8215731: Move forward class definitions out of globalDefinitions.hpp
Summary: redistribute the forward declarations to the header files that need them.
Reviewed-by: dholmes, lfoltan
/*
* Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// output_h.cpp - Class HPP file output routines for architecture definition
#include "adlc.hpp"
// The comment delimiter used in format statements after assembler instructions.
#if defined(PPC64)
#define commentSeperator "\t//"
#else
#define commentSeperator "!"
#endif
// Generate the #define that describes the number of registers.
static void defineRegCount(FILE *fp, RegisterForm *registers) {
if (registers) {
int regCount = AdlcVMDeps::Physical + registers->_rdefs.count();
fprintf(fp,"\n");
fprintf(fp,"// the number of reserved registers + machine registers.\n");
fprintf(fp,"#define REG_COUNT %d\n", regCount);
}
}
// Output enumeration of machine register numbers
// (1)
// // Enumerate machine registers starting after reserved regs.
// // in the order of occurrence in the register block.
// enum MachRegisterNumbers {
// EAX_num = 0,
// ...
// _last_Mach_Reg
// }
void ArchDesc::buildMachRegisterNumbers(FILE *fp_hpp) {
if (_register) {
RegDef *reg_def = NULL;
// Output a #define for the number of machine registers
defineRegCount(fp_hpp, _register);
// Count all the Save_On_Entry and Always_Save registers
int saved_on_entry = 0;
int c_saved_on_entry = 0;
_register->reset_RegDefs();
while( (reg_def = _register->iter_RegDefs()) != NULL ) {
if( strcmp(reg_def->_callconv,"SOE") == 0 ||
strcmp(reg_def->_callconv,"AS") == 0 ) ++saved_on_entry;
if( strcmp(reg_def->_c_conv,"SOE") == 0 ||
strcmp(reg_def->_c_conv,"AS") == 0 ) ++c_saved_on_entry;
}
fprintf(fp_hpp, "\n");
fprintf(fp_hpp, "// the number of save_on_entry + always_saved registers.\n");
fprintf(fp_hpp, "#define MAX_SAVED_ON_ENTRY_REG_COUNT %d\n", max(saved_on_entry,c_saved_on_entry));
fprintf(fp_hpp, "#define SAVED_ON_ENTRY_REG_COUNT %d\n", saved_on_entry);
fprintf(fp_hpp, "#define C_SAVED_ON_ENTRY_REG_COUNT %d\n", c_saved_on_entry);
// (1)
// Build definition for enumeration of register numbers
fprintf(fp_hpp, "\n");
fprintf(fp_hpp, "// Enumerate machine register numbers starting after reserved regs.\n");
fprintf(fp_hpp, "// in the order of occurrence in the register block.\n");
fprintf(fp_hpp, "enum MachRegisterNumbers {\n");
// Output the register number for each register in the allocation classes
_register->reset_RegDefs();
int i = 0;
while( (reg_def = _register->iter_RegDefs()) != NULL ) {
fprintf(fp_hpp," %s_num,", reg_def->_regname);
for (int j = 0; j < 20-(int)strlen(reg_def->_regname); j++) fprintf(fp_hpp, " ");
fprintf(fp_hpp," // enum %3d, regnum %3d, reg encode %3s\n",
i++,
reg_def->register_num(),
reg_def->register_encode());
}
// Finish defining enumeration
fprintf(fp_hpp, " _last_Mach_Reg // %d\n", i);
fprintf(fp_hpp, "};\n");
}
fprintf(fp_hpp, "\n// Size of register-mask in ints\n");
fprintf(fp_hpp, "#define RM_SIZE %d\n",RegisterForm::RegMask_Size());
fprintf(fp_hpp, "// Unroll factor for loops over the data in a RegMask\n");
fprintf(fp_hpp, "#define FORALL_BODY ");
int len = RegisterForm::RegMask_Size();
for( int i = 0; i < len; i++ )
fprintf(fp_hpp, "BODY(%d) ",i);
fprintf(fp_hpp, "\n\n");
fprintf(fp_hpp,"class RegMask;\n");
// All RegMasks are declared "extern const ..." in ad_<arch>.hpp
// fprintf(fp_hpp,"extern RegMask STACK_OR_STACK_SLOTS_mask;\n\n");
}
// Output enumeration of machine register encodings
// (2)
// // Enumerate machine registers starting after reserved regs.
// // in the order of occurrence in the alloc_class(es).
// enum MachRegisterEncodes {
// EAX_enc = 0x00,
// ...
// }
void ArchDesc::buildMachRegisterEncodes(FILE *fp_hpp) {
if (_register) {
RegDef *reg_def = NULL;
RegDef *reg_def_next = NULL;
// (2)
// Build definition for enumeration of encode values
fprintf(fp_hpp, "\n");
fprintf(fp_hpp, "// Enumerate machine registers starting after reserved regs.\n");
fprintf(fp_hpp, "// in the order of occurrence in the alloc_class(es).\n");
fprintf(fp_hpp, "enum MachRegisterEncodes {\n");
// Find max enum string length.
size_t maxlen = 0;
_register->reset_RegDefs();
reg_def = _register->iter_RegDefs();
while (reg_def != NULL) {
size_t len = strlen(reg_def->_regname);
if (len > maxlen) maxlen = len;
reg_def = _register->iter_RegDefs();
}
// Output the register encoding for each register in the allocation classes
_register->reset_RegDefs();
reg_def_next = _register->iter_RegDefs();
while( (reg_def = reg_def_next) != NULL ) {
reg_def_next = _register->iter_RegDefs();
fprintf(fp_hpp," %s_enc", reg_def->_regname);
for (size_t i = strlen(reg_def->_regname); i < maxlen; i++) fprintf(fp_hpp, " ");
fprintf(fp_hpp," = %3s%s\n", reg_def->register_encode(), reg_def_next == NULL? "" : "," );
}
// Finish defining enumeration
fprintf(fp_hpp, "};\n");
} // Done with register form
}
// Declare an array containing the machine register names, strings.
static void declareRegNames(FILE *fp, RegisterForm *registers) {
if (registers) {
// fprintf(fp,"\n");
// fprintf(fp,"// An array of character pointers to machine register names.\n");
// fprintf(fp,"extern const char *regName[];\n");
}
}
// Declare an array containing the machine register sizes in 32-bit words.
void ArchDesc::declareRegSizes(FILE *fp) {
// regSize[] is not used
}
// Declare an array containing the machine register encoding values
static void declareRegEncodes(FILE *fp, RegisterForm *registers) {
if (registers) {
// // //
// fprintf(fp,"\n");
// fprintf(fp,"// An array containing the machine register encode values\n");
// fprintf(fp,"extern const char regEncode[];\n");
}
}
// ---------------------------------------------------------------------------
//------------------------------Utilities to build Instruction Classes--------
// ---------------------------------------------------------------------------
static void out_RegMask(FILE *fp) {
fprintf(fp," virtual const RegMask &out_RegMask() const;\n");
}
// ---------------------------------------------------------------------------
//--------Utilities to build MachOper and MachNode derived Classes------------
// ---------------------------------------------------------------------------
//------------------------------Utilities to build Operand Classes------------
static void in_RegMask(FILE *fp) {
fprintf(fp," virtual const RegMask *in_RegMask(int index) const;\n");
}
static void declareConstStorage(FILE *fp, FormDict &globals, OperandForm *oper) {
int i = 0;
Component *comp;
if (oper->num_consts(globals) == 0) return;
// Iterate over the component list looking for constants
oper->_components.reset();
if ((comp = oper->_components.iter()) == NULL) {
assert(oper->num_consts(globals) == 1, "Bad component list detected.\n");
const char *type = oper->ideal_type(globals);
if (!strcmp(type, "ConI")) {
if (i > 0) fprintf(fp,", ");
fprintf(fp," int32_t _c%d;\n", i);
}
else if (!strcmp(type, "ConP")) {
if (i > 0) fprintf(fp,", ");
fprintf(fp," const TypePtr *_c%d;\n", i);
}
else if (!strcmp(type, "ConN")) {
if (i > 0) fprintf(fp,", ");
fprintf(fp," const TypeNarrowOop *_c%d;\n", i);
}
else if (!strcmp(type, "ConNKlass")) {
if (i > 0) fprintf(fp,", ");
fprintf(fp," const TypeNarrowKlass *_c%d;\n", i);
}
else if (!strcmp(type, "ConL")) {
if (i > 0) fprintf(fp,", ");
fprintf(fp," jlong _c%d;\n", i);
}
else if (!strcmp(type, "ConF")) {
if (i > 0) fprintf(fp,", ");
fprintf(fp," jfloat _c%d;\n", i);
}
else if (!strcmp(type, "ConD")) {
if (i > 0) fprintf(fp,", ");
fprintf(fp," jdouble _c%d;\n", i);
}
else if (!strcmp(type, "Bool")) {
fprintf(fp,"private:\n");
fprintf(fp," BoolTest::mask _c%d;\n", i);
fprintf(fp,"public:\n");
}
else {
assert(0, "Non-constant operand lacks component list.");
}
} // end if NULL
else {
oper->_components.reset();
while ((comp = oper->_components.iter()) != NULL) {
if (!strcmp(comp->base_type(globals), "ConI")) {
fprintf(fp," jint _c%d;\n", i);
i++;
}
else if (!strcmp(comp->base_type(globals), "ConP")) {
fprintf(fp," const TypePtr *_c%d;\n", i);
i++;
}
else if (!strcmp(comp->base_type(globals), "ConN")) {
fprintf(fp," const TypePtr *_c%d;\n", i);
i++;
}
else if (!strcmp(comp->base_type(globals), "ConNKlass")) {
fprintf(fp," const TypePtr *_c%d;\n", i);
i++;
}
else if (!strcmp(comp->base_type(globals), "ConL")) {
fprintf(fp," jlong _c%d;\n", i);
i++;
}
else if (!strcmp(comp->base_type(globals), "ConF")) {
fprintf(fp," jfloat _c%d;\n", i);
i++;
}
else if (!strcmp(comp->base_type(globals), "ConD")) {
fprintf(fp," jdouble _c%d;\n", i);
i++;
}
}
}
}
// Declare constructor.
