41 85 07 test %eax,(%r15)
//
// 85 04 24 test %eax,(%rsp)
// 41 85 04 24 test %eax,(%r12)
// 85 45 00 test %eax,0x0(%rbp)
// 41 85 45 00 test %eax,0x0(%r13)
__ cmpb(Address(rbx, 0), NativeTstRegMem::instruction_rex_b_prefix);
__ jcc(Assembler::notEqual, no_prefix);
__ addptr(rbx, 1);
__ bind(no_prefix);
#ifdef ASSERT
__ movptr(rax, rbx); // remember where 0x85 should be, for verification below
#endif
// r12/r13/rsp/rbp base encoding takes 3 bytes with the following register values:
// r12/rsp 0x04
// r13/rbp 0x05
__ movzbq(rcx, Address(rbx, 1));
__ andptr(rcx, 0x07); // looking for 0x04 .. 0x05
__ subptr(rcx, 4); // looking for 0x00 .. 0x01
__ cmpptr(rcx, 1);
__ jcc(Assembler::above, not_special);
__ addptr(rbx, 1);
__ bind(not_special);
#ifdef ASSERT
// Verify the correct encoding of the poll we're about to skip.
__ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl);
__ jcc(Assembler::notEqual, bail);
// Mask out the modrm bits
__ testb(Address(rax, 1), NativeTstRegMem::modrm_mask);
// rax encodes to 0, so if the bits are nonzero it's incorrect
__ jcc(Assembler::notZero, bail);
#endif
// Adjust return pc forward to step over the safepoint poll instruction
__ addptr(rbx, 2);
__ movptr(Address(rbp, wordSize), rbx);
}
__ bind(no_adjust);
// Normal exit, restore registers and exit.
RegisterSaver::restore_live_registers(masm, save_vectors);
__ ret(0);
#ifdef ASSERT
__ bind(bail);
__ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
#endif
// Make sure all code is generated
masm->flush();
// Fill-out other meta info
return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
}
//
// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
//
// Generate a stub that calls into vm to find out the proper destination
// of a java call. All the argument registers are live at this point
// but since this is generic code we don't know what they are and the caller
// must do any gc of the args.
//
RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
// allocate space for the code
ResourceMark rm;
CodeBuffer buffer(name, 1000, 512);
MacroAssembler* masm = new MacroAssembler(&buffer);
int frame_size_in_words;
OopMapSet *oop_maps = new OopMapSet();
OopMap* map = NULL;
int start = __ offset();
map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
int frame_complete = __ offset();
__ set_last_Java_frame(noreg, noreg, NULL);
__ mov(c_rarg0, r15_thread);
__ call(RuntimeAddress(destination));
// Set an oopmap for the call site.
// We need this not only for callee-saved registers, but also for volatile
// registers that the compiler might be keeping live across a safepoint.
oop_maps->add_gc_map( __ offset() - start, map);
// rax contains the address we are going to jump to assuming no exception got installed
// clear last_Java_sp
__ reset_last_Java_frame(false);
// check for pending exceptions
Label pending;
__ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
__ jcc(Assembler::notEqual, pending);
// get the returned Method*
__ get_vm_result_2(rbx, r15_thread);
__ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
__ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
RegisterSaver::restore_live_registers(masm);
// We are back the the original state on entry and ready to go.
__ jmp(rax);
// Pending exception after the safepoint
__ bind(pending);
RegisterSaver::restore_live_registers(masm);
// exception pending => remove activation and forward to exception handler
__ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
__ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
__ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
// -------------
// make sure all code is generated
masm->flush();
// return the blob
// frame_size_words or bytes??
return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
}
//------------------------------Montgomery multiplication------------------------
//
#ifndef _WINDOWS
#define ASM_SUBTRACT
#ifdef ASM_SUBTRACT
// Subtract 0:b from carry:a. Return carry.
static unsigned long
sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) {
long i = 0, cnt = len;
unsigned long tmp;
asm volatile("clc; "
"0: ; "
"mov (%[b], %[i], 8), %[tmp]; "
"sbb %[tmp], (%[a], %[i], 8); "
"inc %[i]; dec %[cnt]; "
"jne 0b; "
"mov %[carry], %[tmp]; sbb $0, %[tmp]; "
: [i]"+r"(i), [cnt]"+r"(cnt), [tmp]"=&r"(tmp)
: [a]"r"(a), [b]"r"(b), [carry]"r"(carry)
: "memory");
return tmp;
}
#else // ASM_SUBTRACT
typedef int __attribute__((mode(TI))) int128;
// Subtract 0:b from carry:a. Return carry.
static unsigned long
sub(unsigned long a[], unsigned long b[], unsigned long carry, int len) {
int128 tmp = 0;
int i;
for (i = 0; i < len; i++) {
tmp += a[i];
tmp -= b[i];
a[i] = tmp;
tmp >>= 64;
assert(-1 <= tmp && tmp <= 0, "invariant");
}
return tmp + carry;
}
#endif // ! ASM_SUBTRACT
// Multiply (unsigned) Long A by Long B, accumulating the double-
// length result into the accumulator formed of T0, T1, and T2.
