8024633: Lambda linkage performance - initialize generated class earlier
Reviewed-by: briangoetz, rfield
Contributed-by: sergey.kuksenko@oracle.com
/*
* Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.lang.invoke;
import sun.misc.Unsafe;
import java.lang.reflect.Method;
import java.util.Arrays;
import sun.invoke.util.VerifyAccess;
import static java.lang.invoke.MethodHandleNatives.Constants.*;
import static java.lang.invoke.LambdaForm.*;
import static java.lang.invoke.MethodTypeForm.*;
import static java.lang.invoke.MethodHandleStatics.*;
import java.lang.ref.WeakReference;
import java.lang.reflect.Field;
import sun.invoke.util.ValueConversions;
import sun.invoke.util.VerifyType;
import sun.invoke.util.Wrapper;
/**
* The flavor of method handle which implements a constant reference
* to a class member.
* @author jrose
*/
class DirectMethodHandle extends MethodHandle {
final MemberName member;
// Constructors and factory methods in this class *must* be package scoped or private.
private DirectMethodHandle(MethodType mtype, LambdaForm form, MemberName member) {
super(mtype, form);
if (!member.isResolved()) throw new InternalError();
if (member.getDeclaringClass().isInterface() &&
member.isMethod() && !member.isAbstract()) {
// Check for corner case: invokeinterface of Object method
MemberName m = new MemberName(Object.class, member.getName(), member.getMethodType(), member.getReferenceKind());
m = MemberName.getFactory().resolveOrNull(m.getReferenceKind(), m, null);
if (m != null && m.isPublic()) {
member = m;
}
}
this.member = member;
}
// Factory methods:
static DirectMethodHandle make(byte refKind, Class<?> receiver, MemberName member) {
MethodType mtype = member.getMethodOrFieldType();
if (!member.isStatic()) {
if (!member.getDeclaringClass().isAssignableFrom(receiver) || member.isConstructor())
throw new InternalError(member.toString());
mtype = mtype.insertParameterTypes(0, receiver);
}
if (!member.isField()) {
if (refKind == REF_invokeSpecial) {
member = member.asSpecial();
LambdaForm lform = preparedLambdaForm(member);
return new Special(mtype, lform, member);
} else {
LambdaForm lform = preparedLambdaForm(member);
return new DirectMethodHandle(mtype, lform, member);
}
} else {
LambdaForm lform = preparedFieldLambdaForm(member);
if (member.isStatic()) {
long offset = MethodHandleNatives.staticFieldOffset(member);
Object base = MethodHandleNatives.staticFieldBase(member);
return new StaticAccessor(mtype, lform, member, base, offset);
} else {
long offset = MethodHandleNatives.objectFieldOffset(member);
assert(offset == (int)offset);
return new Accessor(mtype, lform, member, (int)offset);
}
}
}
static DirectMethodHandle make(Class<?> receiver, MemberName member) {
byte refKind = member.getReferenceKind();
if (refKind == REF_invokeSpecial)
refKind = REF_invokeVirtual;
return make(refKind, receiver, member);
}
static DirectMethodHandle make(MemberName member) {
if (member.isConstructor())
return makeAllocator(member);
return make(member.getDeclaringClass(), member);
}
static DirectMethodHandle make(Method method) {
return make(method.getDeclaringClass(), new MemberName(method));
}
static DirectMethodHandle make(Field field) {
return make(field.getDeclaringClass(), new MemberName(field));
}
private static DirectMethodHandle makeAllocator(MemberName ctor) {
assert(ctor.isConstructor() && ctor.getName().equals("<init>"));
Class<?> instanceClass = ctor.getDeclaringClass();
ctor = ctor.asConstructor();
assert(ctor.isConstructor() && ctor.getReferenceKind() == REF_newInvokeSpecial) : ctor;
MethodType mtype = ctor.getMethodType().changeReturnType(instanceClass);
LambdaForm lform = preparedLambdaForm(ctor);
MemberName init = ctor.asSpecial();
assert(init.getMethodType().returnType() == void.class);
return new Constructor(mtype, lform, ctor, init, instanceClass);
}
@Override
MethodHandle copyWith(MethodType mt, LambdaForm lf) {
return new DirectMethodHandle(mt, lf, member);
}
@Override
String internalProperties() {
return "/DMH="+member.toString();
}
//// Implementation methods.
