8215731: Move forward class definitions out of globalDefinitions.hpp
Summary: redistribute the forward declarations to the header files that need them.
Reviewed-by: dholmes, lfoltan
/*
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "aot/aotLoader.hpp"
#include "classfile/classLoader.hpp"
#include "classfile/classLoaderDataGraph.hpp"
#include "classfile/javaClasses.hpp"
#include "classfile/stringTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/codeBehaviours.hpp"
#include "code/codeCache.hpp"
#include "code/dependencies.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "gc/shared/gcArguments.hpp"
#include "gc/shared/gcConfig.hpp"
#include "gc/shared/gcTraceTime.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "memory/heapShared.hpp"
#include "memory/filemap.hpp"
#include "memory/metadataFactory.hpp"
#include "memory/metaspaceClosure.hpp"
#include "memory/metaspaceCounters.hpp"
#include "memory/metaspaceShared.hpp"
#include "memory/oopFactory.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "memory/universe.hpp"
#include "oops/constantPool.hpp"
#include "oops/instanceClassLoaderKlass.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/instanceMirrorKlass.hpp"
#include "oops/instanceRefKlass.hpp"
#include "oops/objArrayOop.inline.hpp"
#include "oops/oop.inline.hpp"
#include "oops/typeArrayKlass.hpp"
#include "prims/resolvedMethodTable.hpp"
#include "runtime/arguments.hpp"
#include "runtime/atomic.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/flags/flagSetting.hpp"
#include "runtime/flags/jvmFlagConstraintList.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/init.hpp"
#include "runtime/java.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/timerTrace.hpp"
#include "runtime/vmOperations.hpp"
#include "services/memoryService.hpp"
#include "utilities/align.hpp"
#include "utilities/copy.hpp"
#include "utilities/debug.hpp"
#include "utilities/events.hpp"
#include "utilities/formatBuffer.hpp"
#include "utilities/hashtable.inline.hpp"
#include "utilities/macros.hpp"
#include "utilities/ostream.hpp"
#include "utilities/preserveException.hpp"
// Known objects
Klass* Universe::_typeArrayKlassObjs[T_LONG+1] = { NULL /*, NULL...*/ };
Klass* Universe::_objectArrayKlassObj = NULL;
oop Universe::_int_mirror = NULL;
oop Universe::_float_mirror = NULL;
oop Universe::_double_mirror = NULL;
oop Universe::_byte_mirror = NULL;
oop Universe::_bool_mirror = NULL;
oop Universe::_char_mirror = NULL;
oop Universe::_long_mirror = NULL;
oop Universe::_short_mirror = NULL;
oop Universe::_void_mirror = NULL;
oop Universe::_mirrors[T_VOID+1] = { NULL /*, NULL...*/ };
oop Universe::_main_thread_group = NULL;
oop Universe::_system_thread_group = NULL;
objArrayOop Universe::_the_empty_class_klass_array = NULL;
Array<Klass*>* Universe::_the_array_interfaces_array = NULL;
oop Universe::_the_null_sentinel = NULL;
oop Universe::_the_null_string = NULL;
oop Universe::_the_min_jint_string = NULL;
LatestMethodCache* Universe::_finalizer_register_cache = NULL;
LatestMethodCache* Universe::_loader_addClass_cache = NULL;
LatestMethodCache* Universe::_throw_illegal_access_error_cache = NULL;
LatestMethodCache* Universe::_do_stack_walk_cache = NULL;
oop Universe::_out_of_memory_error_java_heap = NULL;
oop Universe::_out_of_memory_error_metaspace = NULL;
oop Universe::_out_of_memory_error_class_metaspace = NULL;
oop Universe::_out_of_memory_error_array_size = NULL;
oop Universe::_out_of_memory_error_gc_overhead_limit = NULL;
oop Universe::_out_of_memory_error_realloc_objects = NULL;
oop Universe::_out_of_memory_error_retry = NULL;
oop Universe::_delayed_stack_overflow_error_message = NULL;
objArrayOop Universe::_preallocated_out_of_memory_error_array = NULL;
volatile jint Universe::_preallocated_out_of_memory_error_avail_count = 0;
bool Universe::_verify_in_progress = false;
long Universe::verify_flags = Universe::Verify_All;
oop Universe::_null_ptr_exception_instance = NULL;
oop Universe::_arithmetic_exception_instance = NULL;
oop Universe::_virtual_machine_error_instance = NULL;
oop Universe::_vm_exception = NULL;
oop Universe::_reference_pending_list = NULL;
Array<int>* Universe::_the_empty_int_array = NULL;
Array<u2>* Universe::_the_empty_short_array = NULL;
Array<Klass*>* Universe::_the_empty_klass_array = NULL;
Array<InstanceKlass*>* Universe::_the_empty_instance_klass_array = NULL;
Array<Method*>* Universe::_the_empty_method_array = NULL;
// These variables are guarded by FullGCALot_lock.
