/*
* Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "gc/z/zArray.inline.hpp"
#include "gc/z/zBackingFile_linux_x86.hpp"
#include "gc/z/zBackingPath_linux_x86.hpp"
#include "gc/z/zErrno.hpp"
#include "gc/z/zLargePages.inline.hpp"
#include "logging/log.hpp"
#include "runtime/os.hpp"
#include "utilities/align.hpp"
#include "utilities/debug.hpp"
#include <fcntl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/statfs.h>
#include <sys/types.h>
#include <unistd.h>
// Filesystem names
#define ZFILESYSTEM_TMPFS "tmpfs"
#define ZFILESYSTEM_HUGETLBFS "hugetlbfs"
// Sysfs file for transparent huge page on tmpfs
#define ZFILENAME_SHMEM_ENABLED "/sys/kernel/mm/transparent_hugepage/shmem_enabled"
// Java heap filename
#define ZFILENAME_HEAP "java_heap"
// Support for building on older Linux systems
#ifndef __NR_memfd_create
#define __NR_memfd_create 319
#endif
#ifndef MFD_CLOEXEC
#define MFD_CLOEXEC 0x0001U
#endif
#ifndef MFD_HUGETLB
#define MFD_HUGETLB 0x0004U
#endif
#ifndef O_CLOEXEC
#define O_CLOEXEC 02000000
#endif
#ifndef O_TMPFILE
#define O_TMPFILE (020000000 | O_DIRECTORY)
#endif
// Filesystem types, see statfs(2)
#ifndef TMPFS_MAGIC
#define TMPFS_MAGIC 0x01021994
#endif
#ifndef HUGETLBFS_MAGIC
#define HUGETLBFS_MAGIC 0x958458f6
#endif
// Preferred tmpfs mount points, ordered by priority
static const char* z_preferred_tmpfs_mountpoints[] = {
"/dev/shm",
"/run/shm",
NULL
};
// Preferred hugetlbfs mount points, ordered by priority
static const char* z_preferred_hugetlbfs_mountpoints[] = {
"/dev/hugepages",
"/hugepages",
NULL
};
static int z_memfd_create(const char *name, unsigned int flags) {
return syscall(__NR_memfd_create, name, flags);
}
bool ZBackingFile::_hugetlbfs_mmap_retry = true;
ZBackingFile::ZBackingFile() :
_fd(-1),
_filesystem(0),
_available(0),
_initialized(false) {
// Create backing file
_fd = create_fd(ZFILENAME_HEAP);
if (_fd == -1) {
return;
}
// Get filesystem statistics
struct statfs statfs_buf;
if (fstatfs(_fd, &statfs_buf) == -1) {
ZErrno err;
log_error(gc, init)("Failed to determine filesystem type for backing file (%s)",
err.to_string());
return;
}
_filesystem = statfs_buf.f_type;
_available = statfs_buf.f_bavail * statfs_buf.f_bsize;
// Make sure we're on a supported filesystem
if (!is_tmpfs() && !is_hugetlbfs()) {
log_error(gc, init)("Backing file must be located on a %s or a %s filesystem",
ZFILESYSTEM_TMPFS, ZFILESYSTEM_HUGETLBFS);
return;
}
// Make sure the filesystem type matches requested large page type
if (ZLargePages::is_transparent() && !is_tmpfs()) {
log_error(gc, init)("-XX:+UseTransparentHugePages can only be enable when using a %s filesystem",
ZFILESYSTEM_TMPFS);
return;
}
if (ZLargePages::is_transparent() && !tmpfs_supports_transparent_huge_pages()) {
log_error(gc, init)("-XX:+UseTransparentHugePages on a %s filesystem not supported by kernel",
ZFILESYSTEM_TMPFS);
return;
}
if (ZLargePages::is_explicit() && !is_hugetlbfs()) {
log_error(gc, init)("-XX:+UseLargePages (without -XX:+UseTransparentHugePages) can only be enabled when using a %s filesystem",
ZFILESYSTEM_HUGETLBFS);
return;
}
if (!ZLargePages::is_explicit() && is_hugetlbfs()) {
log_error(gc, init)("-XX:+UseLargePages must be enabled when using a %s filesystem",
ZFILESYSTEM_HUGETLBFS);
return;
}
// Successfully initialized
_initialized = true;
}
int ZBackingFile::create_mem_fd(const char* name) const {
// Create file name
char filename[PATH_MAX];
snprintf(filename, sizeof(filename), "%s%s", name, ZLargePages::is_explicit() ? ".hugetlb" : "");
// Create file
const int extra_flags = ZLargePages::is_explicit() ? MFD_HUGETLB : 0;
const int fd = z_memfd_create(filename, MFD_CLOEXEC | extra_flags);
if (fd == -1) {
ZErrno err;
log_debug(gc, init)("Failed to create memfd file (%s)",
((UseLargePages && err == EINVAL) ? "Hugepages not supported" : err.to_string()));
return -1;
}
log_info(gc, init)("Heap backed by file: /memfd:%s", filename);
return fd;
}
int ZBackingFile::create_file_fd(const char* name) const {
const char* const filesystem = ZLargePages::is_explicit()
? ZFILESYSTEM_HUGETLBFS
: ZFILESYSTEM_TMPFS;
const char** const preferred_mountpoints = ZLargePages::is_explicit()
? z_preferred_hugetlbfs_mountpoints
: z_preferred_tmpfs_mountpoints;
// Find mountpoint
ZBackingPath path(filesystem, preferred_mountpoints);
if (path.get() == NULL) {
log_error(gc, init)("Use -XX:ZPath to specify the path to a %s filesystem", filesystem);
return -1;
}
// Try to create an anonymous file using the O_TMPFILE flag. Note that this
// flag requires kernel >= 3.11. If this fails we fall back to open/unlink.