@Override
MethodHandle viewAsType(MethodType newType) {
return new DirectMethodHandle(newType, form, member);
}
@Override
@ForceInline
MemberName internalMemberName() {
return member;
}
@Override
MethodHandle bindArgument(int pos, char basicType, Object value) {
// If the member needs dispatching, do so.
if (pos == 0 && basicType == 'L') {
DirectMethodHandle concrete = maybeRebind(value);
if (concrete != null)
return concrete.bindReceiver(value);
}
return super.bindArgument(pos, basicType, value);
}
@Override
MethodHandle bindReceiver(Object receiver) {
// If the member needs dispatching, do so.
DirectMethodHandle concrete = maybeRebind(receiver);
if (concrete != null)
return concrete.bindReceiver(receiver);
return super.bindReceiver(receiver);
}
private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
private DirectMethodHandle maybeRebind(Object receiver) {
if (receiver != null) {
switch (member.getReferenceKind()) {
case REF_invokeInterface:
case REF_invokeVirtual:
// Pre-dispatch the member.
Class<?> concreteClass = receiver.getClass();
MemberName concrete = new MemberName(concreteClass, member.getName(), member.getMethodType(), REF_invokeSpecial);
concrete = IMPL_NAMES.resolveOrNull(REF_invokeSpecial, concrete, concreteClass);
if (concrete != null)
return new DirectMethodHandle(type(), preparedLambdaForm(concrete), concrete);
break;
}
}
return null;
}
/**
* Create a LF which can invoke the given method.
* Cache and share this structure among all methods with
* the same basicType and refKind.
*/
private static LambdaForm preparedLambdaForm(MemberName m) {
assert(m.isInvocable()) : m; // call preparedFieldLambdaForm instead
MethodType mtype = m.getInvocationType().basicType();
assert(!m.isMethodHandleInvoke() || "invokeBasic".equals(m.getName())) : m;
int which;
switch (m.getReferenceKind()) {
case REF_invokeVirtual: which = LF_INVVIRTUAL; break;
case REF_invokeStatic: which = LF_INVSTATIC; break;
case REF_invokeSpecial: which = LF_INVSPECIAL; break;
case REF_invokeInterface: which = LF_INVINTERFACE; break;
case REF_newInvokeSpecial: which = LF_NEWINVSPECIAL; break;
default: throw new InternalError(m.toString());
}
if (which == LF_INVSTATIC && shouldBeInitialized(m)) {
// precompute the barrier-free version:
preparedLambdaForm(mtype, which);
which = LF_INVSTATIC_INIT;
}
LambdaForm lform = preparedLambdaForm(mtype, which);
maybeCompile(lform, m);
assert(lform.methodType().dropParameterTypes(0, 1)
.equals(m.getInvocationType().basicType()))
: Arrays.asList(m, m.getInvocationType().basicType(), lform, lform.methodType());
return lform;
}
private static LambdaForm preparedLambdaForm(MethodType mtype, int which) {
LambdaForm lform = mtype.form().cachedLambdaForm(which);
if (lform != null) return lform;
lform = makePreparedLambdaForm(mtype, which);
return mtype.form().setCachedLambdaForm(which, lform);
}
private static LambdaForm makePreparedLambdaForm(MethodType mtype, int which) {
boolean needsInit = (which == LF_INVSTATIC_INIT);
boolean doesAlloc = (which == LF_NEWINVSPECIAL);
String linkerName, lambdaName;
switch (which) {
