8215731: Move forward class definitions out of globalDefinitions.hpp
Summary: redistribute the forward declarations to the header files that need them.
Reviewed-by: dholmes, lfoltan
/*
* Copyright (c) 2009, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_UTILITIES_STACK_HPP
#define SHARE_VM_UTILITIES_STACK_HPP
#include "memory/allocation.hpp"
// Class Stack (below) grows and shrinks by linking together "segments" which
// are allocated on demand. Segments are arrays of the element type (E) plus an
// extra pointer-sized field to store the segment link. Recently emptied
// segments are kept in a cache and reused.
//
// Notes/caveats:
//
// The size of an element must either evenly divide the size of a pointer or be
// a multiple of the size of a pointer.
//
// Destructors are not called for elements popped off the stack, so element
// types which rely on destructors for things like reference counting will not
// work properly.
//
// Class Stack allocates segments from the C heap. However, two protected
// virtual methods are used to alloc/free memory which subclasses can override:
//
// virtual void* alloc(size_t bytes);
// virtual void free(void* addr, size_t bytes);
//
// The alloc() method must return storage aligned for any use. The
// implementation in class Stack assumes that alloc() will terminate the process
// if the allocation fails.
template <class E, MEMFLAGS F> class StackIterator;
// StackBase holds common data/methods that don't depend on the element type,
// factored out to reduce template code duplication.
template <MEMFLAGS F> class StackBase
{
public:
size_t segment_size() const { return _seg_size; } // Elements per segment.
size_t max_size() const { return _max_size; } // Max elements allowed.
size_t max_cache_size() const { return _max_cache_size; } // Max segments
// allowed in cache.
size_t cache_size() const { return _cache_size; } // Segments in the cache.
protected:
// The ctor arguments correspond to the like-named functions above.
// segment_size: number of items per segment
// max_cache_size: maxmium number of *segments* to cache
// max_size: maximum number of items allowed, rounded to a multiple of
// the segment size (0 == unlimited)
inline StackBase(size_t segment_size, size_t max_cache_size, size_t max_size);
// Round max_size to a multiple of the segment size. Treat 0 as unlimited.
static inline size_t adjust_max_size(size_t max_size, size_t seg_size);
protected:
const size_t _seg_size; // Number of items per segment.
const size_t _max_size; // Maximum number of items allowed in the stack.
const size_t _max_cache_size; // Maximum number of segments to cache.
size_t _cur_seg_size; // Number of items in the current segment.
size_t _full_seg_size; // Number of items in already-filled segments.
size_t _cache_size; // Number of segments in the cache.
};
#ifdef __GNUC__
#define inline
#endif // __GNUC__
template <class E, MEMFLAGS F>
class Stack: public StackBase<F>
{
public:
friend class StackIterator<E, F>;
// Number of elements that fit in 4K bytes minus the size of two pointers
// (link field and malloc header).
static const size_t _default_segment_size = (4096 - 2 * sizeof(E*)) / sizeof(E);
static size_t default_segment_size() { return _default_segment_size; }
// segment_size: number of items per segment
// max_cache_size: maxmium number of *segments* to cache
// max_size: maximum number of items allowed, rounded to a multiple of
// the segment size (0 == unlimited)
inline Stack(size_t segment_size = _default_segment_size,
size_t max_cache_size = 4, size_t max_size = 0);
inline ~Stack() { clear(true); }
inline bool is_empty() const { return this->_cur_seg == NULL; }
inline bool is_full() const { return this->_full_seg_size >= this->max_size(); }
// Performance sensitive code should use is_empty() instead of size() == 0 and
// is_full() instead of size() == max_size(). Using a conditional here allows
// just one var to be updated when pushing/popping elements instead of two;
// _full_seg_size is updated only when pushing/popping segments.
inline size_t size() const {
return is_empty() ? 0 : this->_full_seg_size + this->_cur_seg_size;
}
inline void push(E elem);
inline E pop();
// Clear everything from the stack, releasing the associated memory. If
// clear_cache is true, also release any cached segments.
void clear(bool clear_cache = false);
protected:
// Each segment includes space for _seg_size elements followed by a link
// (pointer) to the previous segment; the space is allocated as a single block
// of size segment_bytes(). _seg_size is rounded up if necessary so the link
// is properly aligned. The C struct for the layout would be:
//
// struct segment {
// E elements[_seg_size];
// E* link;
// };
// Round up seg_size to keep the link field aligned.
static inline size_t adjust_segment_size(size_t seg_size);
// Methods for allocation size and getting/setting the link.
inline size_t link_offset() const; // Byte offset of link field.
inline size_t segment_bytes() const; // Segment size in bytes.
inline E** link_addr(E* seg) const; // Address of the link field.
inline E* get_link(E* seg) const; // Extract the link from seg.
inline E* set_link(E* new_seg, E* old_seg); // new_seg.link = old_seg.
virtual E* alloc(size_t bytes);
virtual void free(E* addr, size_t bytes);
void push_segment();
void pop_segment();
void free_segments(E* seg); // Free all segments in the list.
inline void reset(bool reset_cache); // Reset all data fields.
DEBUG_ONLY(void verify(bool at_empty_transition) const;)
DEBUG_ONLY(void zap_segment(E* seg, bool zap_link_field) const;)
private:
E* _cur_seg; // Current segment.
E* _cache; // Segment cache to avoid ping-ponging.
};
template <class E, MEMFLAGS F> class ResourceStack: public Stack<E, F>, public ResourceObj
{
public:
// If this class becomes widely used, it may make sense to save the Thread
// and use it when allocating segments.
// ResourceStack(size_t segment_size = Stack<E, F>::default_segment_size()):
ResourceStack(size_t segment_size): Stack<E, F>(segment_size, max_uintx)
{ }
// Set the segment pointers to NULL so the parent dtor does not free them;
// that must be done by the ResourceMark code.
~ResourceStack() { Stack<E, F>::reset(true); }
protected:
virtual E* alloc(size_t bytes);
virtual void free(E* addr, size_t bytes);
private:
void clear(bool clear_cache = false);
};
template <class E, MEMFLAGS F>
class StackIterator: public StackObj
{
public:
StackIterator(Stack<E, F>& stack): _stack(stack) { sync(); }
Stack<E, F>& stack() const { return _stack; }
bool is_empty() const { return _cur_seg == NULL; }
E next() { return *next_addr(); }
E* next_addr();
void sync(); // Sync the iterator's state to the stack's current state.
private:
Stack<E, F>& _stack;
size_t _cur_seg_size;
E* _cur_seg;
size_t _full_seg_size;
};
#ifdef __GNUC__
#undef inline
#endif // __GNUC__
#endif // SHARE_VM_UTILITIES_STACK_HPP