jdk/src/share/classes/java/dyn/MethodType.java
author jrose
Fri, 18 Mar 2011 00:03:24 -0700
changeset 8821 2836ee97ee27
parent 8348 3b2ac15dfc16
permissions -rw-r--r--
6839872: remove implementation inheritance from JSR 292 APIs Summary: move everything into a single package; remove all multi-package machinery Reviewed-by: twisti, forax

/*
 * Copyright (c) 2008, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.dyn;

import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import sun.dyn.util.BytecodeDescriptor;
import static java.dyn.MethodHandleStatics.*;

/**
 * A method type represents the arguments and return type accepted and
 * returned by a method handle, or the arguments and return type passed
 * and expected  by a method handle caller.  Method types must be properly
 * matched between a method handle and all its callers,
 * and the JVM's operations enforce this matching at, specifically
 * during calls to {@link MethodHandle#invokeExact MethodHandle.invokeExact}
 * and {@link MethodHandle#invokeGeneric MethodHandle.invokeGeneric}, and during execution
 * of {@code invokedynamic} instructions.
 * <p>
 * The structure is a return type accompanied by any number of parameter types.
 * The types (primitive, {@code void}, and reference) are represented by {@link Class} objects.
 * (For ease of exposition, we treat {@code void} as if it were a type.
 * In fact, it denotes the absence of a return type.)
 * <p>
 * All instances of {@code MethodType} are immutable.
 * Two instances are completely interchangeable if they compare equal.
 * Equality depends on pairwise correspondence of the return and parameter types and on nothing else.
 * <p>
 * This type can be created only by factory methods.
 * All factory methods may cache values, though caching is not guaranteed.
 * Some factory methods are static, while others are virtual methods which
 * modify precursor method types, e.g., by changing a selected parameter.
 * <p>
 * Factory methods which operate on groups of parameter types
 * are systematically presented in two versions, so that both Java arrays and
 * Java lists can be used to work with groups of parameter types.
 * The query methods {@code parameterArray} and {@code parameterList}
 * also provide a choice between arrays and lists.
 * <p>
 * {@code MethodType} objects are sometimes derived from bytecode instructions
 * such as {@code invokedynamic}, specifically from the type descriptor strings associated
 * with the instructions in a class file's constant pool.
 * <p>
 * Like classes and strings, method types can also be represented directly
 * in a class file's constant pool as constants.
 * A method type may be loaded by an {@code ldc} instruction which refers
 * to a suitable {@code CONSTANT_MethodType} constant pool entry.
 * The entry refers to a {@code CONSTANT_Utf8} spelling for the descriptor string.
 * For more details, see the <a href="package-summary.html#mtcon">package summary</a>.
 * <p>
 * When the JVM materializes a {@code MethodType} from a descriptor string,
 * all classes named in the descriptor must be accessible, and will be loaded.
 * (But the classes need not be initialized, as is the case with a {@code CONSTANT_Class}.)
 * This loading may occur at any time before the {@code MethodType} object is first derived.
 * @author John Rose, JSR 292 EG
 */
public final
class MethodType implements java.io.Serializable {
    private static final long serialVersionUID = 292L;  // {rtype, {ptype...}}

    // The rtype and ptypes fields define the structural identity of the method type:
    private final Class<?>   rtype;
    private final Class<?>[] ptypes;

    // The remaining fields are caches of various sorts:
    private MethodTypeForm form; // erased form, plus cached data about primitives
    private MethodType wrapAlt;  // alternative wrapped/unwrapped version
    private Invokers invokers;   // cache of handy higher-order adapters

    /**
     * Check the given parameters for validity and store them into the final fields.
     */
    private MethodType(Class<?> rtype, Class<?>[] ptypes) {
        checkRtype(rtype);
        checkPtypes(ptypes);
        this.rtype = rtype;
        this.ptypes = ptypes;
    }