// Parameters start with condition code, then all other constants
//
// (0) public:
// (1) MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
// (2) : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
//
static void defineConstructor(FILE *fp, const char *name, uint num_consts,
ComponentList &lst, bool is_ideal_bool,
Form::DataType constant_type, FormDict &globals) {
fprintf(fp,"public:\n");
// generate line (1)
fprintf(fp," %sOper(", name);
if( num_consts == 0 ) {
fprintf(fp,") {}\n");
return;
}
// generate parameters for constants
uint i = 0;
Component *comp;
lst.reset();
if ((comp = lst.iter()) == NULL) {
assert(num_consts == 1, "Bad component list detected.\n");
switch( constant_type ) {
case Form::idealI : {
fprintf(fp,is_ideal_bool ? "BoolTest::mask c%d" : "int32_t c%d", i);
break;
}
case Form::idealN : { fprintf(fp,"const TypeNarrowOop *c%d", i); break; }
case Form::idealNKlass : { fprintf(fp,"const TypeNarrowKlass *c%d", i); break; }
case Form::idealP : { fprintf(fp,"const TypePtr *c%d", i); break; }
case Form::idealL : { fprintf(fp,"jlong c%d", i); break; }
case Form::idealF : { fprintf(fp,"jfloat c%d", i); break; }
case Form::idealD : { fprintf(fp,"jdouble c%d", i); break; }
default:
assert(!is_ideal_bool, "Non-constant operand lacks component list.");
break;
}
} // end if NULL
else {
lst.reset();
while((comp = lst.iter()) != NULL) {
if (!strcmp(comp->base_type(globals), "ConI")) {
if (i > 0) fprintf(fp,", ");
fprintf(fp,"int32_t c%d", i);
i++;
}
else if (!strcmp(comp->base_type(globals), "ConP")) {
if (i > 0) fprintf(fp,", ");
fprintf(fp,"const TypePtr *c%d", i);
i++;
}
else if (!strcmp(comp->base_type(globals), "ConN")) {
if (i > 0) fprintf(fp,", ");
fprintf(fp,"const TypePtr *c%d", i);
i++;
}
else if (!strcmp(comp->base_type(globals), "ConNKlass")) {
if (i > 0) fprintf(fp,", ");
fprintf(fp,"const TypePtr *c%d", i);
i++;
}
else if (!strcmp(comp->base_type(globals), "ConL")) {
if (i > 0) fprintf(fp,", ");
fprintf(fp,"jlong c%d", i);
i++;
}
else if (!strcmp(comp->base_type(globals), "ConF")) {
if (i > 0) fprintf(fp,", ");
fprintf(fp,"jfloat c%d", i);
i++;
}
else if (!strcmp(comp->base_type(globals), "ConD")) {
if (i > 0) fprintf(fp,", ");
fprintf(fp,"jdouble c%d", i);
i++;
}
else if (!strcmp(comp->base_type(globals), "Bool")) {
if (i > 0) fprintf(fp,", ");
fprintf(fp,"BoolTest::mask c%d", i);
i++;
}
}
}
// finish line (1) and start line (2)
fprintf(fp,") : ");
// generate initializers for constants
i = 0;
fprintf(fp,"_c%d(c%d)", i, i);
for( i = 1; i < num_consts; ++i) {
fprintf(fp,", _c%d(c%d)", i, i);
}
// The body for the constructor is empty
fprintf(fp," {}\n");
}
// ---------------------------------------------------------------------------
// Utilities to generate format rules for machine operands and instructions
// ---------------------------------------------------------------------------
// Generate the format rule for condition codes
static void defineCCodeDump(OperandForm* oper, FILE *fp, int i) {
assert(oper != NULL, "what");
CondInterface* cond = oper->_interface->is_CondInterface();
fprintf(fp, " if( _c%d == BoolTest::eq ) st->print_raw(\"%s\");\n",i,cond->_equal_format);
fprintf(fp, " else if( _c%d == BoolTest::ne ) st->print_raw(\"%s\");\n",i,cond->_not_equal_format);
fprintf(fp, " else if( _c%d == BoolTest::le ) st->print_raw(\"%s\");\n",i,cond->_less_equal_format);
fprintf(fp, " else if( _c%d == BoolTest::ge ) st->print_raw(\"%s\");\n",i,cond->_greater_equal_format);
fprintf(fp, " else if( _c%d == BoolTest::lt ) st->print_raw(\"%s\");\n",i,cond->_less_format);
fprintf(fp, " else if( _c%d == BoolTest::gt ) st->print_raw(\"%s\");\n",i,cond->_greater_format);
fprintf(fp, " else if( _c%d == BoolTest::overflow ) st->print_raw(\"%s\");\n",i,cond->_overflow_format);
fprintf(fp, " else if( _c%d == BoolTest::no_overflow ) st->print_raw(\"%s\");\n",i,cond->_no_overflow_format);
}
// Output code that dumps constant values, increment "i" if type is constant
static uint dump_spec_constant(FILE *fp, const char *ideal_type, uint i, OperandForm* oper) {
if (!strcmp(ideal_type, "ConI")) {
fprintf(fp," st->print(\"#%%d\", _c%d);\n", i);
fprintf(fp," st->print(\"/0x%%08x\", _c%d);\n", i);
++i;
}
else if (!strcmp(ideal_type, "ConP")) {
fprintf(fp," _c%d->dump_on(st);\n", i);
++i;
}
else if (!strcmp(ideal_type, "ConN")) {
fprintf(fp," _c%d->dump_on(st);\n", i);
++i;
}
else if (!strcmp(ideal_type, "ConNKlass")) {
fprintf(fp," _c%d->dump_on(st);\n", i);
++i;
}
else if (!strcmp(ideal_type, "ConL")) {
fprintf(fp," st->print(\"#\" INT64_FORMAT, (int64_t)_c%d);\n", i);
fprintf(fp," st->print(\"/\" PTR64_FORMAT, (uint64_t)_c%d);\n", i);
++i;
}
else if (!strcmp(ideal_type, "ConF")) {
fprintf(fp," st->print(\"#%%f\", _c%d);\n", i);
fprintf(fp," jint _c%di = JavaValue(_c%d).get_jint();\n", i, i);
fprintf(fp," st->print(\"/0x%%x/\", _c%di);\n", i);
++i;
}
else if (!strcmp(ideal_type, "ConD")) {
fprintf(fp," st->print(\"#%%f\", _c%d);\n", i);
fprintf(fp," jlong _c%dl = JavaValue(_c%d).get_jlong();\n", i, i);
fprintf(fp," st->print(\"/\" PTR64_FORMAT, (uint64_t)_c%dl);\n", i);
++i;
}
else if (!strcmp(ideal_type, "Bool")) {
defineCCodeDump(oper, fp,i);
++i;
}
return i;
}
// Generate the format rule for an operand
void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file = false) {
if (!for_c_file) {
// invoked after output #ifndef PRODUCT to ad_<arch>.hpp
// compile the bodies separately, to cut down on recompilations
fprintf(fp," virtual void int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const;\n");
fprintf(fp," virtual void ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const;\n");
return;
}
// Local pointer indicates remaining part of format rule
int idx = 0; // position of operand in match rule
// Generate internal format function, used when stored locally
fprintf(fp, "\n#ifndef PRODUCT\n");
fprintf(fp,"void %sOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {\n", oper._ident);
// Generate the user-defined portion of the format
if (oper._format) {
if ( oper._format->_strings.count() != 0 ) {
// No initialization code for int_format
// Build the format from the entries in strings and rep_vars
const char *string = NULL;
oper._format->_rep_vars.reset();
oper._format->_strings.reset();
while ( (string = oper._format->_strings.iter()) != NULL ) {
// Check if this is a standard string or a replacement variable
if ( string != NameList::_signal ) {
// Normal string
// Pass through to st->print
fprintf(fp," st->print_raw(\"%s\");\n", string);
} else {
// Replacement variable
const char *rep_var = oper._format->_rep_vars.iter();
// Check that it is a local name, and an operand
const Form* form = oper._localNames[rep_var];
if (form == NULL) {
globalAD->syntax_err(oper._linenum,
"\'%s\' not found in format for %s\n", rep_var, oper._ident);
assert(form, "replacement variable was not found in local names");
}
OperandForm *op = form->is_operand();
// Get index if register or constant
if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
idx = oper.register_position( globals, rep_var);
}
else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
idx = oper.constant_position( globals, rep_var);
} else {
idx = 0;
}
// output invocation of "$..."s format function
if ( op != NULL ) op->int_format(fp, globals, idx);
if ( idx == -1 ) {
fprintf(stderr,
"Using a name, %s, that isn't in match rule\n", rep_var);
assert( strcmp(op->_ident,"label")==0, "Unimplemented");
}
} // Done with a replacement variable
} // Done with all format strings
} else {
// Default formats for base operands (RegI, RegP, ConI, ConP, ...)
oper.int_format(fp, globals, 0);
}
} else { // oper._format == NULL
// Provide a few special case formats where the AD writer cannot.
if ( strcmp(oper._ident,"Universe")==0 ) {
fprintf(fp, " st->print(\"$$univ\");\n");
}
// labelOper::int_format is defined in ad_<...>.cpp
}
// ALWAYS! Provide a special case output for condition codes.
if( oper.is_ideal_bool() ) {
defineCCodeDump(&oper, fp,0);
}
fprintf(fp,"}\n");
// Generate external format function, when data is stored externally
fprintf(fp,"void %sOper::ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const {\n", oper._ident);
// Generate the user-defined portion of the format
if (oper._format) {
if ( oper._format->_strings.count() != 0 ) {
// Check for a replacement string "$..."
if ( oper._format->_rep_vars.count() != 0 ) {
// Initialization code for ext_format
}
// Build the format from the entries in strings and rep_vars
const char *string = NULL;
oper._format->_rep_vars.reset();
oper._format->_strings.reset();
while ( (string = oper._format->_strings.iter()) != NULL ) {
// Check if this is a standard string or a replacement variable
if ( string != NameList::_signal ) {
// Normal string
// Pass through to st->print
fprintf(fp," st->print_raw(\"%s\");\n", string);
} else {
// Replacement variable
const char *rep_var = oper._format->_rep_vars.iter();
// Check that it is a local name, and an operand
const Form* form = oper._localNames[rep_var];
if (form == NULL) {
globalAD->syntax_err(oper._linenum,
"\'%s\' not found in format for %s\n", rep_var, oper._ident);
assert(form, "replacement variable was not found in local names");
}
OperandForm *op = form->is_operand();
// Get index if register or constant
if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
idx = oper.register_position( globals, rep_var);
}
else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
idx = oper.constant_position( globals, rep_var);
} else {
idx = 0;
}
// output invocation of "$..."s format function
if ( op != NULL ) op->ext_format(fp, globals, idx);
// Lookup the index position of the replacement variable
idx = oper._components.operand_position_format(rep_var, &oper);
if ( idx == -1 ) {
fprintf(stderr,
"Using a name, %s, that isn't in match rule\n", rep_var);
assert( strcmp(op->_ident,"label")==0, "Unimplemented");
}
} // Done with a replacement variable
} // Done with all format strings
} else {
// Default formats for base operands (RegI, RegP, ConI, ConP, ...)
oper.ext_format(fp, globals, 0);
}
} else { // oper._format == NULL
// Provide a few special case formats where the AD writer cannot.
if ( strcmp(oper._ident,"Universe")==0 ) {
fprintf(fp, " st->print(\"$$univ\");\n");
}
// labelOper::ext_format is defined in ad_<...>.cpp
}
// ALWAYS! Provide a special case output for condition codes.