debug_only(objArrayOop Universe::_fullgc_alot_dummy_array = NULL;)
debug_only(int Universe::_fullgc_alot_dummy_next = 0;)
// Heap
int Universe::_verify_count = 0;
// Oop verification (see MacroAssembler::verify_oop)
uintptr_t Universe::_verify_oop_mask = 0;
uintptr_t Universe::_verify_oop_bits = (uintptr_t) -1;
int Universe::_base_vtable_size = 0;
bool Universe::_bootstrapping = false;
bool Universe::_module_initialized = false;
bool Universe::_fully_initialized = false;
size_t Universe::_heap_capacity_at_last_gc;
size_t Universe::_heap_used_at_last_gc = 0;
CollectedHeap* Universe::_collectedHeap = NULL;
NarrowPtrStruct Universe::_narrow_oop = { NULL, 0, true };
NarrowPtrStruct Universe::_narrow_klass = { NULL, 0, true };
address Universe::_narrow_ptrs_base;
uint64_t Universe::_narrow_klass_range = (uint64_t(max_juint)+1);
void Universe::basic_type_classes_do(void f(Klass*)) {
for (int i = T_BOOLEAN; i < T_LONG+1; i++) {
f(_typeArrayKlassObjs[i]);
}
}
void Universe::basic_type_classes_do(KlassClosure *closure) {
for (int i = T_BOOLEAN; i < T_LONG+1; i++) {
closure->do_klass(_typeArrayKlassObjs[i]);
}
}
void Universe::oops_do(OopClosure* f) {
f->do_oop((oop*) &_int_mirror);
f->do_oop((oop*) &_float_mirror);
f->do_oop((oop*) &_double_mirror);
f->do_oop((oop*) &_byte_mirror);
f->do_oop((oop*) &_bool_mirror);
f->do_oop((oop*) &_char_mirror);
f->do_oop((oop*) &_long_mirror);
f->do_oop((oop*) &_short_mirror);
f->do_oop((oop*) &_void_mirror);
for (int i = T_BOOLEAN; i < T_VOID+1; i++) {
f->do_oop((oop*) &_mirrors[i]);
}
assert(_mirrors[0] == NULL && _mirrors[T_BOOLEAN - 1] == NULL, "checking");
f->do_oop((oop*)&_the_empty_class_klass_array);
f->do_oop((oop*)&_the_null_sentinel);
f->do_oop((oop*)&_the_null_string);
f->do_oop((oop*)&_the_min_jint_string);
f->do_oop((oop*)&_out_of_memory_error_java_heap);
f->do_oop((oop*)&_out_of_memory_error_metaspace);
f->do_oop((oop*)&_out_of_memory_error_class_metaspace);
f->do_oop((oop*)&_out_of_memory_error_array_size);
f->do_oop((oop*)&_out_of_memory_error_gc_overhead_limit);
f->do_oop((oop*)&_out_of_memory_error_realloc_objects);
f->do_oop((oop*)&_out_of_memory_error_retry);
f->do_oop((oop*)&_delayed_stack_overflow_error_message);
f->do_oop((oop*)&_preallocated_out_of_memory_error_array);
f->do_oop((oop*)&_null_ptr_exception_instance);
f->do_oop((oop*)&_arithmetic_exception_instance);
f->do_oop((oop*)&_virtual_machine_error_instance);
f->do_oop((oop*)&_main_thread_group);
f->do_oop((oop*)&_system_thread_group);
f->do_oop((oop*)&_vm_exception);
f->do_oop((oop*)&_reference_pending_list);
debug_only(f->do_oop((oop*)&_fullgc_alot_dummy_array);)
}
void LatestMethodCache::metaspace_pointers_do(MetaspaceClosure* it) {
it->push(&_klass);
}
void Universe::metaspace_pointers_do(MetaspaceClosure* it) {
for (int i = 0; i < T_LONG+1; i++) {
it->push(&_typeArrayKlassObjs[i]);
}
it->push(&_objectArrayKlassObj);
it->push(&_the_empty_int_array);
it->push(&_the_empty_short_array);
it->push(&_the_empty_klass_array);
it->push(&_the_empty_instance_klass_array);
it->push(&_the_empty_method_array);
it->push(&_the_array_interfaces_array);
_finalizer_register_cache->metaspace_pointers_do(it);
_loader_addClass_cache->metaspace_pointers_do(it);
_throw_illegal_access_error_cache->metaspace_pointers_do(it);
_do_stack_walk_cache->metaspace_pointers_do(it);
}
// Serialize metadata and pointers to primitive type mirrors in and out of CDS archive
void Universe::serialize(SerializeClosure* f) {
for (int i = 0; i < T_LONG+1; i++) {
f->do_ptr((void**)&_typeArrayKlassObjs[i]);
}
f->do_ptr((void**)&_objectArrayKlassObj);
#if INCLUDE_CDS_JAVA_HEAP
#ifdef ASSERT
if (DumpSharedSpaces && !HeapShared::is_heap_object_archiving_allowed()) {
assert(_int_mirror == NULL && _float_mirror == NULL &&
_double_mirror == NULL && _byte_mirror == NULL &&
_bool_mirror == NULL && _char_mirror == NULL &&
_long_mirror == NULL && _short_mirror == NULL &&
_void_mirror == NULL, "mirrors should be NULL");
}
#endif
f->do_oop(&_int_mirror);
f->do_oop(&_float_mirror);
f->do_oop(&_double_mirror);
f->do_oop(&_byte_mirror);
f->do_oop(&_bool_mirror);
f->do_oop(&_char_mirror);
f->do_oop(&_long_mirror);
f->do_oop(&_short_mirror);
f->do_oop(&_void_mirror);
#endif
f->do_ptr((void**)&_the_array_interfaces_array);
f->do_ptr((void**)&_the_empty_int_array);
f->do_ptr((void**)&_the_empty_short_array);
f->do_ptr((void**)&_the_empty_method_array);
f->do_ptr((void**)&_the_empty_klass_array);
f->do_ptr((void**)&_the_empty_instance_klass_array);
_finalizer_register_cache->serialize(f);
_loader_addClass_cache->serialize(f);
_throw_illegal_access_error_cache->serialize(f);
_do_stack_walk_cache->serialize(f);
}
void Universe::check_alignment(uintx size, uintx alignment, const char* name) {
if (size < alignment || size % alignment != 0) {
vm_exit_during_initialization(
err_msg("Size of %s (" UINTX_FORMAT " bytes) must be aligned to " UINTX_FORMAT " bytes", name, size, alignment));
}
}
void initialize_basic_type_klass(Klass* k, TRAPS) {
Klass* ok = SystemDictionary::Object_klass();
#if INCLUDE_CDS
if (UseSharedSpaces) {
ClassLoaderData* loader_data = ClassLoaderData::the_null_class_loader_data();
assert(k->super() == ok, "u3");
k->restore_unshareable_info(loader_data, Handle(), CHECK);
} else
#endif
{
k->initialize_supers(ok, NULL, CHECK);
}
k->append_to_sibling_list();
}
void Universe::genesis(TRAPS) {
ResourceMark rm;
{ FlagSetting fs(_bootstrapping, true);
{ MutexLocker mc(Compile_lock);
java_lang_Class::allocate_fixup_lists();
// determine base vtable size; without that we cannot create the array klasses
compute_base_vtable_size();
if (!UseSharedSpaces) {
for (int i = T_BOOLEAN; i < T_LONG+1; i++) {
_typeArrayKlassObjs[i] = TypeArrayKlass::create_klass((BasicType)i, CHECK);
}
ClassLoaderData* null_cld = ClassLoaderData::the_null_class_loader_data();
_the_array_interfaces_array = MetadataFactory::new_array<Klass*>(null_cld, 2, NULL, CHECK);
_the_empty_int_array = MetadataFactory::new_array<int>(null_cld, 0, CHECK);
_the_empty_short_array = MetadataFactory::new_array<u2>(null_cld, 0, CHECK);
_the_empty_method_array = MetadataFactory::new_array<Method*>(null_cld, 0, CHECK);
_the_empty_klass_array = MetadataFactory::new_array<Klass*>(null_cld, 0, CHECK);
_the_empty_instance_klass_array = MetadataFactory::new_array<InstanceKlass*>(null_cld, 0, CHECK);
}
}
vmSymbols::initialize(CHECK);
SystemDictionary::initialize(CHECK);
Klass* ok = SystemDictionary::Object_klass();
_the_null_string = StringTable::intern("null", CHECK);
_the_min_jint_string = StringTable::intern("-2147483648", CHECK);
#if INCLUDE_CDS
if (UseSharedSpaces) {
// Verify shared interfaces array.
