8080775: Better argument formatting for assert() and friends
Reviewed-by: kbarrett, pliden
/*
* Copyright (c) 2002, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/classLoaderData.hpp"
#include "classfile/systemDictionary.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "gc/shared/genCollectedHeap.hpp"
#include "memory/heapInspection.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/os.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/macros.hpp"
#include "utilities/stack.inline.hpp"
#if INCLUDE_ALL_GCS
#include "gc/parallel/parallelScavengeHeap.hpp"
#endif // INCLUDE_ALL_GCS
// HeapInspection
inline KlassInfoEntry::~KlassInfoEntry() {
if (_subclasses != NULL) {
delete _subclasses;
}
}
inline void KlassInfoEntry::add_subclass(KlassInfoEntry* cie) {
if (_subclasses == NULL) {
_subclasses = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<KlassInfoEntry*>(4, true);
}
_subclasses->append(cie);
}
int KlassInfoEntry::compare(KlassInfoEntry* e1, KlassInfoEntry* e2) {
if(e1->_instance_words > e2->_instance_words) {
return -1;
} else if(e1->_instance_words < e2->_instance_words) {
return 1;
}
// Sort alphabetically, note 'Z' < '[' < 'a', but it's better to group
// the array classes before all the instance classes.
ResourceMark rm;
const char* name1 = e1->klass()->external_name();
const char* name2 = e2->klass()->external_name();
bool d1 = (name1[0] == '[');
bool d2 = (name2[0] == '[');
if (d1 && !d2) {
return -1;
} else if (d2 && !d1) {
return 1;
} else {
return strcmp(name1, name2);
}
}
const char* KlassInfoEntry::name() const {
const char* name;
if (_klass->name() != NULL) {
name = _klass->external_name();
} else {
if (_klass == Universe::boolArrayKlassObj()) name = "<boolArrayKlass>"; else
if (_klass == Universe::charArrayKlassObj()) name = "<charArrayKlass>"; else
if (_klass == Universe::singleArrayKlassObj()) name = "<singleArrayKlass>"; else
if (_klass == Universe::doubleArrayKlassObj()) name = "<doubleArrayKlass>"; else
if (_klass == Universe::byteArrayKlassObj()) name = "<byteArrayKlass>"; else
if (_klass == Universe::shortArrayKlassObj()) name = "<shortArrayKlass>"; else
if (_klass == Universe::intArrayKlassObj()) name = "<intArrayKlass>"; else
if (_klass == Universe::longArrayKlassObj()) name = "<longArrayKlass>"; else
name = "<no name>";
}
return name;
}
void KlassInfoEntry::print_on(outputStream* st) const {
ResourceMark rm;
// simplify the formatting (ILP32 vs LP64) - always cast the numbers to 64-bit
st->print_cr(INT64_FORMAT_W(13) " " UINT64_FORMAT_W(13) " %s",
(int64_t)_instance_count,
(uint64_t)_instance_words * HeapWordSize,
name());
}
KlassInfoEntry* KlassInfoBucket::lookup(Klass* const k) {
KlassInfoEntry* elt = _list;
while (elt != NULL) {
if (elt->is_equal(k)) {
return elt;
}
elt = elt->next();
}
elt = new (std::nothrow) KlassInfoEntry(k, list());
// We may be out of space to allocate the new entry.
if (elt != NULL) {
set_list(elt);
}
return elt;
}
void KlassInfoBucket::iterate(KlassInfoClosure* cic) {
KlassInfoEntry* elt = _list;
while (elt != NULL) {
cic->do_cinfo(elt);
elt = elt->next();
}
}
void KlassInfoBucket::empty() {
KlassInfoEntry* elt = _list;
_list = NULL;
while (elt != NULL) {
KlassInfoEntry* next = elt->next();
delete elt;
elt = next;
}
}
void KlassInfoTable::AllClassesFinder::do_klass(Klass* k) {
// This has the SIDE EFFECT of creating a KlassInfoEntry
// for <k>, if one doesn't exist yet.