case LF_INVVIRTUAL: linkerName = "linkToVirtual"; lambdaName = "DMH.invokeVirtual"; break;
case LF_INVSTATIC: linkerName = "linkToStatic"; lambdaName = "DMH.invokeStatic"; break;
case LF_INVSTATIC_INIT:linkerName = "linkToStatic"; lambdaName = "DMH.invokeStaticInit"; break;
case LF_INVSPECIAL: linkerName = "linkToSpecial"; lambdaName = "DMH.invokeSpecial"; break;
case LF_INVINTERFACE: linkerName = "linkToInterface"; lambdaName = "DMH.invokeInterface"; break;
case LF_NEWINVSPECIAL: linkerName = "linkToSpecial"; lambdaName = "DMH.newInvokeSpecial"; break;
default: throw new InternalError("which="+which);
}
MethodType mtypeWithArg = mtype.appendParameterTypes(MemberName.class);
if (doesAlloc)
mtypeWithArg = mtypeWithArg
.insertParameterTypes(0, Object.class) // insert newly allocated obj
.changeReturnType(void.class); // <init> returns void
MemberName linker = new MemberName(MethodHandle.class, linkerName, mtypeWithArg, REF_invokeStatic);
try {
linker = IMPL_NAMES.resolveOrFail(REF_invokeStatic, linker, null, NoSuchMethodException.class);
} catch (ReflectiveOperationException ex) {
throw newInternalError(ex);
}
final int DMH_THIS = 0;
final int ARG_BASE = 1;
final int ARG_LIMIT = ARG_BASE + mtype.parameterCount();
int nameCursor = ARG_LIMIT;
final int NEW_OBJ = (doesAlloc ? nameCursor++ : -1);
final int GET_MEMBER = nameCursor++;
final int LINKER_CALL = nameCursor++;
Name[] names = arguments(nameCursor - ARG_LIMIT, mtype.invokerType());
assert(names.length == nameCursor);
if (doesAlloc) {
// names = { argx,y,z,... new C, init method }
names[NEW_OBJ] = new Name(Lazy.NF_allocateInstance, names[DMH_THIS]);
names[GET_MEMBER] = new Name(Lazy.NF_constructorMethod, names[DMH_THIS]);
} else if (needsInit) {
names[GET_MEMBER] = new Name(Lazy.NF_internalMemberNameEnsureInit, names[DMH_THIS]);
} else {
names[GET_MEMBER] = new Name(Lazy.NF_internalMemberName, names[DMH_THIS]);
}
Object[] outArgs = Arrays.copyOfRange(names, ARG_BASE, GET_MEMBER+1, Object[].class);
assert(outArgs[outArgs.length-1] == names[GET_MEMBER]); // look, shifted args!
int result = LambdaForm.LAST_RESULT;
if (doesAlloc) {
assert(outArgs[outArgs.length-2] == names[NEW_OBJ]); // got to move this one
System.arraycopy(outArgs, 0, outArgs, 1, outArgs.length-2);
outArgs[0] = names[NEW_OBJ];
result = NEW_OBJ;
}
names[LINKER_CALL] = new Name(linker, outArgs);
lambdaName += "_" + LambdaForm.basicTypeSignature(mtype);
LambdaForm lform = new LambdaForm(lambdaName, ARG_LIMIT, names, result);
// This is a tricky bit of code. Don't send it through the LF interpreter.
lform.compileToBytecode();
return lform;
}
private static void maybeCompile(LambdaForm lform, MemberName m) {
if (VerifyAccess.isSamePackage(m.getDeclaringClass(), MethodHandle.class))
// Help along bootstrapping...
lform.compileToBytecode();
}
/** Static wrapper for DirectMethodHandle.internalMemberName. */
@ForceInline
/*non-public*/ static Object internalMemberName(Object mh) {
return ((DirectMethodHandle)mh).member;
}
/** Static wrapper for DirectMethodHandle.internalMemberName.
* This one also forces initialization.