assert(_the_array_interfaces_array->at(0) ==
SystemDictionary::Cloneable_klass(), "u3");
assert(_the_array_interfaces_array->at(1) ==
SystemDictionary::Serializable_klass(), "u3");
} else
#endif
{
// Set up shared interfaces array. (Do this before supers are set up.)
_the_array_interfaces_array->at_put(0, SystemDictionary::Cloneable_klass());
_the_array_interfaces_array->at_put(1, SystemDictionary::Serializable_klass());
}
initialize_basic_type_klass(boolArrayKlassObj(), CHECK);
initialize_basic_type_klass(charArrayKlassObj(), CHECK);
initialize_basic_type_klass(floatArrayKlassObj(), CHECK);
initialize_basic_type_klass(doubleArrayKlassObj(), CHECK);
initialize_basic_type_klass(byteArrayKlassObj(), CHECK);
initialize_basic_type_klass(shortArrayKlassObj(), CHECK);
initialize_basic_type_klass(intArrayKlassObj(), CHECK);
initialize_basic_type_klass(longArrayKlassObj(), CHECK);
} // end of core bootstrapping
{
Handle tns = java_lang_String::create_from_str("<null_sentinel>", CHECK);
_the_null_sentinel = tns();
}
// Maybe this could be lifted up now that object array can be initialized
// during the bootstrapping.
// OLD
// Initialize _objectArrayKlass after core bootstraping to make
// sure the super class is set up properly for _objectArrayKlass.
// ---
// NEW
// Since some of the old system object arrays have been converted to
// ordinary object arrays, _objectArrayKlass will be loaded when
// SystemDictionary::initialize(CHECK); is run. See the extra check
// for Object_klass_loaded in objArrayKlassKlass::allocate_objArray_klass_impl.
_objectArrayKlassObj = InstanceKlass::
cast(SystemDictionary::Object_klass())->array_klass(1, CHECK);
// OLD
// Add the class to the class hierarchy manually to make sure that
// its vtable is initialized after core bootstrapping is completed.
// ---
// New
// Have already been initialized.
_objectArrayKlassObj->append_to_sibling_list();
#ifdef ASSERT
if (FullGCALot) {
// Allocate an array of dummy objects.
// We'd like these to be at the bottom of the old generation,
// so that when we free one and then collect,
// (almost) the whole heap moves
// and we find out if we actually update all the oops correctly.
// But we can't allocate directly in the old generation,
// so we allocate wherever, and hope that the first collection
// moves these objects to the bottom of the old generation.
// We can allocate directly in the permanent generation, so we do.
int size;
if (UseConcMarkSweepGC) {
log_warning(gc)("Using +FullGCALot with concurrent mark sweep gc will not force all objects to relocate");
size = FullGCALotDummies;
} else {
size = FullGCALotDummies * 2;
}
objArrayOop naked_array = oopFactory::new_objArray(SystemDictionary::Object_klass(), size, CHECK);
objArrayHandle dummy_array(THREAD, naked_array);
int i = 0;
while (i < size) {
// Allocate dummy in old generation
oop dummy = SystemDictionary::Object_klass()->allocate_instance(CHECK);
dummy_array->obj_at_put(i++, dummy);
}
{
// Only modify the global variable inside the mutex.
// If we had a race to here, the other dummy_array instances
// and their elements just get dropped on the floor, which is fine.
MutexLocker ml(FullGCALot_lock);
if (_fullgc_alot_dummy_array == NULL) {
_fullgc_alot_dummy_array = dummy_array();
}
}
assert(i == _fullgc_alot_dummy_array->length(), "just checking");
}
#endif
}
void Universe::initialize_basic_type_mirrors(TRAPS) {
#if INCLUDE_CDS_JAVA_HEAP
if (UseSharedSpaces &&
HeapShared::open_archive_heap_region_mapped() &&
_int_mirror != NULL) {
assert(HeapShared::is_heap_object_archiving_allowed(), "Sanity");
assert(_float_mirror != NULL && _double_mirror != NULL &&
_byte_mirror != NULL && _byte_mirror != NULL &&
_bool_mirror != NULL && _char_mirror != NULL &&
_long_mirror != NULL && _short_mirror != NULL &&
_void_mirror != NULL, "Sanity");
} else
#endif
{
_int_mirror =
java_lang_Class::create_basic_type_mirror("int", T_INT, CHECK);
_float_mirror =
java_lang_Class::create_basic_type_mirror("float", T_FLOAT, CHECK);
_double_mirror =
java_lang_Class::create_basic_type_mirror("double", T_DOUBLE, CHECK);
_byte_mirror =
java_lang_Class::create_basic_type_mirror("byte", T_BYTE, CHECK);
_bool_mirror =
java_lang_Class::create_basic_type_mirror("boolean",T_BOOLEAN, CHECK);
_char_mirror =
java_lang_Class::create_basic_type_mirror("char", T_CHAR, CHECK);
_long_mirror =
java_lang_Class::create_basic_type_mirror("long", T_LONG, CHECK);
_short_mirror =
java_lang_Class::create_basic_type_mirror("short", T_SHORT, CHECK);
_void_mirror =
java_lang_Class::create_basic_type_mirror("void", T_VOID, CHECK);
}
_mirrors[T_INT] = _int_mirror;
_mirrors[T_FLOAT] = _float_mirror;
_mirrors[T_DOUBLE] = _double_mirror;
_mirrors[T_BYTE] = _byte_mirror;
_mirrors[T_BOOLEAN] = _bool_mirror;
_mirrors[T_CHAR] = _char_mirror;
_mirrors[T_LONG] = _long_mirror;
_mirrors[T_SHORT] = _short_mirror;
_mirrors[T_VOID] = _void_mirror;
//_mirrors[T_OBJECT] = _object_klass->java_mirror();
//_mirrors[T_ARRAY] = _object_klass->java_mirror();
}
void Universe::fixup_mirrors(TRAPS) {
// Bootstrap problem: all classes gets a mirror (java.lang.Class instance) assigned eagerly,
// but we cannot do that for classes created before java.lang.Class is loaded. Here we simply
// walk over permanent objects created so far (mostly classes) and fixup their mirrors. Note
// that the number of objects allocated at this point is very small.