#define MACC(A, B, T0, T1, T2) \
do { \
unsigned long hi, lo; \
__asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4" \
: "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2) \
: "r"(A), "a"(B) : "cc"); \
} while(0)
// As above, but add twice the double-length result into the
// accumulator.
#define MACC2(A, B, T0, T1, T2) \
do { \
unsigned long hi, lo; \
__asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4; " \
"add %%rax, %2; adc %%rdx, %3; adc $0, %4" \
: "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2) \
: "r"(A), "a"(B) : "cc"); \
} while(0)
// Fast Montgomery multiplication. The derivation of the algorithm is
// in A Cryptographic Library for the Motorola DSP56000,
// Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237.
static void __attribute__((noinline))
montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[],
unsigned long m[], unsigned long inv, int len) {
unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
int i;
assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
for (i = 0; i < len; i++) {
int j;
for (j = 0; j < i; j++) {
MACC(a[j], b[i-j], t0, t1, t2);
MACC(m[j], n[i-j], t0, t1, t2);
}
MACC(a[i], b[0], t0, t1, t2);
m[i] = t0 * inv;
MACC(m[i], n[0], t0, t1, t2);
assert(t0 == 0, "broken Montgomery multiply");
t0 = t1; t1 = t2; t2 = 0;
}
for (i = len; i < 2*len; i++) {
int j;
for (j = i-len+1; j < len; j++) {
MACC(a[j], b[i-j], t0, t1, t2);
MACC(m[j], n[i-j], t0, t1, t2);
}
m[i-len] = t0;
t0 = t1; t1 = t2; t2 = 0;
}
while (t0)
t0 = sub(m, n, t0, len);
}
// Fast Montgomery squaring. This uses asymptotically 25% fewer
// multiplies so it should be up to 25% faster than Montgomery
// multiplication. However, its loop control is more complex and it
// may actually run slower on some machines.
static void __attribute__((noinline))
montgomery_square(unsigned long a[], unsigned long n[],
unsigned long m[], unsigned long inv, int len) {
unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
int i;
assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
for (i = 0; i < len; i++) {
int j;
int end = (i+1)/2;
for (j = 0; j < end; j++) {
MACC2(a[j], a[i-j], t0, t1, t2);
MACC(m[j], n[i-j], t0, t1, t2);
}
if ((i & 1) == 0) {
MACC(a[j], a[j], t0, t1, t2);
}
for (; j < i; j++) {
MACC(m[j], n[i-j], t0, t1, t2);
}
m[i] = t0 * inv;
MACC(m[i], n[0], t0, t1, t2);
assert(t0 == 0, "broken Montgomery square");
t0 = t1; t1 = t2; t2 = 0;
}
for (i = len; i < 2*len; i++) {
int start = i-len+1;
int end = start + (len - start)/2;
int j;
for (j = start; j < end; j++) {
MACC2(a[j], a[i-j], t0, t1, t2);
MACC(m[j], n[i-j], t0, t1, t2);
}
if ((i & 1) == 0) {
MACC(a[j], a[j], t0, t1, t2);
}
for (; j < len; j++) {
MACC(m[j], n[i-j], t0, t1, t2);
}
m[i-len] = t0;
t0 = t1; t1 = t2; t2 = 0;
}
while (t0)
t0 = sub(m, n, t0, len);
}
// Swap words in a longword.
static unsigned long swap(unsigned long x) {
return (x << 32) | (x >> 32);
}
// Copy len longwords from s to d, word-swapping as we go. The
// destination array is reversed.
static void reverse_words(unsigned long *s, unsigned long *d, int len) {
d += len;
while(len-- > 0) {
d--;
*d = swap(*s);
s++;
}
}
// The threshold at which squaring is advantageous was determined
// experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
#define MONTGOMERY_SQUARING_THRESHOLD 64
void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
jint len, jlong inv,
jint *m_ints) {
assert(len % 2 == 0, "array length in montgomery_multiply must be even");
int longwords = len/2;
// Make very sure we don't use so much space that the stack might
// overflow. 512 jints corresponds to an 16384-bit integer and
// will use here a total of 8k bytes of stack space.