    /*trusted*/ MethodTypeForm form() { return form; }
    /*trusted*/ Class<?> rtype() { return rtype; }
    /*trusted*/ Class<?>[] ptypes() { return ptypes; }

    private static void checkRtype(Class<?> rtype) {
        rtype.equals(rtype);  // null check
    }
    private static int checkPtype(Class<?> ptype) {
        ptype.getClass();  //NPE
        if (ptype == void.class)
            throw newIllegalArgumentException("parameter type cannot be void");
        if (ptype == double.class || ptype == long.class)  return 1;
        return 0;
    }
    /** Return number of extra slots (count of long/double args). */
    private static int checkPtypes(Class<?>[] ptypes) {
        int slots = 0;
        for (Class<?> ptype : ptypes) {
            slots += checkPtype(ptype);
        }
        checkSlotCount(ptypes.length + slots);
        return slots;
    }
    private static void checkSlotCount(int count) {
        if ((count & 0xFF) != count)
            throw newIllegalArgumentException("bad parameter count "+count);
    }
    private static IndexOutOfBoundsException newIndexOutOfBoundsException(Object num) {
        if (num instanceof Integer)  num = "bad index: "+num;
        return new IndexOutOfBoundsException(num.toString());
    }

    static final HashMap<MethodType,MethodType> internTable
            = new HashMap<MethodType, MethodType>();

    static final Class<?>[] NO_PTYPES = {};

    /**
     * Find or create an instance of the given method type.
     * @param rtype  the return type
     * @param ptypes the parameter types
     * @return a method type with the given components
     * @throws NullPointerException if {@code rtype} or {@code ptypes} or any element of {@code ptypes} is null
     * @throws IllegalArgumentException if any element of {@code ptypes} is {@code void.class}
     */
    public static
    MethodType methodType(Class<?> rtype, Class<?>[] ptypes) {
        return makeImpl(rtype, ptypes, false);
    }

    /**
     * Finds or creates a method type with the given components.
     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
     * @return a method type with the given components
     * @throws NullPointerException if {@code rtype} or {@code ptypes} or any element of {@code ptypes} is null
     * @throws IllegalArgumentException if any element of {@code ptypes} is {@code void.class}
     */
    public static
    MethodType methodType(Class<?> rtype, List<Class<?>> ptypes) {
        boolean notrust = false;  // random List impl. could return evil ptypes array
        return makeImpl(rtype, ptypes.toArray(NO_PTYPES), notrust);
    }

    /**
     * Finds or creates a method type with the given components.
     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
     * The leading parameter type is prepended to the remaining array.
     * @return a method type with the given components
     * @throws NullPointerException if {@code rtype} or {@code ptype0} or {@code ptypes} or any element of {@code ptypes} is null
     * @throws IllegalArgumentException if {@code ptype0} or {@code ptypes} or any element of {@code ptypes} is {@code void.class}
     */
    public static
    MethodType methodType(Class<?> rtype, Class<?> ptype0, Class<?>... ptypes) {
        Class<?>[] ptypes1 = new Class<?>[1+ptypes.length];
        ptypes1[0] = ptype0;
        System.arraycopy(ptypes, 0, ptypes1, 1, ptypes.length);
        return makeImpl(rtype, ptypes1, true);
    }

    /**
     * Finds or creates a method type with the given components.
     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
     * The resulting method has no parameter types.
     * @return a method type with the given return value
     * @throws NullPointerException if {@code rtype} is null
     */
    public static
    MethodType methodType(Class<?> rtype) {
        return makeImpl(rtype, NO_PTYPES, true);
    }

    /**
     * Finds or creates a method type with the given components.
     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
     * The resulting method has the single given parameter type.
     * @return a method type with the given return value and parameter type
     * @throws NullPointerException if {@code rtype} or {@code ptype0} is null
     * @throws IllegalArgumentException if {@code ptype0} is {@code void.class}
     */
    public static
    MethodType methodType(Class<?> rtype, Class<?> ptype0) {
        return makeImpl(rtype, new Class<?>[]{ ptype0 }, true);
    }

    /**
     * Finds or creates a method type with the given components.
     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
     * The resulting method has the same parameter types as {@code ptypes},
     * and the specified return type.
     * @throws NullPointerException if {@code rtype} or {@code ptypes} is null
     */
    public static
    MethodType methodType(Class<?> rtype, MethodType ptypes) {
        return makeImpl(rtype, ptypes.ptypes, true);
    }