if( oper.is_ideal_bool() ) {
defineCCodeDump(&oper, fp,0);
}
fprintf(fp, "}\n");
fprintf(fp, "#endif\n");
}
// Generate the format rule for an instruction
void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &inst, bool for_c_file = false) {
if (!for_c_file) {
// compile the bodies separately, to cut down on recompilations
// #ifndef PRODUCT region generated by caller
fprintf(fp," virtual void format(PhaseRegAlloc *ra, outputStream *st) const;\n");
return;
}
// Define the format function
fprintf(fp, "#ifndef PRODUCT\n");
fprintf(fp, "void %sNode::format(PhaseRegAlloc *ra, outputStream *st) const {\n", inst._ident);
// Generate the user-defined portion of the format
if( inst._format ) {
// If there are replacement variables,
// Generate index values needed for determining the operand position
if( inst._format->_rep_vars.count() )
inst.index_temps(fp, globals);
// Build the format from the entries in strings and rep_vars
const char *string = NULL;
inst._format->_rep_vars.reset();
inst._format->_strings.reset();
while( (string = inst._format->_strings.iter()) != NULL ) {
fprintf(fp," ");
// Check if this is a standard string or a replacement variable
if( string == NameList::_signal ) { // Replacement variable
const char* rep_var = inst._format->_rep_vars.iter();
inst.rep_var_format( fp, rep_var);
} else if( string == NameList::_signal3 ) { // Replacement variable in raw text
const char* rep_var = inst._format->_rep_vars.iter();
const Form *form = inst._localNames[rep_var];
if (form == NULL) {
fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
assert(false, "ShouldNotReachHere()");
}
OpClassForm *opc = form->is_opclass();
assert( opc, "replacement variable was not found in local names");
// Lookup the index position of the replacement variable
int idx = inst.operand_position_format(rep_var);
if ( idx == -1 ) {
assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
assert( false, "ShouldNotReachHere()");
}
if (inst.is_noninput_operand(idx)) {
assert( false, "ShouldNotReachHere()");
} else {
// Output the format call for this operand
fprintf(fp,"opnd_array(%d)",idx);
}
rep_var = inst._format->_rep_vars.iter();
inst._format->_strings.iter();
if ( strcmp(rep_var,"$constant") == 0 && opc->is_operand()) {
Form::DataType constant_type = form->is_operand()->is_base_constant(globals);
if ( constant_type == Form::idealD ) {
fprintf(fp,"->constantD()");
} else if ( constant_type == Form::idealF ) {
fprintf(fp,"->constantF()");
} else if ( constant_type == Form::idealL ) {
fprintf(fp,"->constantL()");
} else {
fprintf(fp,"->constant()");
}
} else if ( strcmp(rep_var,"$cmpcode") == 0) {
fprintf(fp,"->ccode()");
} else {
assert( false, "ShouldNotReachHere()");
}
} else if( string == NameList::_signal2 ) // Raw program text
fputs(inst._format->_strings.iter(), fp);
else
fprintf(fp,"st->print_raw(\"%s\");\n", string);
} // Done with all format strings
} // Done generating the user-defined portion of the format
// Add call debug info automatically
Form::CallType call_type = inst.is_ideal_call();
if( call_type != Form::invalid_type ) {
switch( call_type ) {
case Form::JAVA_DYNAMIC:
fprintf(fp," _method->print_short_name(st);\n");
break;
case Form::JAVA_STATIC:
fprintf(fp," if( _method ) _method->print_short_name(st);\n");
fprintf(fp," else st->print(\" wrapper for: %%s\", _name);\n");
fprintf(fp," if( !_method ) dump_trap_args(st);\n");
break;
case Form::JAVA_COMPILED:
case Form::JAVA_INTERP:
break;
case Form::JAVA_RUNTIME:
case Form::JAVA_LEAF:
case Form::JAVA_NATIVE:
fprintf(fp," st->print(\" %%s\", _name);");
break;
default:
assert(0,"ShouldNotReachHere");
}
fprintf(fp, " st->cr();\n" );
fprintf(fp, " if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\" No JVM State Info\");\n" );
fprintf(fp, " st->print(\" # \");\n" );
fprintf(fp, " if( _jvms && _oop_map ) _oop_map->print_on(st);\n");
}
else if(inst.is_ideal_safepoint()) {
fprintf(fp, " st->print_raw(\"\");\n" );
fprintf(fp, " if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\" No JVM State Info\");\n" );
fprintf(fp, " st->print(\" # \");\n" );
fprintf(fp, " if( _jvms && _oop_map ) _oop_map->print_on(st);\n");
}
else if( inst.is_ideal_if() ) {
fprintf(fp, " st->print(\" P=%%f C=%%f\",_prob,_fcnt);\n" );
}
else if( inst.is_ideal_mem() ) {
// Print out the field name if available to improve readability
fprintf(fp, " if (ra->C->alias_type(adr_type())->field() != NULL) {\n");
fprintf(fp, " ciField* f = ra->C->alias_type(adr_type())->field();\n");
fprintf(fp, " st->print(\" %s Field: \");\n", commentSeperator);
fprintf(fp, " if (f->is_volatile())\n");
fprintf(fp, " st->print(\"volatile \");\n");
fprintf(fp, " f->holder()->name()->print_symbol_on(st);\n");
fprintf(fp, " st->print(\".\");\n");
fprintf(fp, " f->name()->print_symbol_on(st);\n");
fprintf(fp, " if (f->is_constant())\n");
fprintf(fp, " st->print(\" (constant)\");\n");
fprintf(fp, " } else {\n");
// Make sure 'Volatile' gets printed out
fprintf(fp, " if (ra->C->alias_type(adr_type())->is_volatile())\n");
fprintf(fp, " st->print(\" volatile!\");\n");
fprintf(fp, " }\n");
}
// Complete the definition of the format function
fprintf(fp, "}\n#endif\n");
}
void ArchDesc::declare_pipe_classes(FILE *fp_hpp) {
if (!_pipeline)
return;
fprintf(fp_hpp, "\n");
fprintf(fp_hpp, "// Pipeline_Use_Cycle_Mask Class\n");
fprintf(fp_hpp, "class Pipeline_Use_Cycle_Mask {\n");
if (_pipeline->_maxcycleused <=
#ifdef SPARC
64
#else
32
#endif
) {
fprintf(fp_hpp, "protected:\n");
fprintf(fp_hpp, " %s _mask;\n\n", _pipeline->_maxcycleused <= 32 ? "uint" : "uint64_t" );
fprintf(fp_hpp, "public:\n");
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask() : _mask(0) {}\n\n");
if (_pipeline->_maxcycleused <= 32)
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask(uint mask) : _mask(mask) {}\n\n");
else {
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask(uint mask1, uint mask2) : _mask((((uint64_t)mask1) << 32) | mask2) {}\n\n");
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask(uint64_t mask) : _mask(mask) {}\n\n");
}
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
fprintf(fp_hpp, " _mask = in._mask;\n");
fprintf(fp_hpp, " return *this;\n");
fprintf(fp_hpp, " }\n\n");
fprintf(fp_hpp, " bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
fprintf(fp_hpp, " return ((_mask & in2._mask) != 0);\n");
fprintf(fp_hpp, " }\n\n");
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
fprintf(fp_hpp, " _mask <<= n;\n");
fprintf(fp_hpp, " return *this;\n");
fprintf(fp_hpp, " }\n\n");
fprintf(fp_hpp, " void Or(const Pipeline_Use_Cycle_Mask &in2) {\n");
fprintf(fp_hpp, " _mask |= in2._mask;\n");
fprintf(fp_hpp, " }\n\n");
fprintf(fp_hpp, " friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
fprintf(fp_hpp, " friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
}
else {
fprintf(fp_hpp, "protected:\n");
uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
uint l;
fprintf(fp_hpp, " uint ");
for (l = 1; l <= masklen; l++)
fprintf(fp_hpp, "_mask%d%s", l, l < masklen ? ", " : ";\n\n");
fprintf(fp_hpp, "public:\n");
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask() : ");
for (l = 1; l <= masklen; l++)
fprintf(fp_hpp, "_mask%d(0)%s", l, l < masklen ? ", " : " {}\n\n");
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask(");
for (l = 1; l <= masklen; l++)
fprintf(fp_hpp, "uint mask%d%s", l, l < masklen ? ", " : ") : ");
for (l = 1; l <= masklen; l++)
fprintf(fp_hpp, "_mask%d(mask%d)%s", l, l, l < masklen ? ", " : " {}\n\n");
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
for (l = 1; l <= masklen; l++)
fprintf(fp_hpp, " _mask%d = in._mask%d;\n", l, l);
fprintf(fp_hpp, " return *this;\n");
fprintf(fp_hpp, " }\n\n");
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask intersect(const Pipeline_Use_Cycle_Mask &in2) {\n");
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask out;\n");
for (l = 1; l <= masklen; l++)
fprintf(fp_hpp, " out._mask%d = _mask%d & in2._mask%d;\n", l, l, l);
fprintf(fp_hpp, " return out;\n");
fprintf(fp_hpp, " }\n\n");
fprintf(fp_hpp, " bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
fprintf(fp_hpp, " return (");
for (l = 1; l <= masklen; l++)
fprintf(fp_hpp, "((_mask%d & in2._mask%d) != 0)%s", l, l, l < masklen ? " || " : "");
fprintf(fp_hpp, ") ? true : false;\n");
fprintf(fp_hpp, " }\n\n");
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
fprintf(fp_hpp, " if (n >= 32)\n");
fprintf(fp_hpp, " do {\n ");
for (l = masklen; l > 1; l--)
fprintf(fp_hpp, " _mask%d = _mask%d;", l, l-1);
fprintf(fp_hpp, " _mask%d = 0;\n", 1);
fprintf(fp_hpp, " } while ((n -= 32) >= 32);\n\n");
fprintf(fp_hpp, " if (n > 0) {\n");
fprintf(fp_hpp, " uint m = 32 - n;\n");
fprintf(fp_hpp, " uint mask = (1 << n) - 1;\n");
fprintf(fp_hpp, " uint temp%d = mask & (_mask%d >> m); _mask%d <<= n;\n", 2, 1, 1);
for (l = 2; l < masklen; l++) {
fprintf(fp_hpp, " uint temp%d = mask & (_mask%d >> m); _mask%d <<= n; _mask%d |= temp%d;\n", l+1, l, l, l, l);
}
fprintf(fp_hpp, " _mask%d <<= n; _mask%d |= temp%d;\n", masklen, masklen, masklen);
fprintf(fp_hpp, " }\n");
fprintf(fp_hpp, " return *this;\n");
fprintf(fp_hpp, " }\n\n");
fprintf(fp_hpp, " void Or(const Pipeline_Use_Cycle_Mask &);\n\n");
fprintf(fp_hpp, " friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
fprintf(fp_hpp, " friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
}
fprintf(fp_hpp, " friend class Pipeline_Use;\n\n");
fprintf(fp_hpp, " friend class Pipeline_Use_Element;\n\n");
fprintf(fp_hpp, "};\n\n");
uint rescount = 0;
const char *resource;
for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
int mask = _pipeline->_resdict[resource]->is_resource()->mask();
if ((mask & (mask-1)) == 0)
rescount++;
}
fprintf(fp_hpp, "// Pipeline_Use_Element Class\n");
fprintf(fp_hpp, "class Pipeline_Use_Element {\n");
fprintf(fp_hpp, "protected:\n");
fprintf(fp_hpp, " // Mask of used functional units\n");
fprintf(fp_hpp, " uint _used;\n\n");
fprintf(fp_hpp, " // Lower and upper bound of functional unit number range\n");
fprintf(fp_hpp, " uint _lb, _ub;\n\n");
fprintf(fp_hpp, " // Indicates multiple functionals units available\n");
fprintf(fp_hpp, " bool _multiple;\n\n");
fprintf(fp_hpp, " // Mask of specific used cycles\n");
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask _mask;\n\n");
fprintf(fp_hpp, "public:\n");
fprintf(fp_hpp, " Pipeline_Use_Element() {}\n\n");