assert(SystemDictionary::Class_klass_loaded(), "java.lang.Class should be loaded");
HandleMark hm(THREAD);
if (!UseSharedSpaces) {
// Cache the start of the static fields
InstanceMirrorKlass::init_offset_of_static_fields();
}
GrowableArray <Klass*>* list = java_lang_Class::fixup_mirror_list();
int list_length = list->length();
for (int i = 0; i < list_length; i++) {
Klass* k = list->at(i);
assert(k->is_klass(), "List should only hold classes");
EXCEPTION_MARK;
java_lang_Class::fixup_mirror(k, CATCH);
}
delete java_lang_Class::fixup_mirror_list();
java_lang_Class::set_fixup_mirror_list(NULL);
}
#define assert_pll_locked(test) \
assert(Heap_lock->test(), "Reference pending list access requires lock")
#define assert_pll_ownership() assert_pll_locked(owned_by_self)
oop Universe::reference_pending_list() {
if (Thread::current()->is_VM_thread()) {
assert_pll_locked(is_locked);
} else {
assert_pll_ownership();
}
return _reference_pending_list;
}
void Universe::set_reference_pending_list(oop list) {
assert_pll_ownership();
_reference_pending_list = list;
}
bool Universe::has_reference_pending_list() {
assert_pll_ownership();
return _reference_pending_list != NULL;
}
oop Universe::swap_reference_pending_list(oop list) {
assert_pll_locked(is_locked);
return Atomic::xchg(list, &_reference_pending_list);
}
#undef assert_pll_locked
#undef assert_pll_ownership
void Universe::reinitialize_vtable_of(Klass* ko, TRAPS) {
// init vtable of k and all subclasses
ko->vtable().initialize_vtable(false, CHECK);
if (ko->is_instance_klass()) {
for (Klass* sk = ko->subklass();
sk != NULL;
sk = sk->next_sibling()) {
reinitialize_vtable_of(sk, CHECK);
}
}
}
void Universe::reinitialize_vtables(TRAPS) {
// The vtables are initialized by starting at java.lang.Object and
// initializing through the subclass links, so that the super
// classes are always initialized first.
Klass* ok = SystemDictionary::Object_klass();
Universe::reinitialize_vtable_of(ok, THREAD);
}
void initialize_itable_for_klass(InstanceKlass* k, TRAPS) {
k->itable().initialize_itable(false, CHECK);
}
void Universe::reinitialize_itables(TRAPS) {
MutexLocker mcld(ClassLoaderDataGraph_lock);
ClassLoaderDataGraph::dictionary_classes_do(initialize_itable_for_klass, CHECK);
}
bool Universe::on_page_boundary(void* addr) {
return is_aligned(addr, os::vm_page_size());
}
bool Universe::should_fill_in_stack_trace(Handle throwable) {
// never attempt to fill in the stack trace of preallocated errors that do not have
// backtrace. These errors are kept alive forever and may be "re-used" when all
// preallocated errors with backtrace have been consumed. Also need to avoid
// a potential loop which could happen if an out of memory occurs when attempting
// to allocate the backtrace.
return ((!oopDesc::equals(throwable(), Universe::_out_of_memory_error_java_heap)) &&
(!oopDesc::equals(throwable(), Universe::_out_of_memory_error_metaspace)) &&
(!oopDesc::equals(throwable(), Universe::_out_of_memory_error_class_metaspace)) &&
(!oopDesc::equals(throwable(), Universe::_out_of_memory_error_array_size)) &&
(!oopDesc::equals(throwable(), Universe::_out_of_memory_error_gc_overhead_limit)) &&
(!oopDesc::equals(throwable(), Universe::_out_of_memory_error_realloc_objects)) &&
(!oopDesc::equals(throwable(), Universe::_out_of_memory_error_retry)));
}
oop Universe::gen_out_of_memory_error(oop default_err) {
// generate an out of memory error:
// - if there is a preallocated error and stack traces are available
// (j.l.Throwable is initialized), then return the preallocated
// error with a filled in stack trace, and with the message
// provided by the default error.
// - otherwise, return the default error, without a stack trace.
int next;
if ((_preallocated_out_of_memory_error_avail_count > 0) &&
SystemDictionary::Throwable_klass()->is_initialized()) {
next = (int)Atomic::add(-1, &_preallocated_out_of_memory_error_avail_count);
assert(next < (int)PreallocatedOutOfMemoryErrorCount, "avail count is corrupt");
} else {
next = -1;
}
if (next < 0) {
// all preallocated errors have been used.
// return default
return default_err;
} else {
Thread* THREAD = Thread::current();
Handle default_err_h(THREAD, default_err);
// get the error object at the slot and set set it to NULL so that the
// array isn't keeping it alive anymore.
Handle exc(THREAD, preallocated_out_of_memory_errors()->obj_at(next));
assert(exc() != NULL, "slot has been used already");
preallocated_out_of_memory_errors()->obj_at_put(next, NULL);
// use the message from the default error
oop msg = java_lang_Throwable::message(default_err_h());
assert(msg != NULL, "no message");
java_lang_Throwable::set_message(exc(), msg);
// populate the stack trace and return it.
java_lang_Throwable::fill_in_stack_trace_of_preallocated_backtrace(exc);
return exc();
}
}
intptr_t Universe::_non_oop_bits = 0;
void* Universe::non_oop_word() {
// Neither the high bits nor the low bits of this value is allowed
// to look like (respectively) the high or low bits of a real oop.
//
// High and low are CPU-specific notions, but low always includes
// the low-order bit. Since oops are always aligned at least mod 4,
// setting the low-order bit will ensure that the low half of the
// word will never look like that of a real oop.