*/
/*non-public*/ static Object internalMemberNameEnsureInit(Object mh) {
DirectMethodHandle dmh = (DirectMethodHandle)mh;
dmh.ensureInitialized();
return dmh.member;
}
/*non-public*/ static
boolean shouldBeInitialized(MemberName member) {
switch (member.getReferenceKind()) {
case REF_invokeStatic:
case REF_getStatic:
case REF_putStatic:
case REF_newInvokeSpecial:
break;
default:
// No need to initialize the class on this kind of member.
return false;
}
Class<?> cls = member.getDeclaringClass();
if (cls == ValueConversions.class ||
cls == MethodHandleImpl.class ||
cls == Invokers.class) {
// These guys have lots of <clinit> DMH creation but we know
// the MHs will not be used until the system is booted.
return false;
}
if (VerifyAccess.isSamePackage(MethodHandle.class, cls) ||
VerifyAccess.isSamePackage(ValueConversions.class, cls)) {
// It is a system class. It is probably in the process of
// being initialized, but we will help it along just to be safe.
if (UNSAFE.shouldBeInitialized(cls)) {
UNSAFE.ensureClassInitialized(cls);
}
return false;
}
return UNSAFE.shouldBeInitialized(cls);
}
private static class EnsureInitialized extends ClassValue<WeakReference<Thread>> {
@Override
protected WeakReference<Thread> computeValue(Class<?> type) {
UNSAFE.ensureClassInitialized(type);
if (UNSAFE.shouldBeInitialized(type))
// If the previous call didn't block, this can happen.
// We are executing inside <clinit>.
return new WeakReference<>(Thread.currentThread());
return null;
}
static final EnsureInitialized INSTANCE = new EnsureInitialized();
}
private void ensureInitialized() {
if (checkInitialized(member)) {
// The coast is clear. Delete the <clinit> barrier.
if (member.isField())
updateForm(preparedFieldLambdaForm(member));
else
updateForm(preparedLambdaForm(member));
}
}
private static boolean checkInitialized(MemberName member) {
Class<?> defc = member.getDeclaringClass();
WeakReference<Thread> ref = EnsureInitialized.INSTANCE.get(defc);
if (ref == null) {
return true; // the final state
}
Thread clinitThread = ref.get();
// Somebody may still be running defc.<clinit>.
if (clinitThread == Thread.currentThread()) {
// If anybody is running defc.<clinit>, it is this thread.
if (UNSAFE.shouldBeInitialized(defc))
// Yes, we are running it; keep the barrier for now.
return false;
} else {
// We are in a random thread. Block.
UNSAFE.ensureClassInitialized(defc);
}
assert(!UNSAFE.shouldBeInitialized(defc));
// put it into the final state
EnsureInitialized.INSTANCE.remove(defc);
return true;
}
/*non-public*/ static void ensureInitialized(Object mh) {
((DirectMethodHandle)mh).ensureInitialized();
}
/** This subclass represents invokespecial instructions. */
static class Special extends DirectMethodHandle {
private Special(MethodType mtype, LambdaForm form, MemberName member) {
super(mtype, form, member);
}
@Override
boolean isInvokeSpecial() {
return true;
}
@Override
MethodHandle viewAsType(MethodType newType) {
return new Special(newType, form, member);
}
}
/** This subclass handles constructor references. */
static class Constructor extends DirectMethodHandle {
final MemberName initMethod;
final Class<?> instanceClass;
private Constructor(MethodType mtype, LambdaForm form, MemberName constructor,
MemberName initMethod, Class<?> instanceClass) {
super(mtype, form, constructor);
this.initMethod = initMethod;
this.instanceClass = instanceClass;
assert(initMethod.isResolved());
}
@Override
MethodHandle viewAsType(MethodType newType) {
return new Constructor(newType, form, member, initMethod, instanceClass);
}
}
/*non-public*/ static Object constructorMethod(Object mh) {
Constructor dmh = (Constructor)mh;
return dmh.initMethod;
}
/*non-public*/ static Object allocateInstance(Object mh) throws InstantiationException {
Constructor dmh = (Constructor)mh;
return UNSAFE.allocateInstance(dmh.instanceClass);
}
/** This subclass handles non-static field references. */
static class Accessor extends DirectMethodHandle {
final Class<?> fieldType;
final int fieldOffset;
private Accessor(MethodType mtype, LambdaForm form, MemberName member,
int fieldOffset) {
super(mtype, form, member);
this.fieldType = member.getFieldType();
this.fieldOffset = fieldOffset;
}
@Override Object checkCast(Object obj) {
return fieldType.cast(obj);
}
@Override
MethodHandle viewAsType(MethodType newType) {
return new Accessor(newType, form, member, fieldOffset);
}
}
@ForceInline
/*non-public*/ static long fieldOffset(Object accessorObj) {
// Note: We return a long because that is what Unsafe.getObject likes.