_table->lookup(k);
}
KlassInfoTable::KlassInfoTable(bool add_all_classes) {
_size_of_instances_in_words = 0;
_size = 0;
_ref = (HeapWord*) Universe::boolArrayKlassObj();
_buckets =
(KlassInfoBucket*) AllocateHeap(sizeof(KlassInfoBucket) * _num_buckets,
mtInternal, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
if (_buckets != NULL) {
_size = _num_buckets;
for (int index = 0; index < _size; index++) {
_buckets[index].initialize();
}
if (add_all_classes) {
AllClassesFinder finder(this);
ClassLoaderDataGraph::classes_do(&finder);
}
}
}
KlassInfoTable::~KlassInfoTable() {
if (_buckets != NULL) {
for (int index = 0; index < _size; index++) {
_buckets[index].empty();
}
FREE_C_HEAP_ARRAY(KlassInfoBucket, _buckets);
_size = 0;
}
}
uint KlassInfoTable::hash(const Klass* p) {
return (uint)(((uintptr_t)p - (uintptr_t)_ref) >> 2);
}
KlassInfoEntry* KlassInfoTable::lookup(Klass* k) {
uint idx = hash(k) % _size;
assert(_buckets != NULL, "Allocation failure should have been caught");
KlassInfoEntry* e = _buckets[idx].lookup(k);
// Lookup may fail if this is a new klass for which we
// could not allocate space for an new entry.
assert(e == NULL || k == e->klass(), "must be equal");
return e;
}
// Return false if the entry could not be recorded on account
// of running out of space required to create a new entry.
bool KlassInfoTable::record_instance(const oop obj) {
Klass* k = obj->klass();
KlassInfoEntry* elt = lookup(k);
// elt may be NULL if it's a new klass for which we
// could not allocate space for a new entry in the hashtable.
if (elt != NULL) {
elt->set_count(elt->count() + 1);
elt->set_words(elt->words() + obj->size());
_size_of_instances_in_words += obj->size();
return true;
} else {
return false;
}
}
void KlassInfoTable::iterate(KlassInfoClosure* cic) {
assert(_size == 0 || _buckets != NULL, "Allocation failure should have been caught");
for (int index = 0; index < _size; index++) {
_buckets[index].iterate(cic);
}
}
size_t KlassInfoTable::size_of_instances_in_words() const {
return _size_of_instances_in_words;
}
int KlassInfoHisto::sort_helper(KlassInfoEntry** e1, KlassInfoEntry** e2) {
return (*e1)->compare(*e1,*e2);
}
KlassInfoHisto::KlassInfoHisto(KlassInfoTable* cit, const char* title) :
_cit(cit),
_title(title) {
_elements = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<KlassInfoEntry*>(_histo_initial_size, true);
}
KlassInfoHisto::~KlassInfoHisto() {
delete _elements;
}
void KlassInfoHisto::add(KlassInfoEntry* cie) {
elements()->append(cie);
}
void KlassInfoHisto::sort() {
elements()->sort(KlassInfoHisto::sort_helper);
}
void KlassInfoHisto::print_elements(outputStream* st) const {
// simplify the formatting (ILP32 vs LP64) - store the sum in 64-bit
int64_t total = 0;
uint64_t totalw = 0;
for(int i=0; i < elements()->length(); i++) {
st->print("%4d: ", i+1);
elements()->at(i)->print_on(st);
total += elements()->at(i)->count();
totalw += elements()->at(i)->words();
}
st->print_cr("Total " INT64_FORMAT_W(13) " " UINT64_FORMAT_W(13),
total, totalw * HeapWordSize);
}
#define MAKE_COL_NAME(field, name, help) #name,
#define MAKE_COL_HELP(field, name, help) help,
static const char *name_table[] = {
HEAP_INSPECTION_COLUMNS_DO(MAKE_COL_NAME)
};
static const char *help_table[] = {
HEAP_INSPECTION_COLUMNS_DO(MAKE_COL_HELP)
};