//
// Using the OS-supplied non-memory-address word (usually 0 or -1)
// will take care of the high bits, however many there are.
if (_non_oop_bits == 0) {
_non_oop_bits = (intptr_t)os::non_memory_address_word() | 1;
}
return (void*)_non_oop_bits;
}
static void initialize_global_behaviours() {
CompiledICProtectionBehaviour::set_current(new DefaultICProtectionBehaviour());
}
jint universe_init() {
assert(!Universe::_fully_initialized, "called after initialize_vtables");
guarantee(1 << LogHeapWordSize == sizeof(HeapWord),
"LogHeapWordSize is incorrect.");
guarantee(sizeof(oop) >= sizeof(HeapWord), "HeapWord larger than oop?");
guarantee(sizeof(oop) % sizeof(HeapWord) == 0,
"oop size is not not a multiple of HeapWord size");
TraceTime timer("Genesis", TRACETIME_LOG(Info, startuptime));
JavaClasses::compute_hard_coded_offsets();
initialize_global_behaviours();
jint status = Universe::initialize_heap();
if (status != JNI_OK) {
return status;
}
SystemDictionary::initialize_oop_storage();
Metaspace::global_initialize();
// Initialize performance counters for metaspaces
MetaspaceCounters::initialize_performance_counters();
CompressedClassSpaceCounters::initialize_performance_counters();
AOTLoader::universe_init();
// Checks 'AfterMemoryInit' constraints.
if (!JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterMemoryInit)) {
return JNI_EINVAL;
}
// Create memory for metadata. Must be after initializing heap for
// DumpSharedSpaces.
ClassLoaderData::init_null_class_loader_data();
// We have a heap so create the Method* caches before
// Metaspace::initialize_shared_spaces() tries to populate them.
Universe::_finalizer_register_cache = new LatestMethodCache();
Universe::_loader_addClass_cache = new LatestMethodCache();
Universe::_throw_illegal_access_error_cache = new LatestMethodCache();
Universe::_do_stack_walk_cache = new LatestMethodCache();
#if INCLUDE_CDS
if (UseSharedSpaces) {
// Read the data structures supporting the shared spaces (shared
// system dictionary, symbol table, etc.). After that, access to
// the file (other than the mapped regions) is no longer needed, and
// the file is closed. Closing the file does not affect the
// currently mapped regions.
MetaspaceShared::initialize_shared_spaces();
StringTable::create_table();
} else
#endif
{
SymbolTable::create_table();
StringTable::create_table();
#if INCLUDE_CDS
if (DumpSharedSpaces) {
MetaspaceShared::prepare_for_dumping();
}
#endif
}
if (strlen(VerifySubSet) > 0) {
Universe::initialize_verify_flags();
}
ResolvedMethodTable::create_table();
return JNI_OK;
}
CollectedHeap* Universe::create_heap() {
assert(_collectedHeap == NULL, "Heap already created");
return GCConfig::arguments()->create_heap();
}
// Choose the heap base address and oop encoding mode
// when compressed oops are used:
// Unscaled - Use 32-bits oops without encoding when
// NarrowOopHeapBaseMin + heap_size < 4Gb
// ZeroBased - Use zero based compressed oops with encoding when
// NarrowOopHeapBaseMin + heap_size < 32Gb
// HeapBased - Use compressed oops with heap base + encoding.
jint Universe::initialize_heap() {
_collectedHeap = create_heap();
jint status = _collectedHeap->initialize();
if (status != JNI_OK) {
return status;
}
log_info(gc)("Using %s", _collectedHeap->name());
ThreadLocalAllocBuffer::set_max_size(Universe::heap()->max_tlab_size());
#ifdef _LP64
if (UseCompressedOops) {
// Subtract a page because something can get allocated at heap base.
// This also makes implicit null checking work, because the
// memory+1 page below heap_base needs to cause a signal.
// See needs_explicit_null_check.
// Only set the heap base for compressed oops because it indicates
// compressed oops for pstack code.
if ((uint64_t)Universe::heap()->reserved_region().end() > UnscaledOopHeapMax) {
// Didn't reserve heap below 4Gb. Must shift.
Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
}
if ((uint64_t)Universe::heap()->reserved_region().end() <= OopEncodingHeapMax) {
// Did reserve heap below 32Gb. Can use base == 0;
Universe::set_narrow_oop_base(0);
}
AOTLoader::set_narrow_oop_shift();
Universe::set_narrow_ptrs_base(Universe::narrow_oop_base());
LogTarget(Info, gc, heap, coops) lt;
if (lt.is_enabled()) {
ResourceMark rm;
LogStream ls(lt);
Universe::print_compressed_oops_mode(&ls);
}
// Tell tests in which mode we run.
Arguments::PropertyList_add(new SystemProperty("java.vm.compressedOopsMode",
narrow_oop_mode_to_string(narrow_oop_mode()),
false));
}
// Universe::narrow_oop_base() is one page below the heap.
assert((intptr_t)Universe::narrow_oop_base() <= (intptr_t)(Universe::heap()->base() -
os::vm_page_size()) ||
Universe::narrow_oop_base() == NULL, "invalid value");
assert(Universe::narrow_oop_shift() == LogMinObjAlignmentInBytes ||
Universe::narrow_oop_shift() == 0, "invalid value");
#endif
// We will never reach the CATCH below since Exceptions::_throw will cause
// the VM to exit if an exception is thrown during initialization
if (UseTLAB) {
assert(Universe::heap()->supports_tlab_allocation(),
"Should support thread-local allocation buffers");
ThreadLocalAllocBuffer::startup_initialization();
}
return JNI_OK;
}
void Universe::print_compressed_oops_mode(outputStream* st) {
st->print("Heap address: " PTR_FORMAT ", size: " SIZE_FORMAT " MB",
p2i(Universe::heap()->base()), Universe::heap()->reserved_region().byte_size()/M);
st->print(", Compressed Oops mode: %s", narrow_oop_mode_to_string(narrow_oop_mode()));
if (Universe::narrow_oop_base() != 0) {
st->print(": " PTR_FORMAT, p2i(Universe::narrow_oop_base()));
}
if (Universe::narrow_oop_shift() != 0) {
st->print(", Oop shift amount: %d", Universe::narrow_oop_shift());
}
if (!Universe::narrow_oop_use_implicit_null_checks()) {
st->print(", no protected page in front of the heap");
}
st->cr();
}
ReservedSpace Universe::reserve_heap(size_t heap_size, size_t alignment) {
assert(alignment <= Arguments::conservative_max_heap_alignment(),
"actual alignment " SIZE_FORMAT " must be within maximum heap alignment " SIZE_FORMAT,
alignment, Arguments::conservative_max_heap_alignment());
size_t total_reserved = align_up(heap_size, alignment);
assert(!UseCompressedOops || (total_reserved <= (OopEncodingHeapMax - os::vm_page_size())),
"heap size is too big for compressed oops");
bool use_large_pages = UseLargePages && is_aligned(alignment, os::large_page_size());
assert(!UseLargePages
|| UseParallelGC
|| use_large_pages, "Wrong alignment to use large pages");
// Now create the space.