// We store a plain int because it is more compact.
return ((Accessor)accessorObj).fieldOffset;
}
@ForceInline
/*non-public*/ static Object checkBase(Object obj) {
// Note that the object's class has already been verified,
// since the parameter type of the Accessor method handle
// is either member.getDeclaringClass or a subclass.
// This was verified in DirectMethodHandle.make.
// Therefore, the only remaining check is for null.
// Since this check is *not* guaranteed by Unsafe.getInt
// and its siblings, we need to make an explicit one here.
obj.getClass(); // maybe throw NPE
return obj;
}
/** This subclass handles static field references. */
static class StaticAccessor extends DirectMethodHandle {
final private Class<?> fieldType;
final private Object staticBase;
final private long staticOffset;
private StaticAccessor(MethodType mtype, LambdaForm form, MemberName member,
Object staticBase, long staticOffset) {
super(mtype, form, member);
this.fieldType = member.getFieldType();
this.staticBase = staticBase;
this.staticOffset = staticOffset;
}
@Override Object checkCast(Object obj) {
return fieldType.cast(obj);
}
@Override
MethodHandle viewAsType(MethodType newType) {
return new StaticAccessor(newType, form, member, staticBase, staticOffset);
}
}
@ForceInline
/*non-public*/ static Object nullCheck(Object obj) {
obj.getClass();
return obj;
}
@ForceInline
/*non-public*/ static Object staticBase(Object accessorObj) {
return ((StaticAccessor)accessorObj).staticBase;
}
@ForceInline
/*non-public*/ static long staticOffset(Object accessorObj) {
return ((StaticAccessor)accessorObj).staticOffset;
}
@ForceInline
/*non-public*/ static Object checkCast(Object mh, Object obj) {
return ((DirectMethodHandle) mh).checkCast(obj);
}
Object checkCast(Object obj) {
return member.getReturnType().cast(obj);
}
// Caching machinery for field accessors:
private static byte
AF_GETFIELD = 0,
AF_PUTFIELD = 1,
AF_GETSTATIC = 2,
AF_PUTSTATIC = 3,
AF_GETSTATIC_INIT = 4,
AF_PUTSTATIC_INIT = 5,
AF_LIMIT = 6;
// Enumerate the different field kinds using Wrapper,
// with an extra case added for checked references.
private static int
FT_LAST_WRAPPER = Wrapper.values().length-1,
FT_UNCHECKED_REF = Wrapper.OBJECT.ordinal(),
FT_CHECKED_REF = FT_LAST_WRAPPER+1,
FT_LIMIT = FT_LAST_WRAPPER+2;
private static int afIndex(byte formOp, boolean isVolatile, int ftypeKind) {
return ((formOp * FT_LIMIT * 2)
+ (isVolatile ? FT_LIMIT : 0)
+ ftypeKind);
}
private static final LambdaForm[] ACCESSOR_FORMS
= new LambdaForm[afIndex(AF_LIMIT, false, 0)];
private static int ftypeKind(Class<?> ftype) {
if (ftype.isPrimitive())
return Wrapper.forPrimitiveType(ftype).ordinal();
else if (VerifyType.isNullReferenceConversion(Object.class, ftype))
return FT_UNCHECKED_REF;
else
return FT_CHECKED_REF;
}
/**
* Create a LF which can access the given field.
* Cache and share this structure among all fields with
* the same basicType and refKind.