fprintf(fp_hpp, " Pipeline_Use_Element(uint used, uint lb, uint ub, bool multiple, Pipeline_Use_Cycle_Mask mask)\n");
fprintf(fp_hpp, " : _used(used), _lb(lb), _ub(ub), _multiple(multiple), _mask(mask) {}\n\n");
fprintf(fp_hpp, " uint used() const { return _used; }\n\n");
fprintf(fp_hpp, " uint lowerBound() const { return _lb; }\n\n");
fprintf(fp_hpp, " uint upperBound() const { return _ub; }\n\n");
fprintf(fp_hpp, " bool multiple() const { return _multiple; }\n\n");
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask mask() const { return _mask; }\n\n");
fprintf(fp_hpp, " bool overlaps(const Pipeline_Use_Element &in2) const {\n");
fprintf(fp_hpp, " return ((_used & in2._used) != 0 && _mask.overlaps(in2._mask));\n");
fprintf(fp_hpp, " }\n\n");
fprintf(fp_hpp, " void step(uint cycles) {\n");
fprintf(fp_hpp, " _used = 0;\n");
fprintf(fp_hpp, " _mask <<= cycles;\n");
fprintf(fp_hpp, " }\n\n");
fprintf(fp_hpp, " friend class Pipeline_Use;\n");
fprintf(fp_hpp, "};\n\n");
fprintf(fp_hpp, "// Pipeline_Use Class\n");
fprintf(fp_hpp, "class Pipeline_Use {\n");
fprintf(fp_hpp, "protected:\n");
fprintf(fp_hpp, " // These resources can be used\n");
fprintf(fp_hpp, " uint _resources_used;\n\n");
fprintf(fp_hpp, " // These resources are used; excludes multiple choice functional units\n");
fprintf(fp_hpp, " uint _resources_used_exclusively;\n\n");
fprintf(fp_hpp, " // Number of elements\n");
fprintf(fp_hpp, " uint _count;\n\n");
fprintf(fp_hpp, " // This is the array of Pipeline_Use_Elements\n");
fprintf(fp_hpp, " Pipeline_Use_Element * _elements;\n\n");
fprintf(fp_hpp, "public:\n");
fprintf(fp_hpp, " Pipeline_Use(uint resources_used, uint resources_used_exclusively, uint count, Pipeline_Use_Element *elements)\n");
fprintf(fp_hpp, " : _resources_used(resources_used)\n");
fprintf(fp_hpp, " , _resources_used_exclusively(resources_used_exclusively)\n");
fprintf(fp_hpp, " , _count(count)\n");
fprintf(fp_hpp, " , _elements(elements)\n");
fprintf(fp_hpp, " {}\n\n");
fprintf(fp_hpp, " uint resourcesUsed() const { return _resources_used; }\n\n");
fprintf(fp_hpp, " uint resourcesUsedExclusively() const { return _resources_used_exclusively; }\n\n");
fprintf(fp_hpp, " uint count() const { return _count; }\n\n");
fprintf(fp_hpp, " Pipeline_Use_Element * element(uint i) const { return &_elements[i]; }\n\n");
fprintf(fp_hpp, " uint full_latency(uint delay, const Pipeline_Use &pred) const;\n\n");
fprintf(fp_hpp, " void add_usage(const Pipeline_Use &pred);\n\n");
fprintf(fp_hpp, " void reset() {\n");
fprintf(fp_hpp, " _resources_used = _resources_used_exclusively = 0;\n");
fprintf(fp_hpp, " };\n\n");
fprintf(fp_hpp, " void step(uint cycles) {\n");
fprintf(fp_hpp, " reset();\n");
fprintf(fp_hpp, " for (uint i = 0; i < %d; i++)\n",
rescount);
fprintf(fp_hpp, " (&_elements[i])->step(cycles);\n");
fprintf(fp_hpp, " };\n\n");
fprintf(fp_hpp, " static const Pipeline_Use elaborated_use;\n");
fprintf(fp_hpp, " static const Pipeline_Use_Element elaborated_elements[%d];\n\n",
rescount);
fprintf(fp_hpp, " friend class Pipeline;\n");
fprintf(fp_hpp, "};\n\n");
fprintf(fp_hpp, "// Pipeline Class\n");
fprintf(fp_hpp, "class Pipeline {\n");
fprintf(fp_hpp, "public:\n");
fprintf(fp_hpp, " static bool enabled() { return %s; }\n\n",
_pipeline ? "true" : "false" );
assert( _pipeline->_maxInstrsPerBundle &&
( _pipeline->_instrUnitSize || _pipeline->_bundleUnitSize) &&
_pipeline->_instrFetchUnitSize &&
_pipeline->_instrFetchUnits,
"unspecified pipeline architecture units");
uint unitSize = _pipeline->_instrUnitSize ? _pipeline->_instrUnitSize : _pipeline->_bundleUnitSize;
fprintf(fp_hpp, " enum {\n");
fprintf(fp_hpp, " _variable_size_instructions = %d,\n",
_pipeline->_variableSizeInstrs ? 1 : 0);
fprintf(fp_hpp, " _fixed_size_instructions = %d,\n",
_pipeline->_variableSizeInstrs ? 0 : 1);
fprintf(fp_hpp, " _branch_has_delay_slot = %d,\n",
_pipeline->_branchHasDelaySlot ? 1 : 0);
fprintf(fp_hpp, " _max_instrs_per_bundle = %d,\n",
_pipeline->_maxInstrsPerBundle);
fprintf(fp_hpp, " _max_bundles_per_cycle = %d,\n",
_pipeline->_maxBundlesPerCycle);
fprintf(fp_hpp, " _max_instrs_per_cycle = %d\n",
_pipeline->_maxBundlesPerCycle * _pipeline->_maxInstrsPerBundle);
fprintf(fp_hpp, " };\n\n");
fprintf(fp_hpp, " static bool instr_has_unit_size() { return %s; }\n\n",
_pipeline->_instrUnitSize != 0 ? "true" : "false" );
if( _pipeline->_bundleUnitSize != 0 )
if( _pipeline->_instrUnitSize != 0 )
fprintf(fp_hpp, "// Individual Instructions may be bundled together by the hardware\n\n");
else
fprintf(fp_hpp, "// Instructions exist only in bundles\n\n");
else
fprintf(fp_hpp, "// Bundling is not supported\n\n");
if( _pipeline->_instrUnitSize != 0 )
fprintf(fp_hpp, " // Size of an instruction\n");
else
fprintf(fp_hpp, " // Size of an individual instruction does not exist - unsupported\n");
fprintf(fp_hpp, " static uint instr_unit_size() {");
if( _pipeline->_instrUnitSize == 0 )
fprintf(fp_hpp, " assert( false, \"Instructions are only in bundles\" );");
fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_instrUnitSize);
if( _pipeline->_bundleUnitSize != 0 )
fprintf(fp_hpp, " // Size of a bundle\n");
else
fprintf(fp_hpp, " // Bundles do not exist - unsupported\n");
fprintf(fp_hpp, " static uint bundle_unit_size() {");
if( _pipeline->_bundleUnitSize == 0 )
fprintf(fp_hpp, " assert( false, \"Bundles are not supported\" );");
fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_bundleUnitSize);
fprintf(fp_hpp, " static bool requires_bundling() { return %s; }\n\n",
_pipeline->_bundleUnitSize != 0 && _pipeline->_instrUnitSize == 0 ? "true" : "false" );
fprintf(fp_hpp, "private:\n");
fprintf(fp_hpp, " Pipeline(); // Not a legal constructor\n");
fprintf(fp_hpp, "\n");
fprintf(fp_hpp, " const unsigned char _read_stage_count;\n");
fprintf(fp_hpp, " const unsigned char _write_stage;\n");
fprintf(fp_hpp, " const unsigned char _fixed_latency;\n");
fprintf(fp_hpp, " const unsigned char _instruction_count;\n");
fprintf(fp_hpp, " const bool _has_fixed_latency;\n");
fprintf(fp_hpp, " const bool _has_branch_delay;\n");
fprintf(fp_hpp, " const bool _has_multiple_bundles;\n");
fprintf(fp_hpp, " const bool _force_serialization;\n");
fprintf(fp_hpp, " const bool _may_have_no_code;\n");
fprintf(fp_hpp, " const enum machPipelineStages * const _read_stages;\n");
fprintf(fp_hpp, " const enum machPipelineStages * const _resource_stage;\n");
fprintf(fp_hpp, " const uint * const _resource_cycles;\n");
fprintf(fp_hpp, " const Pipeline_Use _resource_use;\n");
fprintf(fp_hpp, "\n");
fprintf(fp_hpp, "public:\n");
fprintf(fp_hpp, " Pipeline(uint write_stage,\n");
fprintf(fp_hpp, " uint count,\n");
fprintf(fp_hpp, " bool has_fixed_latency,\n");
fprintf(fp_hpp, " uint fixed_latency,\n");
fprintf(fp_hpp, " uint instruction_count,\n");
fprintf(fp_hpp, " bool has_branch_delay,\n");
fprintf(fp_hpp, " bool has_multiple_bundles,\n");
fprintf(fp_hpp, " bool force_serialization,\n");
fprintf(fp_hpp, " bool may_have_no_code,\n");
fprintf(fp_hpp, " enum machPipelineStages * const dst,\n");
fprintf(fp_hpp, " enum machPipelineStages * const stage,\n");
fprintf(fp_hpp, " uint * const cycles,\n");
fprintf(fp_hpp, " Pipeline_Use resource_use)\n");
fprintf(fp_hpp, " : _read_stage_count(count)\n");
fprintf(fp_hpp, " , _write_stage(write_stage)\n");
fprintf(fp_hpp, " , _fixed_latency(fixed_latency)\n");
fprintf(fp_hpp, " , _instruction_count(instruction_count)\n");
fprintf(fp_hpp, " , _has_fixed_latency(has_fixed_latency)\n");
fprintf(fp_hpp, " , _has_branch_delay(has_branch_delay)\n");
fprintf(fp_hpp, " , _has_multiple_bundles(has_multiple_bundles)\n");
fprintf(fp_hpp, " , _force_serialization(force_serialization)\n");
fprintf(fp_hpp, " , _may_have_no_code(may_have_no_code)\n");
fprintf(fp_hpp, " , _read_stages(dst)\n");
fprintf(fp_hpp, " , _resource_stage(stage)\n");
fprintf(fp_hpp, " , _resource_cycles(cycles)\n");
fprintf(fp_hpp, " , _resource_use(resource_use)\n");
fprintf(fp_hpp, " {};\n");
fprintf(fp_hpp, "\n");
fprintf(fp_hpp, " uint writeStage() const {\n");
fprintf(fp_hpp, " return (_write_stage);\n");
fprintf(fp_hpp, " }\n");
fprintf(fp_hpp, "\n");
fprintf(fp_hpp, " enum machPipelineStages readStage(int ndx) const {\n");
fprintf(fp_hpp, " return (ndx < _read_stage_count ? _read_stages[ndx] : stage_undefined);");
fprintf(fp_hpp, " }\n\n");
fprintf(fp_hpp, " uint resourcesUsed() const {\n");
fprintf(fp_hpp, " return _resource_use.resourcesUsed();\n }\n\n");
fprintf(fp_hpp, " uint resourcesUsedExclusively() const {\n");
fprintf(fp_hpp, " return _resource_use.resourcesUsedExclusively();\n }\n\n");
fprintf(fp_hpp, " bool hasFixedLatency() const {\n");
fprintf(fp_hpp, " return (_has_fixed_latency);\n }\n\n");
fprintf(fp_hpp, " uint fixedLatency() const {\n");
fprintf(fp_hpp, " return (_fixed_latency);\n }\n\n");
fprintf(fp_hpp, " uint functional_unit_latency(uint start, const Pipeline *pred) const;\n\n");
fprintf(fp_hpp, " uint operand_latency(uint opnd, const Pipeline *pred) const;\n\n");
fprintf(fp_hpp, " const Pipeline_Use& resourceUse() const {\n");
fprintf(fp_hpp, " return (_resource_use); }\n\n");
fprintf(fp_hpp, " const Pipeline_Use_Element * resourceUseElement(uint i) const {\n");
fprintf(fp_hpp, " return (&_resource_use._elements[i]); }\n\n");
fprintf(fp_hpp, " uint resourceUseCount() const {\n");
fprintf(fp_hpp, " return (_resource_use._count); }\n\n");
fprintf(fp_hpp, " uint instructionCount() const {\n");
fprintf(fp_hpp, " return (_instruction_count); }\n\n");
fprintf(fp_hpp, " bool hasBranchDelay() const {\n");
fprintf(fp_hpp, " return (_has_branch_delay); }\n\n");
fprintf(fp_hpp, " bool hasMultipleBundles() const {\n");
fprintf(fp_hpp, " return (_has_multiple_bundles); }\n\n");
fprintf(fp_hpp, " bool forceSerialization() const {\n");
fprintf(fp_hpp, " return (_force_serialization); }\n\n");
fprintf(fp_hpp, " bool mayHaveNoCode() const {\n");
fprintf(fp_hpp, " return (_may_have_no_code); }\n\n");
fprintf(fp_hpp, "//const Pipeline_Use_Cycle_Mask& resourceUseMask(int resource) const {\n");
fprintf(fp_hpp, "// return (_resource_use_masks[resource]); }\n\n");
fprintf(fp_hpp, "\n#ifndef PRODUCT\n");
fprintf(fp_hpp, " static const char * stageName(uint i);\n");
fprintf(fp_hpp, "#endif\n");
fprintf(fp_hpp, "};\n\n");
fprintf(fp_hpp, "// Bundle class\n");
fprintf(fp_hpp, "class Bundle {\n");
uint mshift = 0;