    /**
     * Sole factory method to find or create an interned method type.
     * @param rtype desired return type
     * @param ptypes desired parameter types
     * @param trusted whether the ptypes can be used without cloning
     * @return the unique method type of the desired structure
     */
    /*trusted*/ static
    MethodType makeImpl(Class<?> rtype, Class<?>[] ptypes, boolean trusted) {
        if (ptypes == null || ptypes.length == 0) {
            ptypes = NO_PTYPES; trusted = true;
        }
        MethodType mt1 = new MethodType(rtype, ptypes);
        MethodType mt0;
        synchronized (internTable) {
            mt0 = internTable.get(mt1);
            if (mt0 != null)
                return mt0;
        }
        if (!trusted)
            // defensively copy the array passed in by the user
            mt1 = new MethodType(rtype, ptypes.clone());
        // promote the object to the Real Thing, and reprobe
        MethodTypeForm form = MethodTypeForm.findForm(mt1);
        mt1.form = form;
        if (form.erasedType == mt1) {
            // This is a principal (erased) type; show it to the JVM.
            MethodHandleNatives.init(mt1);
        }
        synchronized (internTable) {
            mt0 = internTable.get(mt1);
            if (mt0 != null)
                return mt0;
            internTable.put(mt1, mt1);
        }
        return mt1;
    }

    private static final MethodType[] objectOnlyTypes = new MethodType[20];

    /**
     * Finds or creates a method type whose components are {@code Object} with an optional trailing {@code Object[]} array.
     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
     * All parameters and the return type will be {@code Object},
     * except the final varargs parameter if any, which will be {@code Object[]}.
     * @param objectArgCount number of parameters (excluding the varargs parameter if any)
     * @param varargs whether there will be a varargs parameter, of type {@code Object[]}
     * @return a totally generic method type, given only its count of parameters and varargs
     * @throws IllegalArgumentException if {@code objectArgCount} is negative or greater than 255
     * @see #genericMethodType(int)
     */
    public static
    MethodType genericMethodType(int objectArgCount, boolean varargs) {
        MethodType mt;
        checkSlotCount(objectArgCount);
        int ivarargs = (!varargs ? 0 : 1);
        int ootIndex = objectArgCount*2 + ivarargs;
        if (ootIndex < objectOnlyTypes.length) {
            mt = objectOnlyTypes[ootIndex];
            if (mt != null)  return mt;
        }
        Class<?>[] ptypes = new Class<?>[objectArgCount + ivarargs];
        Arrays.fill(ptypes, Object.class);
        if (ivarargs != 0)  ptypes[objectArgCount] = Object[].class;
        mt = makeImpl(Object.class, ptypes, true);
        if (ootIndex < objectOnlyTypes.length) {
            objectOnlyTypes[ootIndex] = mt;     // cache it here also!
        }
        return mt;
    }

    /**
     * Finds or creates a method type whose components are all {@code Object}.
     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
     * All parameters and the return type will be Object.
     * @param objectArgCount number of parameters
     * @return a totally generic method type, given only its count of parameters
     * @throws IllegalArgumentException if {@code objectArgCount} is negative or greater than 255
     * @see #genericMethodType(int, boolean)
     */
    public static
    MethodType genericMethodType(int objectArgCount) {
        return genericMethodType(objectArgCount, false);
    }

    /**
     * Finds or creates a method type with a single different parameter type.
     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
     * @param num    the index (zero-based) of the parameter type to change
     * @param nptype a new parameter type to replace the old one with
     * @return the same type, except with the selected parameter changed
     * @throws IndexOutOfBoundsException if {@code num} is not a valid index into {@code parameterArray()}
     * @throws IllegalArgumentException if {@code nptype} is {@code void.class}
     * @throws NullPointerException if {@code nptype} is null
     */
    public MethodType changeParameterType(int num, Class<?> nptype) {
        if (parameterType(num) == nptype)  return this;
        checkPtype(nptype);
        Class<?>[] nptypes = ptypes.clone();
        nptypes[num] = nptype;
        return makeImpl(rtype, nptypes, true);
    }

    /**
     * Finds or creates a method type with additional parameter types.
     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
     * @param num    the position (zero-based) of the inserted parameter type(s)
     * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
     * @return the same type, except with the selected parameter(s) inserted
     * @throws IndexOutOfBoundsException if {@code num} is negative or greater than {@code parameterCount()}
     * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
     *                                  or if the resulting method type would have more than 255 parameter slots
     * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
     */
    public MethodType insertParameterTypes(int num, Class<?>... ptypesToInsert) {
        int len = ptypes.length;
        if (num < 0 || num > len)
            throw newIndexOutOfBoundsException(num);
        int ins = checkPtypes(ptypesToInsert);
        checkSlotCount(parameterSlotCount() + ptypesToInsert.length + ins);
        int ilen = ptypesToInsert.length;
        if (ilen == 0)  return this;
        Class<?>[] nptypes = Arrays.copyOfRange(ptypes, 0, len+ilen);
        System.arraycopy(nptypes, num, nptypes, num+ilen, len-num);
        System.arraycopy(ptypesToInsert, 0, nptypes, num, ilen);
        return makeImpl(rtype, nptypes, true);
    }