bool KlassInfoHisto::is_selected(const char *col_name) {
if (_selected_columns == NULL) {
return true;
}
if (strcmp(_selected_columns, col_name) == 0) {
return true;
}
const char *start = strstr(_selected_columns, col_name);
if (start == NULL) {
return false;
}
// The following must be true, because _selected_columns != col_name
if (start > _selected_columns && start[-1] != ',') {
return false;
}
char x = start[strlen(col_name)];
if (x != ',' && x != '\0') {
return false;
}
return true;
}
PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
void KlassInfoHisto::print_title(outputStream* st, bool csv_format,
bool selected[], int width_table[],
const char *name_table[]) {
if (csv_format) {
st->print("Index,Super");
for (int c=0; c<KlassSizeStats::_num_columns; c++) {
if (selected[c]) {st->print(",%s", name_table[c]);}
}
st->print(",ClassName");
} else {
st->print("Index Super");
for (int c=0; c<KlassSizeStats::_num_columns; c++) {
PRAGMA_DIAG_PUSH
PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
if (selected[c]) {st->print(str_fmt(width_table[c]), name_table[c]);}
PRAGMA_DIAG_POP
}
st->print(" ClassName");
}
if (is_selected("ClassLoader")) {
st->print(",ClassLoader");
}
st->cr();
}
class HierarchyClosure : public KlassInfoClosure {
private:
GrowableArray<KlassInfoEntry*> *_elements;
public:
HierarchyClosure(GrowableArray<KlassInfoEntry*> *_elements) : _elements(_elements) {}
void do_cinfo(KlassInfoEntry* cie) {
// ignore array classes
if (cie->klass()->oop_is_instance()) {
_elements->append(cie);
}
}
};
void KlassHierarchy::print_class_hierarchy(outputStream* st, bool print_interfaces,
bool print_subclasses, char* classname) {
ResourceMark rm;
Stack <KlassInfoEntry*, mtClass> class_stack;
GrowableArray<KlassInfoEntry*> elements;
// Add all classes to the KlassInfoTable, which allows for quick lookup.
// A KlassInfoEntry will be created for each class.
KlassInfoTable cit(true);
if (cit.allocation_failed()) {
st->print_cr("ERROR: Ran out of C-heap; hierarchy not generated");
return;
}
// Add all created KlassInfoEntry instances to the elements array for easy
// iteration, and to allow each KlassInfoEntry instance to have a unique index.
HierarchyClosure hc(&elements);
cit.iterate(&hc);
for(int i = 0; i < elements.length(); i++) {
KlassInfoEntry* cie = elements.at(i);
const InstanceKlass* k = (InstanceKlass*)cie->klass();
Klass* super = ((InstanceKlass*)k)->java_super();
// Set the index for the class.
cie->set_index(i + 1);
// Add the class to the subclass array of its superclass.
if (super != NULL) {
KlassInfoEntry* super_cie = cit.lookup(super);
assert(super_cie != NULL, "could not lookup superclass");
super_cie->add_subclass(cie);
}
}
// Set the do_print flag for each class that should be printed.
for(int i = 0; i < elements.length(); i++) {
KlassInfoEntry* cie = elements.at(i);
if (classname == NULL) {
// We are printing all classes.
cie->set_do_print(true);
} else {
// We are only printing the hierarchy of a specific class.
if (strcmp(classname, cie->klass()->external_name()) == 0) {
KlassHierarchy::set_do_print_for_class_hierarchy(cie, &cit, print_subclasses);
}
}
}
// Now we do a depth first traversal of the class hierachry. The class_stack will
// maintain the list of classes we still need to process. Start things off
// by priming it with java.lang.Object.