for (uint msize = _pipeline->_maxInstrsPerBundle * _pipeline->_maxBundlesPerCycle; msize != 0; msize >>= 1)
mshift++;
uint rshift = rescount;
fprintf(fp_hpp, "protected:\n");
fprintf(fp_hpp, " enum {\n");
fprintf(fp_hpp, " _unused_delay = 0x%x,\n", 0);
fprintf(fp_hpp, " _use_nop_delay = 0x%x,\n", 1);
fprintf(fp_hpp, " _use_unconditional_delay = 0x%x,\n", 2);
fprintf(fp_hpp, " _use_conditional_delay = 0x%x,\n", 3);
fprintf(fp_hpp, " _used_in_conditional_delay = 0x%x,\n", 4);
fprintf(fp_hpp, " _used_in_unconditional_delay = 0x%x,\n", 5);
fprintf(fp_hpp, " _used_in_all_conditional_delays = 0x%x,\n", 6);
fprintf(fp_hpp, "\n");
fprintf(fp_hpp, " _use_delay = 0x%x,\n", 3);
fprintf(fp_hpp, " _used_in_delay = 0x%x\n", 4);
fprintf(fp_hpp, " };\n\n");
fprintf(fp_hpp, " uint _flags : 3,\n");
fprintf(fp_hpp, " _starts_bundle : 1,\n");
fprintf(fp_hpp, " _instr_count : %d,\n", mshift);
fprintf(fp_hpp, " _resources_used : %d;\n", rshift);
fprintf(fp_hpp, "public:\n");
fprintf(fp_hpp, " Bundle() : _flags(_unused_delay), _starts_bundle(0), _instr_count(0), _resources_used(0) {}\n\n");
fprintf(fp_hpp, " void set_instr_count(uint i) { _instr_count = i; }\n");
fprintf(fp_hpp, " void set_resources_used(uint i) { _resources_used = i; }\n");
fprintf(fp_hpp, " void clear_usage() { _flags = _unused_delay; }\n");
fprintf(fp_hpp, " void set_starts_bundle() { _starts_bundle = true; }\n");
fprintf(fp_hpp, " uint flags() const { return (_flags); }\n");
fprintf(fp_hpp, " uint instr_count() const { return (_instr_count); }\n");
fprintf(fp_hpp, " uint resources_used() const { return (_resources_used); }\n");
fprintf(fp_hpp, " bool starts_bundle() const { return (_starts_bundle != 0); }\n");
fprintf(fp_hpp, " void set_use_nop_delay() { _flags = _use_nop_delay; }\n");
fprintf(fp_hpp, " void set_use_unconditional_delay() { _flags = _use_unconditional_delay; }\n");
fprintf(fp_hpp, " void set_use_conditional_delay() { _flags = _use_conditional_delay; }\n");
fprintf(fp_hpp, " void set_used_in_unconditional_delay() { _flags = _used_in_unconditional_delay; }\n");
fprintf(fp_hpp, " void set_used_in_conditional_delay() { _flags = _used_in_conditional_delay; }\n");
fprintf(fp_hpp, " void set_used_in_all_conditional_delays() { _flags = _used_in_all_conditional_delays; }\n");
fprintf(fp_hpp, " bool use_nop_delay() { return (_flags == _use_nop_delay); }\n");
fprintf(fp_hpp, " bool use_unconditional_delay() { return (_flags == _use_unconditional_delay); }\n");
fprintf(fp_hpp, " bool use_conditional_delay() { return (_flags == _use_conditional_delay); }\n");
fprintf(fp_hpp, " bool used_in_unconditional_delay() { return (_flags == _used_in_unconditional_delay); }\n");
fprintf(fp_hpp, " bool used_in_conditional_delay() { return (_flags == _used_in_conditional_delay); }\n");
fprintf(fp_hpp, " bool used_in_all_conditional_delays() { return (_flags == _used_in_all_conditional_delays); }\n");
fprintf(fp_hpp, " bool use_delay() { return ((_flags & _use_delay) != 0); }\n");
fprintf(fp_hpp, " bool used_in_delay() { return ((_flags & _used_in_delay) != 0); }\n\n");
fprintf(fp_hpp, " enum {\n");
fprintf(fp_hpp, " _nop_count = %d\n",
_pipeline->_nopcnt);
fprintf(fp_hpp, " };\n\n");
fprintf(fp_hpp, " static void initialize_nops(MachNode *nop_list[%d]);\n\n",
_pipeline->_nopcnt);
fprintf(fp_hpp, "#ifndef PRODUCT\n");
fprintf(fp_hpp, " void dump(outputStream *st = tty) const;\n");
fprintf(fp_hpp, "#endif\n");
fprintf(fp_hpp, "};\n\n");
// const char *classname;
// for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
// PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
// fprintf(fp_hpp, "// Pipeline Class Instance for \"%s\"\n", classname);
// }
}
//------------------------------declareClasses---------------------------------
// Construct the class hierarchy of MachNode classes from the instruction &
// operand lists
void ArchDesc::declareClasses(FILE *fp) {
// Declare an array containing the machine register names, strings.
declareRegNames(fp, _register);
// Declare an array containing the machine register encoding values
declareRegEncodes(fp, _register);
// Generate declarations for the total number of operands
fprintf(fp,"\n");
fprintf(fp,"// Total number of operands defined in architecture definition\n");
int num_operands = 0;
OperandForm *op;
for (_operands.reset(); (op = (OperandForm*)_operands.iter()) != NULL; ) {
// Ensure this is a machine-world instruction
if (op->ideal_only()) continue;
++num_operands;
}
int first_operand_class = num_operands;
OpClassForm *opc;
for (_opclass.reset(); (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
// Ensure this is a machine-world instruction
if (opc->ideal_only()) continue;
++num_operands;
}
fprintf(fp,"#define FIRST_OPERAND_CLASS %d\n", first_operand_class);
fprintf(fp,"#define NUM_OPERANDS %d\n", num_operands);
fprintf(fp,"\n");
// Generate declarations for the total number of instructions
fprintf(fp,"// Total number of instructions defined in architecture definition\n");
fprintf(fp,"#define NUM_INSTRUCTIONS %d\n",instructFormCount());
// Generate Machine Classes for each operand defined in AD file
fprintf(fp,"\n");
fprintf(fp,"//----------------------------Declare classes derived from MachOper----------\n");
// Iterate through all operands
_operands.reset();
OperandForm *oper;
for( ; (oper = (OperandForm*)_operands.iter()) != NULL;) {
// Ensure this is a machine-world instruction
if (oper->ideal_only() ) continue;
// The declaration of labelOper is in machine-independent file: machnode
if ( strcmp(oper->_ident,"label") == 0 ) continue;
// The declaration of methodOper is in machine-independent file: machnode
if ( strcmp(oper->_ident,"method") == 0 ) continue;
// Build class definition for this operand
fprintf(fp,"\n");
fprintf(fp,"class %sOper : public MachOper { \n",oper->_ident);
fprintf(fp,"private:\n");
// Operand definitions that depend upon number of input edges
{
uint num_edges = oper->num_edges(_globalNames);
if( num_edges != 1 ) { // Use MachOper::num_edges() {return 1;}
fprintf(fp," virtual uint num_edges() const { return %d; }\n",
num_edges );
}
if( num_edges > 0 ) {
in_RegMask(fp);
}
}
// Support storing constants inside the MachOper
declareConstStorage(fp,_globalNames,oper);
// Support storage of the condition codes
if( oper->is_ideal_bool() ) {
fprintf(fp," virtual int ccode() const { \n");
fprintf(fp," switch (_c0) {\n");
fprintf(fp," case BoolTest::eq : return equal();\n");
fprintf(fp," case BoolTest::gt : return greater();\n");
fprintf(fp," case BoolTest::lt : return less();\n");
fprintf(fp," case BoolTest::ne : return not_equal();\n");
fprintf(fp," case BoolTest::le : return less_equal();\n");
fprintf(fp," case BoolTest::ge : return greater_equal();\n");
fprintf(fp," case BoolTest::overflow : return overflow();\n");
fprintf(fp," case BoolTest::no_overflow: return no_overflow();\n");
fprintf(fp," default : ShouldNotReachHere(); return 0;\n");
fprintf(fp," }\n");
fprintf(fp," };\n");
}
// Support storage of the condition codes
if( oper->is_ideal_bool() ) {
fprintf(fp," virtual void negate() { \n");
fprintf(fp," _c0 = (BoolTest::mask)((int)_c0^0x4); \n");
fprintf(fp," };\n");
}
// Declare constructor.
// Parameters start with condition code, then all other constants
//
// (1) MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
// (2) : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
//
Form::DataType constant_type = oper->simple_type(_globalNames);
defineConstructor(fp, oper->_ident, oper->num_consts(_globalNames),
oper->_components, oper->is_ideal_bool(),
constant_type, _globalNames);
// Clone function
fprintf(fp," virtual MachOper *clone() const;\n");
// Support setting a spill offset into a constant operand.
// We only support setting an 'int' offset, while in the
// LP64 build spill offsets are added with an AddP which
// requires a long constant. Thus we don't support spilling
// in frames larger than 4Gig.
if( oper->has_conI(_globalNames) ||
oper->has_conL(_globalNames) )
fprintf(fp, " virtual void set_con( jint c0 ) { _c0 = c0; }\n");
// virtual functions for encoding and format
// fprintf(fp," virtual void encode() const {\n %s }\n",
// (oper->_encrule)?(oper->_encrule->_encrule):"");
// Check the interface type, and generate the correct query functions
// encoding queries based upon MEMORY_INTER, REG_INTER, CONST_INTER.
fprintf(fp," virtual uint opcode() const { return %s; }\n",
machOperEnum(oper->_ident));
// virtual function to look up ideal return type of machine instruction
//
// (1) virtual const Type *type() const { return .....; }
//
if ((oper->_matrule) && (oper->_matrule->_lChild == NULL) &&
(oper->_matrule->_rChild == NULL)) {
unsigned int position = 0;
const char *opret, *opname, *optype;
oper->_matrule->base_operand(position,_globalNames,opret,opname,optype);
fprintf(fp," virtual const Type *type() const {");
const char *type = getIdealType(optype);
if( type != NULL ) {
Form::DataType data_type = oper->is_base_constant(_globalNames);
// Check if we are an ideal pointer type
if( data_type == Form::idealP || data_type == Form::idealN || data_type == Form::idealNKlass ) {
// Return the ideal type we already have: <TypePtr *>
fprintf(fp," return _c0;");
} else {
// Return the appropriate bottom type
fprintf(fp," return %s;", getIdealType(optype));
}
} else {
fprintf(fp," ShouldNotCallThis(); return Type::BOTTOM;");
}
fprintf(fp," }\n");
} else {
// Check for user-defined stack slots, based upon sRegX
Form::DataType data_type = oper->is_user_name_for_sReg();
if( data_type != Form::none ){
const char *type = NULL;
switch( data_type ) {
case Form::idealI: type = "TypeInt::INT"; break;
case Form::idealP: type = "TypePtr::BOTTOM";break;
case Form::idealF: type = "Type::FLOAT"; break;
case Form::idealD: type = "Type::DOUBLE"; break;
case Form::idealL: type = "TypeLong::LONG"; break;
case Form::none: // fall through
default:
assert( false, "No support for this type of stackSlot");
}
fprintf(fp," virtual const Type *type() const { return %s; } // stackSlotX\n", type);
}
}
//
// virtual functions for defining the encoding interface.
//
// Access the linearized ideal register mask,
// map to physical register encoding
if ( oper->_matrule && oper->_matrule->is_base_register(_globalNames) ) {
// Just use the default virtual 'reg' call
} else if ( oper->ideal_to_sReg_type(oper->_ident) != Form::none ) {
// Special handling for operand 'sReg', a Stack Slot Register.