    /**
     * Finds or creates a method type with additional parameter types.
     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
     * @param ptypesToInsert zero or more new parameter types to insert after the end of the parameter list
     * @return the same type, except with the selected parameter(s) appended
     * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
     *                                  or if the resulting method type would have more than 255 parameter slots
     * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
     */
    public MethodType appendParameterTypes(Class<?>... ptypesToInsert) {
        return insertParameterTypes(parameterCount(), ptypesToInsert);
    }

    /**
     * Finds or creates a method type with additional parameter types.
     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
     * @param num    the position (zero-based) of the inserted parameter type(s)
     * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
     * @return the same type, except with the selected parameter(s) inserted
     * @throws IndexOutOfBoundsException if {@code num} is negative or greater than {@code parameterCount()}
     * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
     *                                  or if the resulting method type would have more than 255 parameter slots
     * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
     */
    public MethodType insertParameterTypes(int num, List<Class<?>> ptypesToInsert) {
        return insertParameterTypes(num, ptypesToInsert.toArray(NO_PTYPES));
    }

    /**
     * Finds or creates a method type with additional parameter types.
     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
     * @param ptypesToInsert zero or more new parameter types to insert after the end of the parameter list
     * @return the same type, except with the selected parameter(s) appended
     * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
     *                                  or if the resulting method type would have more than 255 parameter slots
     * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
     */
    public MethodType appendParameterTypes(List<Class<?>> ptypesToInsert) {
        return insertParameterTypes(parameterCount(), ptypesToInsert);
    }

    /**
     * Finds or creates a method type with some parameter types omitted.
     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
     * @param start  the index (zero-based) of the first parameter type to remove
     * @param end    the index (greater than {@code start}) of the first parameter type after not to remove
     * @return the same type, except with the selected parameter(s) removed
     * @throws IndexOutOfBoundsException if {@code start} is negative or greater than {@code parameterCount()}
     *                                  or if {@code end} is negative or greater than {@code parameterCount()}
     *                                  or if {@code start} is greater than {@code end}
     */
    public MethodType dropParameterTypes(int start, int end) {
        int len = ptypes.length;
        if (!(0 <= start && start <= end && end <= len))
            throw newIndexOutOfBoundsException("start="+start+" end="+end);
        if (start == end)  return this;
        Class<?>[] nptypes;
        if (start == 0) {
            if (end == len) {
                // drop all parameters
                nptypes = NO_PTYPES;
            } else {
                // drop initial parameter(s)
                nptypes = Arrays.copyOfRange(ptypes, end, len);
            }
        } else {
            if (end == len) {
                // drop trailing parameter(s)
                nptypes = Arrays.copyOfRange(ptypes, 0, start);
            } else {
                int tail = len - end;
                nptypes = Arrays.copyOfRange(ptypes, 0, start + tail);
                System.arraycopy(ptypes, end, nptypes, start, tail);
            }
        }
        return makeImpl(rtype, nptypes, true);
    }

    /**
     * Finds or creates a method type with a different return type.
     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
     * @param nrtype a return parameter type to replace the old one with
     * @return the same type, except with the return type change
     * @throws NullPointerException if {@code nrtype} is null
     */
    public MethodType changeReturnType(Class<?> nrtype) {
        if (returnType() == nrtype)  return this;
        return makeImpl(nrtype, ptypes, true);
    }

    /**
     * Reports if this type contains a primitive argument or return value.
     * The return type {@code void} counts as a primitive.
     * @return true if any of the types are primitives
     */
    public boolean hasPrimitives() {
        return form.hasPrimitives();
    }

    /**
     * Reports if this type contains a wrapper argument or return value.
     * Wrappers are types which box primitive values, such as {@link Integer}.
     * The reference type {@code java.lang.Void} counts as a wrapper.
     * @return true if any of the types are wrappers
     */
    public boolean hasWrappers() {
        return unwrap() != this;
    }

    /**
     * Erases all reference types to {@code Object}.
     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
     * All primitive types (including {@code void}) will remain unchanged.
     * @return a version of the original type with all reference types replaced
     */
    public MethodType erase() {
        return form.erasedType();
    }