ReservedHeapSpace total_rs(total_reserved, alignment, use_large_pages, AllocateHeapAt);
if (total_rs.is_reserved()) {
assert((total_reserved == total_rs.size()) && ((uintptr_t)total_rs.base() % alignment == 0),
"must be exactly of required size and alignment");
// We are good.
if (UseCompressedOops) {
// Universe::initialize_heap() will reset this to NULL if unscaled
// or zero-based narrow oops are actually used.
// Else heap start and base MUST differ, so that NULL can be encoded nonambigous.
Universe::set_narrow_oop_base((address)total_rs.compressed_oop_base());
}
if (AllocateHeapAt != NULL) {
log_info(gc,heap)("Successfully allocated Java heap at location %s", AllocateHeapAt);
}
return total_rs;
}
vm_exit_during_initialization(
err_msg("Could not reserve enough space for " SIZE_FORMAT "KB object heap",
total_reserved/K));
// satisfy compiler
ShouldNotReachHere();
return ReservedHeapSpace(0, 0, false);
}
// It's the caller's responsibility to ensure glitch-freedom
// (if required).
void Universe::update_heap_info_at_gc() {
_heap_capacity_at_last_gc = heap()->capacity();
_heap_used_at_last_gc = heap()->used();
}
const char* Universe::narrow_oop_mode_to_string(Universe::NARROW_OOP_MODE mode) {
switch (mode) {
case UnscaledNarrowOop:
return "32-bit";
case ZeroBasedNarrowOop:
return "Zero based";
case DisjointBaseNarrowOop:
return "Non-zero disjoint base";
case HeapBasedNarrowOop:
return "Non-zero based";
default:
ShouldNotReachHere();
return "";
}
}
Universe::NARROW_OOP_MODE Universe::narrow_oop_mode() {
if (narrow_oop_base_disjoint()) {
return DisjointBaseNarrowOop;
}
if (narrow_oop_base() != 0) {
return HeapBasedNarrowOop;
}
if (narrow_oop_shift() != 0) {
return ZeroBasedNarrowOop;
}
return UnscaledNarrowOop;
}
void initialize_known_method(LatestMethodCache* method_cache,
InstanceKlass* ik,
const char* method,
Symbol* signature,
bool is_static, TRAPS)
{
TempNewSymbol name = SymbolTable::new_symbol(method, CHECK);
Method* m = NULL;
// The klass must be linked before looking up the method.
if (!ik->link_class_or_fail(THREAD) ||
((m = ik->find_method(name, signature)) == NULL) ||
is_static != m->is_static()) {
ResourceMark rm(THREAD);
// NoSuchMethodException doesn't actually work because it tries to run the
// <init> function before java_lang_Class is linked. Print error and exit.
vm_exit_during_initialization(err_msg("Unable to link/verify %s.%s method",
ik->name()->as_C_string(), method));
}
method_cache->init(ik, m);
}
void Universe::initialize_known_methods(TRAPS) {
// Set up static method for registering finalizers
initialize_known_method(_finalizer_register_cache,
SystemDictionary::Finalizer_klass(),
"register",
vmSymbols::object_void_signature(), true, CHECK);
initialize_known_method(_throw_illegal_access_error_cache,
SystemDictionary::internal_Unsafe_klass(),
"throwIllegalAccessError",
vmSymbols::void_method_signature(), true, CHECK);
// Set up method for registering loaded classes in class loader vector
initialize_known_method(_loader_addClass_cache,
SystemDictionary::ClassLoader_klass(),
"addClass",
vmSymbols::class_void_signature(), false, CHECK);
// Set up method for stack walking
initialize_known_method(_do_stack_walk_cache,
SystemDictionary::AbstractStackWalker_klass(),
"doStackWalk",
vmSymbols::doStackWalk_signature(), false, CHECK);
}
void universe2_init() {
EXCEPTION_MARK;
Universe::genesis(CATCH);
}
// Set after initialization of the module runtime, call_initModuleRuntime
void universe_post_module_init() {
Universe::_module_initialized = true;
}
bool universe_post_init() {
assert(!is_init_completed(), "Error: initialization not yet completed!");
Universe::_fully_initialized = true;
EXCEPTION_MARK;
{ ResourceMark rm;
Interpreter::initialize(); // needed for interpreter entry points
if (!UseSharedSpaces) {
Universe::reinitialize_vtables(CHECK_false);
Universe::reinitialize_itables(CHECK_false);
}
}
HandleMark hm(THREAD);
// Setup preallocated empty java.lang.Class array
Universe::_the_empty_class_klass_array = oopFactory::new_objArray(SystemDictionary::Class_klass(), 0, CHECK_false);
// Setup preallocated OutOfMemoryError errors
Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_OutOfMemoryError(), true, CHECK_false);
InstanceKlass* ik = InstanceKlass::cast(k);
Universe::_out_of_memory_error_java_heap = ik->allocate_instance(CHECK_false);
Universe::_out_of_memory_error_metaspace = ik->allocate_instance(CHECK_false);
Universe::_out_of_memory_error_class_metaspace = ik->allocate_instance(CHECK_false);
Universe::_out_of_memory_error_array_size = ik->allocate_instance(CHECK_false);
Universe::_out_of_memory_error_gc_overhead_limit =
ik->allocate_instance(CHECK_false);
Universe::_out_of_memory_error_realloc_objects = ik->allocate_instance(CHECK_false);
Universe::_out_of_memory_error_retry = ik->allocate_instance(CHECK_false);
// Setup preallocated cause message for delayed StackOverflowError
if (StackReservedPages > 0) {
Universe::_delayed_stack_overflow_error_message =
java_lang_String::create_oop_from_str("Delayed StackOverflowError due to ReservedStackAccess annotated method", CHECK_false);
}
// Setup preallocated NullPointerException
// (this is currently used for a cheap & dirty solution in compiler exception handling)
k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_NullPointerException(), true, CHECK_false);
Universe::_null_ptr_exception_instance = InstanceKlass::cast(k)->allocate_instance(CHECK_false);
// Setup preallocated ArithmeticException
// (this is currently used for a cheap & dirty solution in compiler exception handling)
k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ArithmeticException(), true, CHECK_false);
Universe::_arithmetic_exception_instance = InstanceKlass::cast(k)->allocate_instance(CHECK_false);
// Virtual Machine Error for when we get into a situation we can't resolve