// Map linearized ideal register mask to stack slot number
fprintf(fp," virtual int reg(PhaseRegAlloc *ra_, const Node *node) const {\n");
fprintf(fp," return (int)OptoReg::reg2stack(ra_->get_reg_first(node));/* sReg */\n");
fprintf(fp," }\n");
fprintf(fp," virtual int reg(PhaseRegAlloc *ra_, const Node *node, int idx) const {\n");
fprintf(fp," return (int)OptoReg::reg2stack(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
fprintf(fp," }\n");
}
// Output the operand specific access functions used by an enc_class
// These are only defined when we want to override the default virtual func
if (oper->_interface != NULL) {
fprintf(fp,"\n");
// Check if it is a Memory Interface
if ( oper->_interface->is_MemInterface() != NULL ) {
MemInterface *mem_interface = oper->_interface->is_MemInterface();
const char *base = mem_interface->_base;
if( base != NULL ) {
define_oper_interface(fp, *oper, _globalNames, "base", base);
}
char *index = mem_interface->_index;
if( index != NULL ) {
define_oper_interface(fp, *oper, _globalNames, "index", index);
}
const char *scale = mem_interface->_scale;
if( scale != NULL ) {
define_oper_interface(fp, *oper, _globalNames, "scale", scale);
}
const char *disp = mem_interface->_disp;
if( disp != NULL ) {
define_oper_interface(fp, *oper, _globalNames, "disp", disp);
oper->disp_is_oop(fp, _globalNames);
}
if( oper->stack_slots_only(_globalNames) ) {
// should not call this:
fprintf(fp," virtual int constant_disp() const { return Type::OffsetBot; }");
} else if ( disp != NULL ) {
define_oper_interface(fp, *oper, _globalNames, "constant_disp", disp);
}
} // end Memory Interface
// Check if it is a Conditional Interface
else if (oper->_interface->is_CondInterface() != NULL) {
CondInterface *cInterface = oper->_interface->is_CondInterface();
const char *equal = cInterface->_equal;
if( equal != NULL ) {
define_oper_interface(fp, *oper, _globalNames, "equal", equal);
}
const char *not_equal = cInterface->_not_equal;
if( not_equal != NULL ) {
define_oper_interface(fp, *oper, _globalNames, "not_equal", not_equal);
}
const char *less = cInterface->_less;
if( less != NULL ) {
define_oper_interface(fp, *oper, _globalNames, "less", less);
}
const char *greater_equal = cInterface->_greater_equal;
if( greater_equal != NULL ) {
define_oper_interface(fp, *oper, _globalNames, "greater_equal", greater_equal);
}
const char *less_equal = cInterface->_less_equal;
if( less_equal != NULL ) {
define_oper_interface(fp, *oper, _globalNames, "less_equal", less_equal);
}
const char *greater = cInterface->_greater;
if( greater != NULL ) {
define_oper_interface(fp, *oper, _globalNames, "greater", greater);
}
const char *overflow = cInterface->_overflow;
if( overflow != NULL ) {
define_oper_interface(fp, *oper, _globalNames, "overflow", overflow);
}
const char *no_overflow = cInterface->_no_overflow;
if( no_overflow != NULL ) {
define_oper_interface(fp, *oper, _globalNames, "no_overflow", no_overflow);
}
} // end Conditional Interface
// Check if it is a Constant Interface
else if (oper->_interface->is_ConstInterface() != NULL ) {
assert( oper->num_consts(_globalNames) == 1,
"Must have one constant when using CONST_INTER encoding");
if (!strcmp(oper->ideal_type(_globalNames), "ConI")) {
// Access the locally stored constant
fprintf(fp," virtual intptr_t constant() const {");
fprintf(fp, " return (intptr_t)_c0;");
fprintf(fp," }\n");
}
else if (!strcmp(oper->ideal_type(_globalNames), "ConP")) {
// Access the locally stored constant
fprintf(fp," virtual intptr_t constant() const {");
fprintf(fp, " return _c0->get_con();");
fprintf(fp, " }\n");
// Generate query to determine if this pointer is an oop
fprintf(fp," virtual relocInfo::relocType constant_reloc() const {");
fprintf(fp, " return _c0->reloc();");
fprintf(fp, " }\n");
}
else if (!strcmp(oper->ideal_type(_globalNames), "ConN")) {
// Access the locally stored constant
fprintf(fp," virtual intptr_t constant() const {");
fprintf(fp, " return _c0->get_ptrtype()->get_con();");
fprintf(fp, " }\n");
// Generate query to determine if this pointer is an oop
fprintf(fp," virtual relocInfo::relocType constant_reloc() const {");
fprintf(fp, " return _c0->get_ptrtype()->reloc();");
fprintf(fp, " }\n");
}
else if (!strcmp(oper->ideal_type(_globalNames), "ConNKlass")) {
// Access the locally stored constant
fprintf(fp," virtual intptr_t constant() const {");
fprintf(fp, " return _c0->get_ptrtype()->get_con();");
fprintf(fp, " }\n");
// Generate query to determine if this pointer is an oop
fprintf(fp," virtual relocInfo::relocType constant_reloc() const {");
fprintf(fp, " return _c0->get_ptrtype()->reloc();");
fprintf(fp, " }\n");
}
else if (!strcmp(oper->ideal_type(_globalNames), "ConL")) {
fprintf(fp," virtual intptr_t constant() const {");
// We don't support addressing modes with > 4Gig offsets.
// Truncate to int.
fprintf(fp, " return (intptr_t)_c0;");
fprintf(fp, " }\n");
fprintf(fp," virtual jlong constantL() const {");
fprintf(fp, " return _c0;");
fprintf(fp, " }\n");
}
else if (!strcmp(oper->ideal_type(_globalNames), "ConF")) {
fprintf(fp," virtual intptr_t constant() const {");
fprintf(fp, " ShouldNotReachHere(); return 0; ");
fprintf(fp, " }\n");
fprintf(fp," virtual jfloat constantF() const {");
fprintf(fp, " return (jfloat)_c0;");
fprintf(fp, " }\n");
}
else if (!strcmp(oper->ideal_type(_globalNames), "ConD")) {
fprintf(fp," virtual intptr_t constant() const {");
fprintf(fp, " ShouldNotReachHere(); return 0; ");
fprintf(fp, " }\n");
fprintf(fp," virtual jdouble constantD() const {");
fprintf(fp, " return _c0;");
fprintf(fp, " }\n");
}
}
else if (oper->_interface->is_RegInterface() != NULL) {
// make sure that a fixed format string isn't used for an
// operand which might be assiged to multiple registers.
// Otherwise the opto assembly output could be misleading.
if (oper->_format->_strings.count() != 0 && !oper->is_bound_register()) {
syntax_err(oper->_linenum,
"Only bound registers can have fixed formats: %s\n",
oper->_ident);
}
}
else {
assert( false, "ShouldNotReachHere();");
}
}
fprintf(fp,"\n");
// // Currently all XXXOper::hash() methods are identical (990820)
// declare_hash(fp);
// // Currently all XXXOper::Cmp() methods are identical (990820)
// declare_cmp(fp);
// Do not place dump_spec() and Name() into PRODUCT code
// int_format and ext_format are not needed in PRODUCT code either
fprintf(fp, "#ifndef PRODUCT\n");
// Declare int_format() and ext_format()
gen_oper_format(fp, _globalNames, *oper);
// Machine independent print functionality for debugging
// IF we have constants, create a dump_spec function for the derived class
//
// (1) virtual void dump_spec() const {
// (2) st->print("#%d", _c#); // Constant != ConP
// OR _c#->dump_on(st); // Type ConP
// ...
// (3) }
uint num_consts = oper->num_consts(_globalNames);
if( num_consts > 0 ) {
// line (1)
fprintf(fp, " virtual void dump_spec(outputStream *st) const {\n");
// generate format string for st->print
// Iterate over the component list & spit out the right thing
uint i = 0;
const char *type = oper->ideal_type(_globalNames);
Component *comp;
oper->_components.reset();
if ((comp = oper->_components.iter()) == NULL) {
assert(num_consts == 1, "Bad component list detected.\n");
i = dump_spec_constant( fp, type, i, oper );
// Check that type actually matched
assert( i != 0, "Non-constant operand lacks component list.");
} // end if NULL
else {
// line (2)
// dump all components
oper->_components.reset();
while((comp = oper->_components.iter()) != NULL) {
type = comp->base_type(_globalNames);
i = dump_spec_constant( fp, type, i, NULL );
}
}
// finish line (3)
fprintf(fp," }\n");
}
fprintf(fp," virtual const char *Name() const { return \"%s\";}\n",
oper->_ident);
fprintf(fp,"#endif\n");
// Close definition of this XxxMachOper
fprintf(fp,"};\n");
}
// Generate Machine Classes for each instruction defined in AD file
fprintf(fp,"\n");
fprintf(fp,"//----------------------------Declare classes for Pipelines-----------------\n");
declare_pipe_classes(fp);
// Generate Machine Classes for each instruction defined in AD file
fprintf(fp,"\n");
fprintf(fp,"//----------------------------Declare classes derived from MachNode----------\n");
_instructions.reset();
InstructForm *instr;
for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
// Ensure this is a machine-world instruction
if ( instr->ideal_only() ) continue;
// Build class definition for this instruction
fprintf(fp,"\n");
fprintf(fp,"class %sNode : public %s { \n",
instr->_ident, instr->mach_base_class(_globalNames) );
fprintf(fp,"private:\n");
fprintf(fp," MachOper *_opnd_array[%d];\n", instr->num_opnds() );
if ( instr->is_ideal_jump() ) {
fprintf(fp, " GrowableArray<Label*> _index2label;\n");
}
fprintf(fp, "public:\n");
Attribute *att = instr->_attribs;
// Fields of the node specified in the ad file.
while (att != NULL) {
if (strncmp(att->_ident, "ins_field_", 10) == 0) {
const char *field_name = att->_ident+10;
const char *field_type = att->_val;
fprintf(fp, " %s _%s;\n", field_type, field_name);
}
att = (Attribute *)att->_next;
}
fprintf(fp," MachOper *opnd_array(uint operand_index) const {\n");
fprintf(fp," assert(operand_index < _num_opnds, \"invalid _opnd_array index\");\n");
fprintf(fp," return _opnd_array[operand_index];\n");
fprintf(fp," }\n");
fprintf(fp," void set_opnd_array(uint operand_index, MachOper *operand) {\n");
fprintf(fp," assert(operand_index < _num_opnds, \"invalid _opnd_array index\");\n");
fprintf(fp," _opnd_array[operand_index] = operand;\n");
fprintf(fp," }\n");
fprintf(fp,"private:\n");
if ( instr->is_ideal_jump() ) {
fprintf(fp," virtual void add_case_label(int index_num, Label* blockLabel) {\n");
fprintf(fp," _index2label.at_put_grow(index_num, blockLabel);\n");
fprintf(fp," }\n");
}
if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
fprintf(fp," const RegMask *_cisc_RegMask;\n");
}
out_RegMask(fp); // output register mask
fprintf(fp," virtual uint rule() const { return %s_rule; }\n",
instr->_ident);
// If this instruction contains a labelOper
// Declare Node::methods that set operand Label's contents
int label_position = instr->label_position();
if( label_position != -1 ) {
// Set/Save the label, stored in labelOper::_branch_label
fprintf(fp," virtual void label_set( Label* label, uint block_num );\n");
fprintf(fp," virtual void save_label( Label** label, uint* block_num );\n");
}
// If this instruction contains a methodOper
// Declare Node::methods that set operand method's contents
int method_position = instr->method_position();
if( method_position != -1 ) {
// Set the address method, stored in methodOper::_method
fprintf(fp," virtual void method_set( intptr_t method );\n");
}
// virtual functions for attributes
//
// Each instruction attribute results in a virtual call of same name.
// The ins_cost is not handled here.
Attribute *attr = instr->_attribs;
Attribute *avoid_back_to_back_attr = NULL;
while (attr != NULL) {
if (strcmp (attr->_ident, "ins_is_TrapBasedCheckNode") == 0) {
fprintf(fp, " virtual bool is_TrapBasedCheckNode() const { return %s; }\n", attr->_val);
} else if (strcmp (attr->_ident, "ins_cost") != 0 &&
strncmp(attr->_ident, "ins_field_", 10) != 0 &&
// Must match function in node.hpp: return type bool, no prefix "ins_".
strcmp (attr->_ident, "ins_is_TrapBasedCheckNode") != 0 &&
strcmp (attr->_ident, "ins_short_branch") != 0) {
fprintf(fp, " virtual int %s() const { return %s; }\n", attr->_ident, attr->_val);
}
if (strcmp(attr->_ident, "ins_avoid_back_to_back") == 0) {
avoid_back_to_back_attr = attr;
}
attr = (Attribute *)attr->_next;
}
// virtual functions for encode and format
// Virtual function for evaluating the constant.
if (instr->is_mach_constant()) {
fprintf(fp," virtual void eval_constant(Compile* C);\n");
}
// Output the opcode function and the encode function here using the
// encoding class information in the _insencode slot.
if ( instr->_insencode ) {
if (instr->postalloc_expands()) {
fprintf(fp," virtual bool requires_postalloc_expand() const { return true; }\n");
fprintf(fp," virtual void postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_);\n");
} else {
fprintf(fp," virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;\n");
}
}
// virtual function for getting the size of an instruction
if ( instr->_size ) {
fprintf(fp," virtual uint size(PhaseRegAlloc *ra_) const;\n");
}
// Return the top-level ideal opcode.