    /**
     * Converts all types, both reference and primitive, to {@code Object}.
     * Convenience method for {@link #genericMethodType(int) genericMethodType}.
     * The expression {@code type.wrap().erase()} produces the same value
     * as {@code type.generic()}.
     * @return a version of the original type with all types replaced
     */
    public MethodType generic() {
        return genericMethodType(parameterCount());
    }

    /**
     * Converts all primitive types to their corresponding wrapper types.
     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
     * All reference types (including wrapper types) will remain unchanged.
     * A {@code void} return type is changed to the type {@code java.lang.Void}.
     * The expression {@code type.wrap().erase()} produces the same value
     * as {@code type.generic()}.
     * @return a version of the original type with all primitive types replaced
     */
    public MethodType wrap() {
        return hasPrimitives() ? wrapWithPrims(this) : this;
    }

    /**
     * Convert all wrapper types to their corresponding primitive types.
     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
     * All primitive types (including {@code void}) will remain unchanged.
     * A return type of {@code java.lang.Void} is changed to {@code void}.
     * @return a version of the original type with all wrapper types replaced
     */
    public MethodType unwrap() {
        MethodType noprims = !hasPrimitives() ? this : wrapWithPrims(this);
        return unwrapWithNoPrims(noprims);
    }

    private static MethodType wrapWithPrims(MethodType pt) {
        assert(pt.hasPrimitives());
        MethodType wt = pt.wrapAlt;
        if (wt == null) {
            // fill in lazily
            wt = MethodTypeForm.canonicalize(pt, MethodTypeForm.WRAP, MethodTypeForm.WRAP);
            assert(wt != null);
            pt.wrapAlt = wt;
        }
        return wt;
    }

    private static MethodType unwrapWithNoPrims(MethodType wt) {
        assert(!wt.hasPrimitives());
        MethodType uwt = wt.wrapAlt;
        if (uwt == null) {
            // fill in lazily
            uwt = MethodTypeForm.canonicalize(wt, MethodTypeForm.UNWRAP, MethodTypeForm.UNWRAP);
            if (uwt == null)
                uwt = wt;    // type has no wrappers or prims at all
            wt.wrapAlt = uwt;
        }
        return uwt;
    }

    /**
     * Returns the parameter type at the specified index, within this method type.
     * @param num the index (zero-based) of the desired parameter type
     * @return the selected parameter type
     * @throws IndexOutOfBoundsException if {@code num} is not a valid index into {@code parameterArray()}
     */
    public Class<?> parameterType(int num) {
        return ptypes[num];
    }
    /**
     * Returns the number of parameter types in this method type.
     * @return the number of parameter types
     */
    public int parameterCount() {
        return ptypes.length;
    }
    /**
     * Returns the return type of this method type.
     * @return the return type
     */
    public Class<?> returnType() {
        return rtype;
    }

    /**
     * Presents the parameter types as a list (a convenience method).
     * The list will be immutable.
     * @return the parameter types (as an immutable list)
     */
    public List<Class<?>> parameterList() {
        return Collections.unmodifiableList(Arrays.asList(ptypes));
    }

    /**
     * Presents the parameter types as an array (a convenience method).
     * Changes to the array will not result in changes to the type.
     * @return the parameter types (as a fresh copy if necessary)
     */
    public Class<?>[] parameterArray() {
        return ptypes.clone();
    }

    /**
     * Compares the specified object with this type for equality.
     * That is, it returns <tt>true</tt> if and only if the specified object
     * is also a method type with exactly the same parameters and return type.
     * @param x object to compare
     * @see Object#equals(Object)
     */
    @Override
    public boolean equals(Object x) {
        return this == x || x instanceof MethodType && equals((MethodType)x);
    }

    private boolean equals(MethodType that) {
        return this.rtype == that.rtype
            && Arrays.equals(this.ptypes, that.ptypes);
    }

    /**
     * Returns the hash code value for this method type.
     * It is defined to be the same as the hashcode of a List
     * whose elements are the return type followed by the
     * parameter types.
     * @return the hash code value for this method type
     * @see Object#hashCode()
     * @see #equals(Object)
     * @see List#hashCode()
     */
    @Override
    public int hashCode() {
      int hashCode = 31 + rtype.hashCode();
      for (Class<?> ptype : ptypes)
          hashCode = 31*hashCode + ptype.hashCode();
      return hashCode;
    }