k = SystemDictionary::resolve_or_fail(
vmSymbols::java_lang_VirtualMachineError(), true, CHECK_false);
bool linked = InstanceKlass::cast(k)->link_class_or_fail(CHECK_false);
if (!linked) {
tty->print_cr("Unable to link/verify VirtualMachineError class");
return false; // initialization failed
}
Universe::_virtual_machine_error_instance =
InstanceKlass::cast(k)->allocate_instance(CHECK_false);
Universe::_vm_exception = InstanceKlass::cast(k)->allocate_instance(CHECK_false);
Handle msg = java_lang_String::create_from_str("Java heap space", CHECK_false);
java_lang_Throwable::set_message(Universe::_out_of_memory_error_java_heap, msg());
msg = java_lang_String::create_from_str("Metaspace", CHECK_false);
java_lang_Throwable::set_message(Universe::_out_of_memory_error_metaspace, msg());
msg = java_lang_String::create_from_str("Compressed class space", CHECK_false);
java_lang_Throwable::set_message(Universe::_out_of_memory_error_class_metaspace, msg());
msg = java_lang_String::create_from_str("Requested array size exceeds VM limit", CHECK_false);
java_lang_Throwable::set_message(Universe::_out_of_memory_error_array_size, msg());
msg = java_lang_String::create_from_str("GC overhead limit exceeded", CHECK_false);
java_lang_Throwable::set_message(Universe::_out_of_memory_error_gc_overhead_limit, msg());
msg = java_lang_String::create_from_str("Java heap space: failed reallocation of scalar replaced objects", CHECK_false);
java_lang_Throwable::set_message(Universe::_out_of_memory_error_realloc_objects, msg());
msg = java_lang_String::create_from_str("Java heap space: failed retryable allocation", CHECK_false);
java_lang_Throwable::set_message(Universe::_out_of_memory_error_retry, msg());
msg = java_lang_String::create_from_str("/ by zero", CHECK_false);
java_lang_Throwable::set_message(Universe::_arithmetic_exception_instance, msg());
// Setup the array of errors that have preallocated backtrace
k = Universe::_out_of_memory_error_java_heap->klass();
assert(k->name() == vmSymbols::java_lang_OutOfMemoryError(), "should be out of memory error");
ik = InstanceKlass::cast(k);
int len = (StackTraceInThrowable) ? (int)PreallocatedOutOfMemoryErrorCount : 0;
Universe::_preallocated_out_of_memory_error_array = oopFactory::new_objArray(ik, len, CHECK_false);
for (int i=0; i<len; i++) {
oop err = ik->allocate_instance(CHECK_false);
Handle err_h = Handle(THREAD, err);
java_lang_Throwable::allocate_backtrace(err_h, CHECK_false);
Universe::preallocated_out_of_memory_errors()->obj_at_put(i, err_h());
}
Universe::_preallocated_out_of_memory_error_avail_count = (jint)len;
Universe::initialize_known_methods(CHECK_false);
// This needs to be done before the first scavenge/gc, since
// it's an input to soft ref clearing policy.
{
MutexLocker x(Heap_lock);
Universe::update_heap_info_at_gc();
}
// ("weak") refs processing infrastructure initialization
Universe::heap()->post_initialize();
MemoryService::add_metaspace_memory_pools();
MemoryService::set_universe_heap(Universe::heap());
#if INCLUDE_CDS
MetaspaceShared::post_initialize(CHECK_false);
#endif
return true;
}
void Universe::compute_base_vtable_size() {
_base_vtable_size = ClassLoader::compute_Object_vtable();
}
void Universe::print_on(outputStream* st) {
GCMutexLocker hl(Heap_lock); // Heap_lock might be locked by caller thread.
st->print_cr("Heap");
heap()->print_on(st);
}
void Universe::print_heap_at_SIGBREAK() {
if (PrintHeapAtSIGBREAK) {
print_on(tty);
tty->cr();
tty->flush();
}
}
void Universe::print_heap_before_gc() {
LogTarget(Debug, gc, heap) lt;
if (lt.is_enabled()) {
LogStream ls(lt);
ls.print("Heap before GC invocations=%u (full %u):", heap()->total_collections(), heap()->total_full_collections());
ResourceMark rm;
heap()->print_on(&ls);
}
}
void Universe::print_heap_after_gc() {
LogTarget(Debug, gc, heap) lt;
if (lt.is_enabled()) {
LogStream ls(lt);
ls.print("Heap after GC invocations=%u (full %u):", heap()->total_collections(), heap()->total_full_collections());
ResourceMark rm;
heap()->print_on(&ls);
}
}
void Universe::initialize_verify_flags() {
verify_flags = 0;
const char delimiter[] = " ,";
size_t length = strlen(VerifySubSet);
char* subset_list = NEW_C_HEAP_ARRAY(char, length + 1, mtInternal);
strncpy(subset_list, VerifySubSet, length + 1);
char* save_ptr;
char* token = strtok_r(subset_list, delimiter, &save_ptr);
while (token != NULL) {
if (strcmp(token, "threads") == 0) {
verify_flags |= Verify_Threads;
} else if (strcmp(token, "heap") == 0) {
verify_flags |= Verify_Heap;
} else if (strcmp(token, "symbol_table") == 0) {
verify_flags |= Verify_SymbolTable;
} else if (strcmp(token, "string_table") == 0) {
verify_flags |= Verify_StringTable;
} else if (strcmp(token, "codecache") == 0) {
verify_flags |= Verify_CodeCache;
} else if (strcmp(token, "dictionary") == 0) {
verify_flags |= Verify_SystemDictionary;
} else if (strcmp(token, "classloader_data_graph") == 0) {
verify_flags |= Verify_ClassLoaderDataGraph;
} else if (strcmp(token, "metaspace") == 0) {
verify_flags |= Verify_MetaspaceUtils;
} else if (strcmp(token, "jni_handles") == 0) {
verify_flags |= Verify_JNIHandles;
} else if (strcmp(token, "codecache_oops") == 0) {
verify_flags |= Verify_CodeCacheOops;
} else {
vm_exit_during_initialization(err_msg("VerifySubSet: \'%s\' memory sub-system is unknown, please correct it", token));
}
token = strtok_r(NULL, delimiter, &save_ptr);
}
FREE_C_HEAP_ARRAY(char, subset_list);
}
bool Universe::should_verify_subset(uint subset) {
if (verify_flags & subset) {
return true;
}
return false;
}
void Universe::verify(VerifyOption option, const char* prefix) {
// The use of _verify_in_progress is a temporary work around for
// 6320749. Don't bother with a creating a class to set and clear
// it since it is only used in this method and the control flow is
// straight forward.