// Use MachNode::ideal_Opcode() for nodes based on MachNode class
// if the ideal_Opcode == Op_Node.
if ( strcmp("Node", instr->ideal_Opcode(_globalNames)) != 0 ||
strcmp("MachNode", instr->mach_base_class(_globalNames)) != 0 ) {
fprintf(fp," virtual int ideal_Opcode() const { return Op_%s; }\n",
instr->ideal_Opcode(_globalNames) );
}
if (instr->needs_constant_base() &&
!instr->is_mach_constant()) { // These inherit the funcion from MachConstantNode.
fprintf(fp," virtual uint mach_constant_base_node_input() const { ");
if (instr->is_ideal_call() != Form::invalid_type &&
instr->is_ideal_call() != Form::JAVA_LEAF) {
// MachConstantBase goes behind arguments, but before jvms.
fprintf(fp,"assert(tf() && tf()->domain(), \"\"); return tf()->domain()->cnt();");
} else {
fprintf(fp,"return req()-1;");
}
fprintf(fp," }\n");
}
// Allow machine-independent optimization, invert the sense of the IF test
if( instr->is_ideal_if() ) {
fprintf(fp," virtual void negate() { \n");
// Identify which operand contains the negate(able) ideal condition code
int idx = 0;
instr->_components.reset();
for( Component *comp; (comp = instr->_components.iter()) != NULL; ) {
// Check that component is an operand
Form *form = (Form*)_globalNames[comp->_type];
OperandForm *opForm = form ? form->is_operand() : NULL;
if( opForm == NULL ) continue;
// Lookup the position of the operand in the instruction.
if( opForm->is_ideal_bool() ) {
idx = instr->operand_position(comp->_name, comp->_usedef);
assert( idx != NameList::Not_in_list, "Did not find component in list that contained it.");
break;
}
}
fprintf(fp," opnd_array(%d)->negate();\n", idx);
fprintf(fp," _prob = 1.0f - _prob;\n");
fprintf(fp," };\n");
}
// Identify which input register matches the input register.
uint matching_input = instr->two_address(_globalNames);
// Generate the method if it returns != 0 otherwise use MachNode::two_adr()
if( matching_input != 0 ) {
fprintf(fp," virtual uint two_adr() const ");
fprintf(fp,"{ return oper_input_base()");
for( uint i = 2; i <= matching_input; i++ )
fprintf(fp," + opnd_array(%d)->num_edges()",i-1);
fprintf(fp,"; }\n");
}
// Declare cisc_version, if applicable
// MachNode *cisc_version( int offset /* ,... */ );
instr->declare_cisc_version(*this, fp);
// If there is an explicit peephole rule, build it
if ( instr->peepholes() != NULL ) {
fprintf(fp," virtual MachNode *peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted);\n");
}
// Output the declaration for number of relocation entries
if ( instr->reloc(_globalNames) != 0 ) {
fprintf(fp," virtual int reloc() const;\n");
}
if (instr->alignment() != 1) {
fprintf(fp," virtual int alignment_required() const { return %d; }\n", instr->alignment());
fprintf(fp," virtual int compute_padding(int current_offset) const;\n");
}
// Starting point for inputs matcher wants.
// Use MachNode::oper_input_base() for nodes based on MachNode class
// if the base == 1.
if ( instr->oper_input_base(_globalNames) != 1 ||
strcmp("MachNode", instr->mach_base_class(_globalNames)) != 0 ) {
fprintf(fp," virtual uint oper_input_base() const { return %d; }\n",
instr->oper_input_base(_globalNames));
}
// Make the constructor and following methods 'public:'
fprintf(fp,"public:\n");
// Constructor
if ( instr->is_ideal_jump() ) {
fprintf(fp," %sNode() : _index2label(MinJumpTableSize*2) { ", instr->_ident);
} else {
fprintf(fp," %sNode() { ", instr->_ident);
if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
fprintf(fp,"_cisc_RegMask = NULL; ");
}
}
fprintf(fp," _num_opnds = %d; _opnds = _opnd_array; ", instr->num_opnds());
bool node_flags_set = false;
// flag: if this instruction matches an ideal 'Copy*' node
if ( instr->is_ideal_copy() != 0 ) {
fprintf(fp,"init_flags(Flag_is_Copy");
node_flags_set = true;
}
// Is an instruction is a constant? If so, get its type
Form::DataType data_type;
const char *opType = NULL;
const char *result = NULL;
data_type = instr->is_chain_of_constant(_globalNames, opType, result);
// Check if this instruction is a constant
if ( data_type != Form::none ) {
if ( node_flags_set ) {
fprintf(fp," | Flag_is_Con");
} else {
fprintf(fp,"init_flags(Flag_is_Con");
node_flags_set = true;
}
}
// flag: if this instruction is cisc alternate
if ( can_cisc_spill() && instr->is_cisc_alternate() ) {
if ( node_flags_set ) {
fprintf(fp," | Flag_is_cisc_alternate");
} else {
fprintf(fp,"init_flags(Flag_is_cisc_alternate");
node_flags_set = true;
}
}
// flag: if this instruction has short branch form
if ( instr->has_short_branch_form() ) {
if ( node_flags_set ) {
fprintf(fp," | Flag_may_be_short_branch");
} else {
fprintf(fp,"init_flags(Flag_may_be_short_branch");
node_flags_set = true;
}
}
// flag: if this instruction should not be generated back to back.
if (avoid_back_to_back_attr != NULL) {
if (node_flags_set) {
fprintf(fp," | (%s)", avoid_back_to_back_attr->_val);
} else {
fprintf(fp,"init_flags((%s)", avoid_back_to_back_attr->_val);
node_flags_set = true;
}
}
// Check if machine instructions that USE memory, but do not DEF memory,
// depend upon a node that defines memory in machine-independent graph.
if ( instr->needs_anti_dependence_check(_globalNames) ) {
if ( node_flags_set ) {
fprintf(fp," | Flag_needs_anti_dependence_check");
} else {
fprintf(fp,"init_flags(Flag_needs_anti_dependence_check");
node_flags_set = true;
}
}
// flag: if this instruction is implemented with a call
if ( instr->_has_call ) {
if ( node_flags_set ) {
fprintf(fp," | Flag_has_call");
} else {
fprintf(fp,"init_flags(Flag_has_call");
node_flags_set = true;
}
}
if ( node_flags_set ) {
fprintf(fp,"); ");
}
fprintf(fp,"}\n");
// size_of, used by base class's clone to obtain the correct size.
fprintf(fp," virtual uint size_of() const {");
fprintf(fp, " return sizeof(%sNode);", instr->_ident);
fprintf(fp, " }\n");
// Virtual methods which are only generated to override base class
if( instr->expands() || instr->needs_projections() ||
instr->has_temps() ||
instr->is_mach_constant() ||
instr->needs_constant_base() ||
(instr->_matrule != NULL &&
instr->num_opnds() != instr->num_unique_opnds()) ) {
fprintf(fp," virtual MachNode *Expand(State *state, Node_List &proj_list, Node* mem);\n");
}
if (instr->is_pinned(_globalNames)) {
fprintf(fp," virtual bool pinned() const { return ");
if (instr->is_parm(_globalNames)) {
fprintf(fp,"_in[0]->pinned();");
} else {
fprintf(fp,"true;");
}
fprintf(fp," }\n");
}
if (instr->is_projection(_globalNames)) {
fprintf(fp," virtual const Node *is_block_proj() const { return this; }\n");
}
if ( instr->num_post_match_opnds() != 0
|| instr->is_chain_of_constant(_globalNames) ) {
fprintf(fp," friend MachNode *State::MachNodeGenerator(int opcode);\n");
}
if ( instr->rematerialize(_globalNames, get_registers()) ) {
fprintf(fp," // Rematerialize %s\n", instr->_ident);
}
// Declare short branch methods, if applicable
instr->declare_short_branch_methods(fp);
// See if there is an "ins_pipe" declaration for this instruction
if (instr->_ins_pipe) {
fprintf(fp," static const Pipeline *pipeline_class();\n");
fprintf(fp," virtual const Pipeline *pipeline() const;\n");
}
// Generate virtual function for MachNodeX::bottom_type when necessary
//
// Note on accuracy: Pointer-types of machine nodes need to be accurate,
// or else alias analysis on the matched graph may produce bad code.
// Moreover, the aliasing decisions made on machine-node graph must be
// no less accurate than those made on the ideal graph, or else the graph
// may fail to schedule. (Reason: Memory ops which are reordered in
// the ideal graph might look interdependent in the machine graph,
// thereby removing degrees of scheduling freedom that the optimizer
// assumed would be available.)
//
// %%% We should handle many of these cases with an explicit ADL clause:
// instruct foo() %{ ... bottom_type(TypeRawPtr::BOTTOM); ... %}
if( data_type != Form::none ) {
// A constant's bottom_type returns a Type containing its constant value
// !!!!!
// Convert all ints, floats, ... to machine-independent TypeXs
// as is done for pointers
//
// Construct appropriate constant type containing the constant value.
fprintf(fp," virtual const class Type *bottom_type() const {\n");
switch( data_type ) {
case Form::idealI:
fprintf(fp," return TypeInt::make(opnd_array(1)->constant());\n");
break;
case Form::idealP:
case Form::idealN:
case Form::idealNKlass:
fprintf(fp," return opnd_array(1)->type();\n");
break;
case Form::idealD:
fprintf(fp," return TypeD::make(opnd_array(1)->constantD());\n");
break;
case Form::idealF:
fprintf(fp," return TypeF::make(opnd_array(1)->constantF());\n");
break;
case Form::idealL:
fprintf(fp," return TypeLong::make(opnd_array(1)->constantL());\n");
break;
default:
assert( false, "Unimplemented()" );
break;
}
fprintf(fp," };\n");
}
/* else if ( instr->_matrule && instr->_matrule->_rChild &&
( strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
|| strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
// !!!!! !!!!!
// Provide explicit bottom type for conversions to int
// On Intel the result operand is a stackSlot, untyped.
fprintf(fp," virtual const class Type *bottom_type() const {");
fprintf(fp, " return TypeInt::INT;");
fprintf(fp, " };\n");
}*/
else if( instr->is_ideal_copy() &&
!strcmp(instr->_matrule->_lChild->_opType,"stackSlotP") ) {
// !!!!!
// Special hack for ideal Copy of pointer. Bottom type is oop or not depending on input.
fprintf(fp," const Type *bottom_type() const { return in(1)->bottom_type(); } // Copy?\n");
}
else if( instr->is_ideal_loadPC() ) {
// LoadPCNode provides the return address of a call to native code.
// Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
// since it is a pointer to an internal VM location and must have a zero offset.
// Allocation detects derived pointers, in part, by their non-zero offsets.
fprintf(fp," const Type *bottom_type() const { return TypeRawPtr::BOTTOM; } // LoadPC?\n");
}
else if( instr->is_ideal_box() ) {
// BoxNode provides the address of a stack slot.
// Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
// This prevent s insert_anti_dependencies from complaining. It will
// complain if it sees that the pointer base is TypePtr::BOTTOM since
// it doesn't understand what that might alias.
fprintf(fp," const Type *bottom_type() const { return TypeRawPtr::BOTTOM; } // Box?\n");
}
else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveP") ) {
int offset = 1;
// Special special hack to see if the Cmp? has been incorporated in the conditional move
MatchNode *rl = instr->_matrule->_rChild->_lChild;
if( rl && !strcmp(rl->_opType, "Binary") ) {
MatchNode *rlr = rl->_rChild;
if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
offset = 2;
}
// Special hack for ideal CMoveP; ideal type depends on inputs
fprintf(fp," const Type *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveP\n",
offset, offset+1, offset+1);
}
else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveN") ) {
int offset = 1;
// Special special hack to see if the Cmp? has been incorporated in the conditional move
MatchNode *rl = instr->_matrule->_rChild->_lChild;
if( rl && !strcmp(rl->_opType, "Binary") ) {
MatchNode *rlr = rl->_rChild;
if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
offset = 2;
}
// Special hack for ideal CMoveN; ideal type depends on inputs
fprintf(fp," const Type *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveN\n",
offset, offset+1, offset+1);
}
else if (instr->is_tls_instruction()) {
// Special hack for tlsLoadP
fprintf(fp," const Type *bottom_type() const { return TypeRawPtr::BOTTOM; } // tlsLoadP\n");
}
else if ( instr->is_ideal_if() ) {
fprintf(fp," const Type *bottom_type() const { return TypeTuple::IFBOTH; } // matched IfNode\n");
}
else if ( instr->is_ideal_membar() ) {
fprintf(fp," const Type *bottom_type() const { return TypeTuple::MEMBAR; } // matched MemBar\n");
}
// Check where 'ideal_type' must be customized
/*
if ( instr->_matrule && instr->_matrule->_rChild &&
( strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
|| strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
fprintf(fp," virtual uint ideal_reg() const { return Compile::current()->matcher()->base2reg[Type::Int]; }\n");
}*/
// Analyze machine instructions that either USE or DEF memory.
int memory_operand = instr->memory_operand(_globalNames);
if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
fprintf(fp," virtual const TypePtr *adr_type() const;\n");
}
fprintf(fp," virtual const MachOper *memory_operand() const;\n");
}
fprintf(fp, "#ifndef PRODUCT\n");
// virtual function for generating the user's assembler output
gen_inst_format(fp, _globalNames,*instr);
// Machine independent print functionality for debugging
fprintf(fp," virtual const char *Name() const { return \"%s\";}\n",
instr->_ident);
fprintf(fp, "#endif\n");
// Close definition of this XxxMachNode
fprintf(fp,"};\n");
};
}
void ArchDesc::defineStateClass(FILE *fp) {
static const char *state__valid = "_valid[((uint)index) >> 5] & (0x1 << (((uint)index) & 0x0001F))";
static const char *state__set_valid= "_valid[((uint)index) >> 5] |= (0x1 << (((uint)index) & 0x0001F))";
fprintf(fp,"\n");
fprintf(fp,"// MACROS to inline and constant fold State::valid(index)...\n");
fprintf(fp,"// when given a constant 'index' in dfa_<arch>.cpp\n");
fprintf(fp,"// uint word = index >> 5; // Shift out bit position\n");
fprintf(fp,"// uint bitpos = index & 0x0001F; // Mask off word bits\n");
fprintf(fp,"#define STATE__VALID(index) ");
fprintf(fp," (%s)\n", state__valid);
fprintf(fp,"\n");
fprintf(fp,"#define STATE__NOT_YET_VALID(index) ");
fprintf(fp," ( (%s) == 0 )\n", state__valid);
fprintf(fp,"\n");
fprintf(fp,"#define STATE__VALID_CHILD(state,index) ");
fprintf(fp," ( state && (state->%s) )\n", state__valid);
fprintf(fp,"\n");
fprintf(fp,"#define STATE__SET_VALID(index) ");
fprintf(fp," (%s)\n", state__set_valid);
fprintf(fp,"\n");
fprintf(fp,
"//---------------------------State-------------------------------------------\n");
fprintf(fp,"// State contains an integral cost vector, indexed by machine operand opcodes,\n");
fprintf(fp,"// a rule vector consisting of machine operand/instruction opcodes, and also\n");
fprintf(fp,"// indexed by machine operand opcodes, pointers to the children in the label\n");
fprintf(fp,"// tree generated by the Label routines in ideal nodes (currently limited to\n");
fprintf(fp,"// two for convenience, but this could change).\n");
fprintf(fp,"class State : public ResourceObj {\n");
fprintf(fp,"public:\n");
fprintf(fp," int _id; // State identifier\n");
fprintf(fp," Node *_leaf; // Ideal (non-machine-node) leaf of match tree\n");
fprintf(fp," State *_kids[2]; // Children of state node in label tree\n");
fprintf(fp," unsigned int _cost[_LAST_MACH_OPER]; // Cost vector, indexed by operand opcodes\n");
fprintf(fp," unsigned int _rule[_LAST_MACH_OPER]; // Rule vector, indexed by operand opcodes\n");
fprintf(fp," unsigned int _valid[(_LAST_MACH_OPER/32)+1]; // Bit Map of valid Cost/Rule entries\n");
fprintf(fp,"\n");
fprintf(fp," State(void); // Constructor\n");
fprintf(fp," DEBUG_ONLY( ~State(void); ) // Destructor\n");
fprintf(fp,"\n");
fprintf(fp," // Methods created by ADLC and invoked by Reduce\n");
fprintf(fp," MachOper *MachOperGenerator(int opcode);\n");
fprintf(fp," MachNode *MachNodeGenerator(int opcode);\n");
fprintf(fp,"\n");
fprintf(fp," // Assign a state to a node, definition of method produced by ADLC\n");
fprintf(fp," bool DFA( int opcode, const Node *ideal );\n");
fprintf(fp,"\n");
fprintf(fp," // Access function for _valid bit vector\n");
fprintf(fp," bool valid(uint index) {\n");
fprintf(fp," return( STATE__VALID(index) != 0 );\n");
fprintf(fp," }\n");
fprintf(fp,"\n");
fprintf(fp," // Set function for _valid bit vector\n");
fprintf(fp," void set_valid(uint index) {\n");
fprintf(fp," STATE__SET_VALID(index);\n");
fprintf(fp," }\n");
fprintf(fp,"\n");
fprintf(fp,"#ifndef PRODUCT\n");
fprintf(fp," void dump(); // Debugging prints\n");
fprintf(fp," void dump(int depth);\n");
fprintf(fp,"#endif\n");
if (_dfa_small) {
// Generate the routine name we'll need
for (int i = 1; i < _last_opcode; i++) {
if (_mlistab[i] == NULL) continue;
fprintf(fp, " void _sub_Op_%s(const Node *n);\n", NodeClassNames[i]);
}
}
fprintf(fp,"};\n");
fprintf(fp,"\n");
fprintf(fp,"\n");
}
//---------------------------buildMachOperEnum---------------------------------
// Build enumeration for densely packed operands.
// This enumeration is used to index into the arrays in the State objects
// that indicate cost and a successfull rule match.
// Information needed to generate the ReduceOp mapping for the DFA
class OutputMachOperands : public OutputMap {
public:
OutputMachOperands(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
: OutputMap(hpp, cpp, globals, AD, "MachOperands") {};
void declaration() { }
void definition() { fprintf(_cpp, "enum MachOperands {\n"); }
void closing() { fprintf(_cpp, " _LAST_MACH_OPER\n");
OutputMap::closing();
}
void map(OpClassForm &opc) {
const char* opc_ident_to_upper = _AD.machOperEnum(opc._ident);
fprintf(_cpp, " %s", opc_ident_to_upper);
delete[] opc_ident_to_upper;
}
void map(OperandForm &oper) {
const char* oper_ident_to_upper = _AD.machOperEnum(oper._ident);
fprintf(_cpp, " %s", oper_ident_to_upper);
delete[] oper_ident_to_upper;
}
void map(char *name) {
const char* name_to_upper = _AD.machOperEnum(name);
fprintf(_cpp, " %s", name_to_upper);
delete[] name_to_upper;
}
bool do_instructions() { return false; }
void map(InstructForm &inst){ assert( false, "ShouldNotCallThis()"); }
};
void ArchDesc::buildMachOperEnum(FILE *fp_hpp) {
// Construct the table for MachOpcodes
OutputMachOperands output_mach_operands(fp_hpp, fp_hpp, _globalNames, *this);
build_map(output_mach_operands);
}
//---------------------------buildMachEnum----------------------------------
// Build enumeration for all MachOpers and all MachNodes
// Information needed to generate the ReduceOp mapping for the DFA
class OutputMachOpcodes : public OutputMap {
int begin_inst_chain_rule;
int end_inst_chain_rule;
int begin_rematerialize;
int end_rematerialize;
int end_instructions;
public:
OutputMachOpcodes(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
: OutputMap(hpp, cpp, globals, AD, "MachOpcodes"),
begin_inst_chain_rule(-1), end_inst_chain_rule(-1), end_instructions(-1)
{};
void declaration() { }
void definition() { fprintf(_cpp, "enum MachOpcodes {\n"); }
void closing() {
if( begin_inst_chain_rule != -1 )
fprintf(_cpp, " _BEGIN_INST_CHAIN_RULE = %d,\n", begin_inst_chain_rule);
if( end_inst_chain_rule != -1 )
fprintf(_cpp, " _END_INST_CHAIN_RULE = %d,\n", end_inst_chain_rule);
if( begin_rematerialize != -1 )
fprintf(_cpp, " _BEGIN_REMATERIALIZE = %d,\n", begin_rematerialize);
if( end_rematerialize != -1 )
fprintf(_cpp, " _END_REMATERIALIZE = %d,\n", end_rematerialize);
// always execute since do_instructions() is true, and avoids trailing comma
fprintf(_cpp, " _last_Mach_Node = %d \n", end_instructions);
OutputMap::closing();
}
void map(OpClassForm &opc) { fprintf(_cpp, " %s_rule", opc._ident ); }
void map(OperandForm &oper) { fprintf(_cpp, " %s_rule", oper._ident ); }
void map(char *name) { if (name) fprintf(_cpp, " %s_rule", name);
else fprintf(_cpp, " 0"); }
void map(InstructForm &inst) {fprintf(_cpp, " %s_rule", inst._ident ); }
void record_position(OutputMap::position place, int idx ) {
switch(place) {
case OutputMap::BEGIN_INST_CHAIN_RULES :
begin_inst_chain_rule = idx;
break;
case OutputMap::END_INST_CHAIN_RULES :
end_inst_chain_rule = idx;
break;
case OutputMap::BEGIN_REMATERIALIZE :
begin_rematerialize = idx;
break;
case OutputMap::END_REMATERIALIZE :
end_rematerialize = idx;
break;
case OutputMap::END_INSTRUCTIONS :
end_instructions = idx;
break;
default:
break;
}
}
};
void ArchDesc::buildMachOpcodesEnum(FILE *fp_hpp) {
// Construct the table for MachOpcodes
OutputMachOpcodes output_mach_opcodes(fp_hpp, fp_hpp, _globalNames, *this);
build_map(output_mach_opcodes);
}
// Generate an enumeration of the pipeline states, and both
// the functional units (resources) and the masks for
// specifying resources
void ArchDesc::build_pipeline_enums(FILE *fp_hpp) {
int stagelen = (int)strlen("undefined");
int stagenum = 0;
if (_pipeline) { // Find max enum string length
const char *stage;
for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; ) {
int len = (int)strlen(stage);
if (stagelen < len) stagelen = len;
}
}
// Generate a list of stages
fprintf(fp_hpp, "\n");
fprintf(fp_hpp, "// Pipeline Stages\n");
fprintf(fp_hpp, "enum machPipelineStages {\n");
fprintf(fp_hpp, " stage_%-*s = 0,\n", stagelen, "undefined");
if( _pipeline ) {
const char *stage;
for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; )
fprintf(fp_hpp, " stage_%-*s = %d,\n", stagelen, stage, ++stagenum);
}
fprintf(fp_hpp, " stage_%-*s = %d\n", stagelen, "count", stagenum);
fprintf(fp_hpp, "};\n");
fprintf(fp_hpp, "\n");
fprintf(fp_hpp, "// Pipeline Resources\n");
fprintf(fp_hpp, "enum machPipelineResources {\n");
int rescount = 0;
if( _pipeline ) {
const char *resource;
int reslen = 0;
// Generate a list of resources, and masks
for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
int len = (int)strlen(resource);
if (reslen < len)
reslen = len;
}
for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
int mask = resform->mask();
if ((mask & (mask-1)) == 0)
fprintf(fp_hpp, " resource_%-*s = %d,\n", reslen, resource, rescount++);
}
fprintf(fp_hpp, "\n");
for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
fprintf(fp_hpp, " res_mask_%-*s = 0x%08x,\n", reslen, resource, resform->mask());
}
fprintf(fp_hpp, "\n");
}
fprintf(fp_hpp, " resource_count = %d\n", rescount);
fprintf(fp_hpp, "};\n");
}