    /**
     * Returns a string representation of the method type,
     * of the form {@code "(PT0,PT1...)RT"}.
     * The string representation of a method type is a
     * parenthesis enclosed, comma separated list of type names,
     * followed immediately by the return type.
     * <p>
     * Each type is represented by its
     * {@link java.lang.Class#getSimpleName simple name}.
     */
    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder();
        sb.append("(");
        for (int i = 0; i < ptypes.length; i++) {
            if (i > 0)  sb.append(",");
            sb.append(ptypes[i].getSimpleName());
        }
        sb.append(")");
        sb.append(rtype.getSimpleName());
        return sb.toString();
    }

    /// Queries which have to do with the bytecode architecture

    /** Reports the number of JVM stack slots required to invoke a method
     * of this type.  Note that (for historic reasons) the JVM requires
     * a second stack slot to pass long and double arguments.
     * So this method returns {@link #parameterCount() parameterCount} plus the
     * number of long and double parameters (if any).
     * <p>
     * This method is included for the benfit of applications that must
     * generate bytecodes that process method handles and invokedynamic.
     * @return the number of JVM stack slots for this type's parameters
     */
    /*non-public*/ int parameterSlotCount() {
        return form.parameterSlotCount();
    }

    /*non-public*/ Invokers invokers() {
        Invokers inv = invokers;
        if (inv != null)  return inv;
        invokers = inv = new Invokers(this);
        return inv;
    }

    /** Reports the number of JVM stack slots which carry all parameters including and after
     * the given position, which must be in the range of 0 to
     * {@code parameterCount} inclusive.  Successive parameters are
     * more shallowly stacked, and parameters are indexed in the bytecodes
     * according to their trailing edge.  Thus, to obtain the depth
     * in the outgoing call stack of parameter {@code N}, obtain
     * the {@code parameterSlotDepth} of its trailing edge
     * at position {@code N+1}.
     * <p>
     * Parameters of type {@code long} and {@code double} occupy
     * two stack slots (for historical reasons) and all others occupy one.
     * Therefore, the number returned is the number of arguments
     * <em>including</em> and <em>after</em> the given parameter,
     * <em>plus</em> the number of long or double arguments
     * at or after after the argument for the given parameter.
     * <p>
     * This method is included for the benfit of applications that must
     * generate bytecodes that process method handles and invokedynamic.
     * @param num an index (zero-based, inclusive) within the parameter types
     * @return the index of the (shallowest) JVM stack slot transmitting the
     *         given parameter
     * @throws IllegalArgumentException if {@code num} is negative or greater than {@code parameterCount()}
     */
    /*non-public*/ int parameterSlotDepth(int num) {
        if (num < 0 || num > ptypes.length)
            parameterType(num);  // force a range check
        return form.parameterToArgSlot(num-1);
    }

    /** Reports the number of JVM stack slots required to receive a return value
     * from a method of this type.
     * If the {@link #returnType() return type} is void, it will be zero,
     * else if the return type is long or double, it will be two, else one.
     * <p>
     * This method is included for the benfit of applications that must
     * generate bytecodes that process method handles and invokedynamic.
     * @return the number of JVM stack slots (0, 1, or 2) for this type's return value
     * Will be removed for PFD.
     */
    /*non-public*/ int returnSlotCount() {
        return form.returnSlotCount();
    }

    /**
     * Find or create an instance of a method type, given the spelling of its bytecode descriptor.
     * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
     * Any class or interface name embedded in the descriptor string
     * will be resolved by calling {@link ClassLoader#loadClass(java.lang.String)}
     * on the given loader (or if it is null, on the system class loader).
     * <p>
     * Note that it is possible to encounter method types which cannot be
     * constructed by this method, because their component types are
     * not all reachable from a common class loader.
     * <p>
     * This method is included for the benfit of applications that must
     * generate bytecodes that process method handles and {@code invokedynamic}.
     * @param descriptor a bytecode-level type descriptor string "(T...)T"
     * @param loader the class loader in which to look up the types
     * @return a method type matching the bytecode-level type descriptor
     * @throws IllegalArgumentException if the string is not well-formed
     * @throws TypeNotPresentException if a named type cannot be found
     */
    public static MethodType fromMethodDescriptorString(String descriptor, ClassLoader loader)
        throws IllegalArgumentException, TypeNotPresentException
    {
        List<Class<?>> types = BytecodeDescriptor.parseMethod(descriptor, loader);
        Class<?> rtype = types.remove(types.size() - 1);
        Class<?>[] ptypes = types.toArray(NO_PTYPES);
        return makeImpl(rtype, ptypes, true);
    }