*/
private static LambdaForm preparedFieldLambdaForm(MemberName m) {
Class<?> ftype = m.getFieldType();
boolean isVolatile = m.isVolatile();
byte formOp;
switch (m.getReferenceKind()) {
case REF_getField: formOp = AF_GETFIELD; break;
case REF_putField: formOp = AF_PUTFIELD; break;
case REF_getStatic: formOp = AF_GETSTATIC; break;
case REF_putStatic: formOp = AF_PUTSTATIC; break;
default: throw new InternalError(m.toString());
}
if (shouldBeInitialized(m)) {
// precompute the barrier-free version:
preparedFieldLambdaForm(formOp, isVolatile, ftype);
assert((AF_GETSTATIC_INIT - AF_GETSTATIC) ==
(AF_PUTSTATIC_INIT - AF_PUTSTATIC));
formOp += (AF_GETSTATIC_INIT - AF_GETSTATIC);
}
LambdaForm lform = preparedFieldLambdaForm(formOp, isVolatile, ftype);
maybeCompile(lform, m);
assert(lform.methodType().dropParameterTypes(0, 1)
.equals(m.getInvocationType().basicType()))
: Arrays.asList(m, m.getInvocationType().basicType(), lform, lform.methodType());
return lform;
}
private static LambdaForm preparedFieldLambdaForm(byte formOp, boolean isVolatile, Class<?> ftype) {
int afIndex = afIndex(formOp, isVolatile, ftypeKind(ftype));
LambdaForm lform = ACCESSOR_FORMS[afIndex];
if (lform != null) return lform;
lform = makePreparedFieldLambdaForm(formOp, isVolatile, ftypeKind(ftype));
ACCESSOR_FORMS[afIndex] = lform; // don't bother with a CAS
return lform;
}
private static LambdaForm makePreparedFieldLambdaForm(byte formOp, boolean isVolatile, int ftypeKind) {
boolean isGetter = (formOp & 1) == (AF_GETFIELD & 1);
boolean isStatic = (formOp >= AF_GETSTATIC);
boolean needsInit = (formOp >= AF_GETSTATIC_INIT);
boolean needsCast = (ftypeKind == FT_CHECKED_REF);
Wrapper fw = (needsCast ? Wrapper.OBJECT : Wrapper.values()[ftypeKind]);
Class<?> ft = fw.primitiveType();
assert(ftypeKind(needsCast ? String.class : ft) == ftypeKind);
String tname = fw.primitiveSimpleName();
String ctname = Character.toUpperCase(tname.charAt(0)) + tname.substring(1);
if (isVolatile) ctname += "Volatile";
String getOrPut = (isGetter ? "get" : "put");
String linkerName = (getOrPut + ctname); // getObject, putIntVolatile, etc.
MethodType linkerType;
if (isGetter)
linkerType = MethodType.methodType(ft, Object.class, long.class);
else
linkerType = MethodType.methodType(void.class, Object.class, long.class, ft);
MemberName linker = new MemberName(Unsafe.class, linkerName, linkerType, REF_invokeVirtual);
try {
linker = IMPL_NAMES.resolveOrFail(REF_invokeVirtual, linker, null, NoSuchMethodException.class);
} catch (ReflectiveOperationException ex) {
throw newInternalError(ex);
}
// What is the external type of the lambda form?
MethodType mtype;
if (isGetter)
mtype = MethodType.methodType(ft);
else
mtype = MethodType.methodType(void.class, ft);
mtype = mtype.basicType(); // erase short to int, etc.
if (!isStatic)
mtype = mtype.insertParameterTypes(0, Object.class);
final int DMH_THIS = 0;
final int ARG_BASE = 1;
final int ARG_LIMIT = ARG_BASE + mtype.parameterCount();
// if this is for non-static access, the base pointer is stored at this index:
final int OBJ_BASE = isStatic ? -1 : ARG_BASE;
// if this is for write access, the value to be written is stored at this index:
final int SET_VALUE = isGetter ? -1 : ARG_LIMIT - 1;
int nameCursor = ARG_LIMIT;
final int F_HOLDER = (isStatic ? nameCursor++ : -1); // static base if any
final int F_OFFSET = nameCursor++; // Either static offset or field offset.