KlassInfoEntry* jlo_cie = cit.lookup(SystemDictionary::Object_klass());
assert(jlo_cie != NULL, "could not lookup java.lang.Object");
class_stack.push(jlo_cie);
// Repeatedly pop the top item off the stack, print its class info,
// and push all of its subclasses on to the stack. Do this until there
// are no classes left on the stack.
while (!class_stack.is_empty()) {
KlassInfoEntry* curr_cie = class_stack.pop();
if (curr_cie->do_print()) {
print_class(st, curr_cie, print_interfaces);
if (curr_cie->subclasses() != NULL) {
// Current class has subclasses, so push all of them onto the stack.
for (int i = 0; i < curr_cie->subclasses()->length(); i++) {
KlassInfoEntry* cie = curr_cie->subclasses()->at(i);
if (cie->do_print()) {
class_stack.push(cie);
}
}
}
}
}
st->flush();
}
// Sets the do_print flag for every superclass and subclass of the specified class.
void KlassHierarchy::set_do_print_for_class_hierarchy(KlassInfoEntry* cie, KlassInfoTable* cit,
bool print_subclasses) {
// Set do_print for all superclasses of this class.
Klass* super = ((InstanceKlass*)cie->klass())->java_super();
while (super != NULL) {
KlassInfoEntry* super_cie = cit->lookup(super);
super_cie->set_do_print(true);
super = super->super();
}
// Set do_print for this class and all of its subclasses.
Stack <KlassInfoEntry*, mtClass> class_stack;
class_stack.push(cie);
while (!class_stack.is_empty()) {
KlassInfoEntry* curr_cie = class_stack.pop();
curr_cie->set_do_print(true);
if (print_subclasses && curr_cie->subclasses() != NULL) {
// Current class has subclasses, so push all of them onto the stack.
for (int i = 0; i < curr_cie->subclasses()->length(); i++) {
KlassInfoEntry* cie = curr_cie->subclasses()->at(i);
class_stack.push(cie);
}
}
}
}
static void print_indent(outputStream* st, int indent) {
while (indent != 0) {
st->print("|");
indent--;
if (indent != 0) {
st->print(" ");
}
}
}
// Print the class name and its unique ClassLoader identifer.
static void print_classname(outputStream* st, Klass* klass) {
oop loader_oop = klass->class_loader_data()->class_loader();
st->print("%s/", klass->external_name());
if (loader_oop == NULL) {
st->print("null");
} else {
st->print(INTPTR_FORMAT, p2i(klass->class_loader_data()));
}
}
static void print_interface(outputStream* st, Klass* intf_klass, const char* intf_type, int indent) {
print_indent(st, indent);
st->print(" implements ");
print_classname(st, intf_klass);
st->print(" (%s intf)\n", intf_type);
}
void KlassHierarchy::print_class(outputStream* st, KlassInfoEntry* cie, bool print_interfaces) {
ResourceMark rm;
InstanceKlass* klass = (InstanceKlass*)cie->klass();
int indent = 0;
// Print indentation with proper indicators of superclass.
Klass* super = klass->super();
while (super != NULL) {
super = super->super();
indent++;
}
print_indent(st, indent);
if (indent != 0) st->print("--");
// Print the class name, its unique ClassLoader identifer, and if it is an interface.
print_classname(st, klass);
if (klass->is_interface()) {
st->print(" (intf)");
}
st->print("\n");
// Print any interfaces the class has.
if (print_interfaces) {
Array<Klass*>* local_intfs = klass->local_interfaces();
Array<Klass*>* trans_intfs = klass->transitive_interfaces();
for (int i = 0; i < local_intfs->length(); i++) {
print_interface(st, local_intfs->at(i), "declared", indent);
}
for (int i = 0; i < trans_intfs->length(); i++) {
Klass* trans_interface = trans_intfs->at(i);
// Only print transitive interfaces if they are not also declared.
if (!local_intfs->contains(trans_interface)) {
print_interface(st, trans_interface, "inherited", indent);
}
}
}
}
void KlassInfoHisto::print_class_stats(outputStream* st,
bool csv_format, const char *columns) {
ResourceMark rm;
KlassSizeStats sz, sz_sum;
int i;
julong *col_table = (julong*)(&sz);
julong *colsum_table = (julong*)(&sz_sum);
int width_table[KlassSizeStats::_num_columns];
bool selected[KlassSizeStats::_num_columns];
_selected_columns = columns;
memset(&sz_sum, 0, sizeof(sz_sum));
for (int c=0; c<KlassSizeStats::_num_columns; c++) {
selected[c] = is_selected(name_table[c]);
}
for(i=0; i < elements()->length(); i++) {
elements()->at(i)->set_index(i+1);
}
// First iteration is for accumulating stats totals in colsum_table[].