    /**
     * Produces a bytecode descriptor representation of the method type.
     * <p>
     * Note that this is not a strict inverse of {@link #fromMethodDescriptorString fromMethodDescriptorString}.
     * Two distinct classes which share a common name but have different class loaders
     * will appear identical when viewed within descriptor strings.
     * <p>
     * This method is included for the benfit of applications that must
     * generate bytecodes that process method handles and {@code invokedynamic}.
     * {@link #fromMethodDescriptorString(java.lang.String, java.lang.ClassLoader) fromMethodDescriptorString},
     * because the latter requires a suitable class loader argument.
     * @return the bytecode type descriptor representation
     */
    public String toMethodDescriptorString() {
        return BytecodeDescriptor.unparse(this);
    }

    /// Serialization.

    /**
     * There are no serializable fields for {@code MethodType}.
     */
    private static final java.io.ObjectStreamField[] serialPersistentFields = { };

    /**
     * Save the {@code MethodType} instance to a stream.
     *
     * @serialData
     * For portability, the serialized format does not refer to named fields.
     * Instead, the return type and parameter type arrays are written directly
     * from the {@code writeObject} method, using two calls to {@code s.writeObject}
     * as follows:
     * <blockquote><pre>
s.writeObject(this.returnType());
s.writeObject(this.parameterArray());
     * </pre></blockquote>
     * <p>
     * The deserialized field values are checked as if they were
     * provided to the factory method {@link #methodType(Class,Class[]) methodType}.
     * For example, null values, or {@code void} parameter types,
     * will lead to exceptions during deserialization.
     * @param the stream to write the object to
     */
    private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
        s.defaultWriteObject();  // requires serialPersistentFields to be an empty array
        s.writeObject(returnType());
        s.writeObject(parameterArray());
    }

    /**
     * Reconstitute the {@code MethodType} instance from a stream (that is,
     * deserialize it).
     * This instance is a scratch object with bogus final fields.
     * It provides the parameters to the factory method called by
     * {@link #readResolve readResolve}.
     * After that call it is discarded.
     * @param the stream to read the object from
     * @see #MethodType()
     * @see #readResolve
     * @see #writeObject
     */
    private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
        s.defaultReadObject();  // requires serialPersistentFields to be an empty array

        Class<?>   returnType     = (Class<?>)   s.readObject();
        Class<?>[] parameterArray = (Class<?>[]) s.readObject();

        // Probably this object will never escape, but let's check
        // the field values now, just to be sure.
        checkRtype(returnType);
        checkPtypes(parameterArray);

        parameterArray = parameterArray.clone();  // make sure it is unshared
        MethodType_init(returnType, parameterArray);
    }

    /**
     * For serialization only.
     * Sets the final fields to null, pending {@code Unsafe.putObject}.
     */
    private MethodType() {
        this.rtype = null;
        this.ptypes = null;
    }
    private void MethodType_init(Class<?> rtype, Class<?>[] ptypes) {
        // In order to communicate these values to readResolve, we must
        // store them into the implementation-specific final fields.
        checkRtype(rtype);
        checkPtypes(ptypes);
        unsafe.putObject(this, rtypeOffset, rtype);
        unsafe.putObject(this, ptypesOffset, ptypes);
    }

    // Support for resetting final fields while deserializing
    private static final sun.misc.Unsafe unsafe = sun.misc.Unsafe.getUnsafe();
    private static final long rtypeOffset, ptypesOffset;
    static {
        try {
            rtypeOffset = unsafe.objectFieldOffset
                (MethodType.class.getDeclaredField("rtype"));
            ptypesOffset = unsafe.objectFieldOffset
                (MethodType.class.getDeclaredField("ptypes"));
        } catch (Exception ex) {
            throw new Error(ex);
        }
    }

    /**
     * Resolves and initializes a {@code MethodType} object
     * after serialization.
     * @return the fully initialized {@code MethodType} object
     */
    private Object readResolve() {
        // Do not use a trusted path for deserialization:
        //return makeImpl(rtype, ptypes, true);
        // Verify all operands, and make sure ptypes is unshared:
        return methodType(rtype, ptypes);
    }
}