_verify_in_progress = true;
COMPILER2_PRESENT(
assert(!DerivedPointerTable::is_active(),
"DPT should not be active during verification "
"(of thread stacks below)");
)
ResourceMark rm;
HandleMark hm; // Handles created during verification can be zapped
_verify_count++;
FormatBuffer<> title("Verifying %s", prefix);
GCTraceTime(Info, gc, verify) tm(title.buffer());
if (should_verify_subset(Verify_Threads)) {
log_debug(gc, verify)("Threads");
Threads::verify();
}
if (should_verify_subset(Verify_Heap)) {
log_debug(gc, verify)("Heap");
heap()->verify(option);
}
if (should_verify_subset(Verify_SymbolTable)) {
log_debug(gc, verify)("SymbolTable");
SymbolTable::verify();
}
if (should_verify_subset(Verify_StringTable)) {
log_debug(gc, verify)("StringTable");
StringTable::verify();
}
if (should_verify_subset(Verify_CodeCache)) {
{
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
log_debug(gc, verify)("CodeCache");
CodeCache::verify();
}
}
if (should_verify_subset(Verify_SystemDictionary)) {
log_debug(gc, verify)("SystemDictionary");
SystemDictionary::verify();
}
#ifndef PRODUCT
if (should_verify_subset(Verify_ClassLoaderDataGraph)) {
log_debug(gc, verify)("ClassLoaderDataGraph");
ClassLoaderDataGraph::verify();
}
#endif
if (should_verify_subset(Verify_MetaspaceUtils)) {
log_debug(gc, verify)("MetaspaceUtils");
MetaspaceUtils::verify_free_chunks();
}
if (should_verify_subset(Verify_JNIHandles)) {
log_debug(gc, verify)("JNIHandles");
JNIHandles::verify();
}
if (should_verify_subset(Verify_CodeCacheOops)) {
log_debug(gc, verify)("CodeCache Oops");
CodeCache::verify_oops();
}
_verify_in_progress = false;
}
#ifndef PRODUCT
void Universe::calculate_verify_data(HeapWord* low_boundary, HeapWord* high_boundary) {
assert(low_boundary < high_boundary, "bad interval");
// decide which low-order bits we require to be clear:
size_t alignSize = MinObjAlignmentInBytes;
size_t min_object_size = CollectedHeap::min_fill_size();
// make an inclusive limit:
uintptr_t max = (uintptr_t)high_boundary - min_object_size*wordSize;
uintptr_t min = (uintptr_t)low_boundary;
assert(min < max, "bad interval");
uintptr_t diff = max ^ min;
// throw away enough low-order bits to make the diff vanish
uintptr_t mask = (uintptr_t)(-1);
while ((mask & diff) != 0)
mask <<= 1;
uintptr_t bits = (min & mask);
assert(bits == (max & mask), "correct mask");
// check an intermediate value between min and max, just to make sure:
assert(bits == ((min + (max-min)/2) & mask), "correct mask");
// require address alignment, too:
mask |= (alignSize - 1);
if (!(_verify_oop_mask == 0 && _verify_oop_bits == (uintptr_t)-1)) {
assert(_verify_oop_mask == mask && _verify_oop_bits == bits, "mask stability");
}
_verify_oop_mask = mask;
_verify_oop_bits = bits;
}
// Oop verification (see MacroAssembler::verify_oop)
uintptr_t Universe::verify_oop_mask() {
MemRegion m = heap()->reserved_region();
calculate_verify_data(m.start(), m.end());
return _verify_oop_mask;
}
uintptr_t Universe::verify_oop_bits() {
MemRegion m = heap()->reserved_region();
calculate_verify_data(m.start(), m.end());
return _verify_oop_bits;
}
uintptr_t Universe::verify_mark_mask() {
return markOopDesc::lock_mask_in_place;
}
uintptr_t Universe::verify_mark_bits() {
intptr_t mask = verify_mark_mask();
intptr_t bits = (intptr_t)markOopDesc::prototype();
assert((bits & ~mask) == 0, "no stray header bits");
return bits;
}
#endif // PRODUCT
void Universe::compute_verify_oop_data() {
verify_oop_mask();
verify_oop_bits();
verify_mark_mask();
verify_mark_bits();
}
void LatestMethodCache::init(Klass* k, Method* m) {
if (!UseSharedSpaces) {
_klass = k;
}
#ifndef PRODUCT
else {
// sharing initilization should have already set up _klass
assert(_klass != NULL, "just checking");
}
#endif
_method_idnum = m->method_idnum();
assert(_method_idnum >= 0, "sanity check");
}
Method* LatestMethodCache::get_method() {
if (klass() == NULL) return NULL;
InstanceKlass* ik = InstanceKlass::cast(klass());
Method* m = ik->method_with_idnum(method_idnum());
assert(m != NULL, "sanity check");
return m;
}
#ifdef ASSERT
// Release dummy object(s) at bottom of heap
bool Universe::release_fullgc_alot_dummy() {
MutexLocker ml(FullGCALot_lock);
if (_fullgc_alot_dummy_array != NULL) {
if (_fullgc_alot_dummy_next >= _fullgc_alot_dummy_array->length()) {
// No more dummies to release, release entire array instead
_fullgc_alot_dummy_array = NULL;
return false;
}
if (!UseConcMarkSweepGC) {
// Release dummy at bottom of old generation
_fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
}
// Release dummy at bottom of permanent generation
_fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
}
return true;
}
#endif // ASSERT