int total_allocation = longwords * sizeof (unsigned long) * 4;
guarantee(total_allocation <= 8192, "must be");
unsigned long *scratch = (unsigned long *)alloca(total_allocation);
// Local scratch arrays
unsigned long
*a = scratch + 0 * longwords,
*b = scratch + 1 * longwords,
*n = scratch + 2 * longwords,
*m = scratch + 3 * longwords;
reverse_words((unsigned long *)a_ints, a, longwords);
reverse_words((unsigned long *)b_ints, b, longwords);
reverse_words((unsigned long *)n_ints, n, longwords);
::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords);
reverse_words(m, (unsigned long *)m_ints, longwords);
}
void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
jint len, jlong inv,
jint *m_ints) {
assert(len % 2 == 0, "array length in montgomery_square must be even");
int longwords = len/2;
// Make very sure we don't use so much space that the stack might
// overflow. 512 jints corresponds to an 16384-bit integer and
// will use here a total of 6k bytes of stack space.
int total_allocation = longwords * sizeof (unsigned long) * 3;
guarantee(total_allocation <= 8192, "must be");
unsigned long *scratch = (unsigned long *)alloca(total_allocation);
// Local scratch arrays
unsigned long
*a = scratch + 0 * longwords,
*n = scratch + 1 * longwords,
*m = scratch + 2 * longwords;
reverse_words((unsigned long *)a_ints, a, longwords);
reverse_words((unsigned long *)n_ints, n, longwords);
if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
::montgomery_square(a, n, m, (unsigned long)inv, longwords);
} else {
::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords);
}
reverse_words(m, (unsigned long *)m_ints, longwords);
}
#endif // WINDOWS
#ifdef COMPILER2
// This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
//
//------------------------------generate_exception_blob---------------------------
// creates exception blob at the end
// Using exception blob, this code is jumped from a compiled method.
// (see emit_exception_handler in x86_64.ad file)
//
// Given an exception pc at a call we call into the runtime for the
// handler in this method. This handler might merely restore state
// (i.e. callee save registers) unwind the frame and jump to the
// exception handler for the nmethod if there is no Java level handler
// for the nmethod.
//
// This code is entered with a jmp.
//
// Arguments:
// rax: exception oop
// rdx: exception pc
//
// Results:
// rax: exception oop
// rdx: exception pc in caller or ???
// destination: exception handler of caller
//
// Note: the exception pc MUST be at a call (precise debug information)
// Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
//
void OptoRuntime::generate_exception_blob() {
assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
// Allocate space for the code
ResourceMark rm;
// Setup code generation tools
CodeBuffer buffer("exception_blob", 2048, 1024);
MacroAssembler* masm = new MacroAssembler(&buffer);
address start = __ pc();
// Exception pc is 'return address' for stack walker
__ push(rdx);
__ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
// Save callee-saved registers. See x86_64.ad.
// rbp is an implicitly saved callee saved register (i.e., the calling
// convention will save/restore it in the prolog/epilog). Other than that
// there are no callee save registers now that adapter frames are gone.
__ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
// Store exception in Thread object. We cannot pass any arguments to the
// handle_exception call, since we do not want to make any assumption
// about the size of the frame where the exception happened in.
// c_rarg0 is either rdi (Linux) or rcx (Windows).
__ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
__ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
// This call does all the hard work. It checks if an exception handler
// exists in the method.
// If so, it returns the handler address.
// If not, it prepares for stack-unwinding, restoring the callee-save
// registers of the frame being removed.
//
// address OptoRuntime::handle_exception_C(JavaThread* thread)
// At a method handle call, the stack may not be properly aligned
// when returning with an exception.
address the_pc = __ pc();
__ set_last_Java_frame(noreg, noreg, the_pc);
__ mov(c_rarg0, r15_thread);
__ andptr(rsp, -(StackAlignmentInBytes)); // Align stack
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
// Set an oopmap for the call site. This oopmap will only be used if we
// are unwinding the stack. Hence, all locations will be dead.
// Callee-saved registers will be the same as the frame above (i.e.,
// handle_exception_stub), since they were restored when we got the
// exception.
OopMapSet* oop_maps = new OopMapSet();
oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
__ reset_last_Java_frame(false);
// Restore callee-saved registers
// rbp is an implicitly saved callee-saved register (i.e., the calling
// convention will save restore it in prolog/epilog) Other than that
// there are no callee save registers now that adapter frames are gone.
__ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
__ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
__ pop(rdx); // No need for exception pc anymore
// rax: exception handler
// We have a handler in rax (could be deopt blob).
__ mov(r8, rax);
// Get the exception oop
__ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
// Get the exception pc in case we are deoptimized
__ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
#ifdef ASSERT
__ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
__ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
#endif
// Clear the exception oop so GC no longer processes it as a root.
__ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
// rax: exception oop
// r8: exception handler
// rdx: exception pc
// Jump to handler
__ jmp(r8);
// Make sure all code is generated
masm->flush();
// Set exception blob
_exception_blob = ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
}
#endif // COMPILER2