// Second iteration is for printing stats for each class.
for (int pass=1; pass<=2; pass++) {
if (pass == 2) {
print_title(st, csv_format, selected, width_table, name_table);
}
for(i=0; i < elements()->length(); i++) {
KlassInfoEntry* e = (KlassInfoEntry*)elements()->at(i);
const Klass* k = e->klass();
// Get the stats for this class.
memset(&sz, 0, sizeof(sz));
sz._inst_count = e->count();
sz._inst_bytes = HeapWordSize * e->words();
k->collect_statistics(&sz);
sz._total_bytes = sz._ro_bytes + sz._rw_bytes;
if (pass == 1) {
// Add the stats for this class to the overall totals.
for (int c=0; c<KlassSizeStats::_num_columns; c++) {
colsum_table[c] += col_table[c];
}
} else {
int super_index = -1;
// Print the stats for this class.
if (k->oop_is_instance()) {
Klass* super = ((InstanceKlass*)k)->java_super();
if (super) {
KlassInfoEntry* super_e = _cit->lookup(super);
if (super_e) {
super_index = super_e->index();
}
}
}
if (csv_format) {
st->print("%ld,%d", e->index(), super_index);
for (int c=0; c<KlassSizeStats::_num_columns; c++) {
if (selected[c]) {st->print("," JULONG_FORMAT, col_table[c]);}
}
st->print(",%s",e->name());
} else {
st->print("%5ld %5d", e->index(), super_index);
for (int c=0; c<KlassSizeStats::_num_columns; c++) {
if (selected[c]) {print_julong(st, width_table[c], col_table[c]);}
}
st->print(" %s", e->name());
}
if (is_selected("ClassLoader")) {
ClassLoaderData* loader_data = k->class_loader_data();
st->print(",");
loader_data->print_value_on(st);
}
st->cr();
}
}
if (pass == 1) {
// Calculate the minimum width needed for the column by accounting for the
// column header width and the width of the largest value in the column.
for (int c=0; c<KlassSizeStats::_num_columns; c++) {
width_table[c] = col_width(colsum_table[c], name_table[c]);
}
}
}
sz_sum._inst_size = 0;
// Print the column totals.
if (csv_format) {
st->print(",");
for (int c=0; c<KlassSizeStats::_num_columns; c++) {
if (selected[c]) {st->print("," JULONG_FORMAT, colsum_table[c]);}
}
} else {
st->print(" ");
for (int c=0; c<KlassSizeStats::_num_columns; c++) {
if (selected[c]) {print_julong(st, width_table[c], colsum_table[c]);}
}
st->print(" Total");
if (sz_sum._total_bytes > 0) {
st->cr();
st->print(" ");
for (int c=0; c<KlassSizeStats::_num_columns; c++) {
if (selected[c]) {
switch (c) {
case KlassSizeStats::_index_inst_size:
case KlassSizeStats::_index_inst_count:
case KlassSizeStats::_index_method_count:
PRAGMA_DIAG_PUSH
PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
st->print(str_fmt(width_table[c]), "-");
PRAGMA_DIAG_POP
break;
default:
{
double perc = (double)(100) * (double)(colsum_table[c]) / (double)sz_sum._total_bytes;
PRAGMA_DIAG_PUSH
PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
st->print(perc_fmt(width_table[c]), perc);
PRAGMA_DIAG_POP
}
}
}
}
}
}
st->cr();
if (!csv_format) {
print_title(st, csv_format, selected, width_table, name_table);
}
}
julong KlassInfoHisto::annotations_bytes(Array<AnnotationArray*>* p) const {
julong bytes = 0;
if (p != NULL) {
for (int i = 0; i < p->length(); i++) {
bytes += count_bytes_array(p->at(i));
}
bytes += count_bytes_array(p);
}
return bytes;
}