final int OBJ_CHECK = (OBJ_BASE >= 0 ? nameCursor++ : -1);
final int INIT_BAR = (needsInit ? nameCursor++ : -1);
final int PRE_CAST = (needsCast && !isGetter ? nameCursor++ : -1);
final int LINKER_CALL = nameCursor++;
final int POST_CAST = (needsCast && isGetter ? nameCursor++ : -1);
final int RESULT = nameCursor-1; // either the call or the cast
Name[] names = arguments(nameCursor - ARG_LIMIT, mtype.invokerType());
if (needsInit)
names[INIT_BAR] = new Name(Lazy.NF_ensureInitialized, names[DMH_THIS]);
if (needsCast && !isGetter)
names[PRE_CAST] = new Name(Lazy.NF_checkCast, names[DMH_THIS], names[SET_VALUE]);
Object[] outArgs = new Object[1 + linkerType.parameterCount()];
assert(outArgs.length == (isGetter ? 3 : 4));
outArgs[0] = UNSAFE;
if (isStatic) {
outArgs[1] = names[F_HOLDER] = new Name(Lazy.NF_staticBase, names[DMH_THIS]);
outArgs[2] = names[F_OFFSET] = new Name(Lazy.NF_staticOffset, names[DMH_THIS]);
} else {
outArgs[1] = names[OBJ_CHECK] = new Name(Lazy.NF_checkBase, names[OBJ_BASE]);
outArgs[2] = names[F_OFFSET] = new Name(Lazy.NF_fieldOffset, names[DMH_THIS]);
}
if (!isGetter) {
outArgs[3] = (needsCast ? names[PRE_CAST] : names[SET_VALUE]);
}
for (Object a : outArgs) assert(a != null);
names[LINKER_CALL] = new Name(linker, outArgs);
if (needsCast && isGetter)
names[POST_CAST] = new Name(Lazy.NF_checkCast, names[DMH_THIS], names[LINKER_CALL]);
for (Name n : names) assert(n != null);
String fieldOrStatic = (isStatic ? "Static" : "Field");
String lambdaName = (linkerName + fieldOrStatic); // significant only for debugging
if (needsCast) lambdaName += "Cast";
if (needsInit) lambdaName += "Init";
return new LambdaForm(lambdaName, ARG_LIMIT, names, RESULT);
}
/**
* Pre-initialized NamedFunctions for bootstrapping purposes.
* Factored in an inner class to delay initialization until first usage.
*/
private static class Lazy {
static final NamedFunction
NF_internalMemberName,
NF_internalMemberNameEnsureInit,
NF_ensureInitialized,
NF_fieldOffset,
NF_checkBase,
NF_staticBase,
NF_staticOffset,
NF_checkCast,
NF_allocateInstance,
NF_constructorMethod;
static {
try {
NamedFunction nfs[] = {
NF_internalMemberName = new NamedFunction(DirectMethodHandle.class
.getDeclaredMethod("internalMemberName", Object.class)),
NF_internalMemberNameEnsureInit = new NamedFunction(DirectMethodHandle.class
.getDeclaredMethod("internalMemberNameEnsureInit", Object.class)),
NF_ensureInitialized = new NamedFunction(DirectMethodHandle.class
.getDeclaredMethod("ensureInitialized", Object.class)),
NF_fieldOffset = new NamedFunction(DirectMethodHandle.class
.getDeclaredMethod("fieldOffset", Object.class)),
NF_checkBase = new NamedFunction(DirectMethodHandle.class
.getDeclaredMethod("checkBase", Object.class)),
NF_staticBase = new NamedFunction(DirectMethodHandle.class
.getDeclaredMethod("staticBase", Object.class)),
NF_staticOffset = new NamedFunction(DirectMethodHandle.class
.getDeclaredMethod("staticOffset", Object.class)),
NF_checkCast = new NamedFunction(DirectMethodHandle.class
.getDeclaredMethod("checkCast", Object.class, Object.class)),
NF_allocateInstance = new NamedFunction(DirectMethodHandle.class
.getDeclaredMethod("allocateInstance", Object.class)),
NF_constructorMethod = new NamedFunction(DirectMethodHandle.class
.getDeclaredMethod("constructorMethod", Object.class))
};
for (NamedFunction nf : nfs) {
// Each nf must be statically invocable or we get tied up in our bootstraps.
assert(InvokerBytecodeGenerator.isStaticallyInvocable(nf.member)) : nf;
nf.resolve();
}
} catch (ReflectiveOperationException ex) {
throw newInternalError(ex);
}
}
}
}