void KlassInfoHisto::print_histo_on(outputStream* st, bool print_stats,
bool csv_format, const char *columns) {
if (print_stats) {
print_class_stats(st, csv_format, columns);
} else {
st->print_cr("%s",title());
print_elements(st);
}
}
class HistoClosure : public KlassInfoClosure {
private:
KlassInfoHisto* _cih;
public:
HistoClosure(KlassInfoHisto* cih) : _cih(cih) {}
void do_cinfo(KlassInfoEntry* cie) {
_cih->add(cie);
}
};
class RecordInstanceClosure : public ObjectClosure {
private:
KlassInfoTable* _cit;
size_t _missed_count;
BoolObjectClosure* _filter;
public:
RecordInstanceClosure(KlassInfoTable* cit, BoolObjectClosure* filter) :
_cit(cit), _missed_count(0), _filter(filter) {}
void do_object(oop obj) {
if (should_visit(obj)) {
if (!_cit->record_instance(obj)) {
_missed_count++;
}
}
}
size_t missed_count() { return _missed_count; }
private:
bool should_visit(oop obj) {
return _filter == NULL || _filter->do_object_b(obj);
}
};
size_t HeapInspection::populate_table(KlassInfoTable* cit, BoolObjectClosure *filter) {
ResourceMark rm;
RecordInstanceClosure ric(cit, filter);
Universe::heap()->object_iterate(&ric);
return ric.missed_count();
}
void HeapInspection::heap_inspection(outputStream* st) {
ResourceMark rm;
if (_print_help) {
for (int c=0; c<KlassSizeStats::_num_columns; c++) {
st->print("%s:\n\t", name_table[c]);
const int max_col = 60;
int col = 0;
for (const char *p = help_table[c]; *p; p++,col++) {
if (col >= max_col && *p == ' ') {
st->print("\n\t");
col = 0;
} else {
st->print("%c", *p);
}
}
st->print_cr(".\n");
}
return;
}
KlassInfoTable cit(_print_class_stats);
if (!cit.allocation_failed()) {
// populate table with object allocation info
size_t missed_count = populate_table(&cit);
if (missed_count != 0) {
st->print_cr("WARNING: Ran out of C-heap; undercounted " SIZE_FORMAT
" total instances in data below",
missed_count);
}
// Sort and print klass instance info
const char *title = "\n"
" num #instances #bytes class name\n"
"----------------------------------------------";
KlassInfoHisto histo(&cit, title);
HistoClosure hc(&histo);
cit.iterate(&hc);
histo.sort();
histo.print_histo_on(st, _print_class_stats, _csv_format, _columns);
} else {
st->print_cr("ERROR: Ran out of C-heap; histogram not generated");
}
st->flush();
}
class FindInstanceClosure : public ObjectClosure {
private:
Klass* _klass;
GrowableArray<oop>* _result;
public:
FindInstanceClosure(Klass* k, GrowableArray<oop>* result) : _klass(k), _result(result) {};
void do_object(oop obj) {
if (obj->is_a(_klass)) {
_result->append(obj);
}
}
};
void HeapInspection::find_instances_at_safepoint(Klass* k, GrowableArray<oop>* result) {
assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
assert(Heap_lock->is_locked(), "should have the Heap_lock");
// Ensure that the heap is parsable
Universe::heap()->ensure_parsability(false); // no need to retire TALBs
// Iterate over objects in the heap
FindInstanceClosure fic(k, result);
// If this operation encounters a bad object when using CMS,
// consider using safe_object_iterate() which avoids metadata
// objects that may contain bad references.
Universe::heap()->object_iterate(&fic);
}