const int fd_anon = os::open(path.get(), O_TMPFILE|O_EXCL|O_RDWR|O_CLOEXEC, S_IRUSR|S_IWUSR);
if (fd_anon == -1) {
ZErrno err;
log_debug(gc, init)("Failed to create anonymous file in %s (%s)", path.get(),
(err == EINVAL ? "Not supported" : err.to_string()));
} else {
// Get inode number for anonymous file
struct stat stat_buf;
if (fstat(fd_anon, &stat_buf) == -1) {
ZErrno err;
log_error(gc, init)("Failed to determine inode number for anonymous file (%s)", err.to_string());
return -1;
}
log_info(gc, init)("Heap backed by file: %s/#" UINT64_FORMAT, path.get(), (uint64_t)stat_buf.st_ino);
return fd_anon;
}
log_debug(gc, init)("Falling back to open/unlink");
// Create file name
char filename[PATH_MAX];
snprintf(filename, sizeof(filename), "%s/%s.%d", path.get(), name, os::current_process_id());
// Create file
const int fd = os::open(filename, O_CREAT|O_EXCL|O_RDWR|O_CLOEXEC, S_IRUSR|S_IWUSR);
if (fd == -1) {
ZErrno err;
log_error(gc, init)("Failed to create file %s (%s)", filename, err.to_string());
return -1;
}
// Unlink file
if (unlink(filename) == -1) {
ZErrno err;
log_error(gc, init)("Failed to unlink file %s (%s)", filename, err.to_string());
return -1;
}
log_info(gc, init)("Heap backed by file: %s", filename);
return fd;
}
int ZBackingFile::create_fd(const char* name) const {
if (ZPath == NULL) {
// If the path is not explicitly specified, then we first try to create a memfd file
// instead of looking for a tmpfd/hugetlbfs mount point. Note that memfd_create() might
// not be supported at all (requires kernel >= 3.17), or it might not support large
// pages (requires kernel >= 4.14). If memfd_create() fails, then we try to create a
// file on an accessible tmpfs or hugetlbfs mount point.
const int fd = create_mem_fd(name);
if (fd != -1) {
return fd;
}
log_debug(gc, init)("Falling back to searching for an accessible mount point");
}
return create_file_fd(name);
}
bool ZBackingFile::is_initialized() const {
return _initialized;
}
int ZBackingFile::fd() const {
return _fd;
}
size_t ZBackingFile::available() const {
return _available;
}
bool ZBackingFile::is_tmpfs() const {
return _filesystem == TMPFS_MAGIC;
}
bool ZBackingFile::is_hugetlbfs() const {
return _filesystem == HUGETLBFS_MAGIC;
}
bool ZBackingFile::tmpfs_supports_transparent_huge_pages() const {
// If the shmem_enabled file exists and is readable then we
// know the kernel supports transparent huge pages for tmpfs.
return access(ZFILENAME_SHMEM_ENABLED, R_OK) == 0;
}
bool ZBackingFile::try_split_and_expand_tmpfs(size_t offset, size_t length, size_t alignment) const {
// Try first smaller part.
const size_t offset0 = offset;
const size_t length0 = align_up(length / 2, alignment);
if (!try_expand_tmpfs(offset0, length0, alignment)) {
return false;
}
// Try second smaller part.
const size_t offset1 = offset0 + length0;
const size_t length1 = length - length0;
if (!try_expand_tmpfs(offset1, length1, alignment)) {
return false;
}
return true;
}
bool ZBackingFile::try_expand_tmpfs(size_t offset, size_t length, size_t alignment) const {
assert(length > 0, "Invalid length");
assert(is_aligned(length, alignment), "Invalid length");
ZErrno err = posix_fallocate(_fd, offset, length);
if (err == EINTR && length > alignment) {
// Calling posix_fallocate() with a large length can take a long
// time to complete. When running profilers, such as VTune, this
// syscall will be constantly interrupted by signals. Expanding
// the file in smaller steps avoids this problem.
return try_split_and_expand_tmpfs(offset, length, alignment);
}
if (err) {
log_error(gc)("Failed to allocate backing file (%s)", err.to_string());
return false;
}
return true;
}
bool ZBackingFile::try_expand_tmpfs(size_t offset, size_t length) const {
assert(is_tmpfs(), "Wrong filesystem");
return try_expand_tmpfs(offset, length, os::vm_page_size());
}
bool ZBackingFile::try_expand_hugetlbfs(size_t offset, size_t length) const {
assert(is_hugetlbfs(), "Wrong filesystem");
// Prior to kernel 4.3, hugetlbfs did not support posix_fallocate().
// Instead of posix_fallocate() we can use a well-known workaround,
// which involves truncating the file to requested size and then try
// to map it to verify that there are enough huge pages available to
// back it.
while (ftruncate(_fd, offset + length) == -1) {
ZErrno err;
if (err != EINTR) {
log_error(gc)("Failed to truncate backing file (%s)", err.to_string());
return false;
}
}
// If we fail mapping during initialization, i.e. when we are pre-mapping
// the heap, then we wait and retry a few times before giving up. Otherwise
// there is a risk that running JVMs back-to-back will fail, since there
// is a delay between process termination and the huge pages owned by that
// process being returned to the huge page pool and made available for new
// allocations.
void* addr = MAP_FAILED;
const int max_attempts = 5;
for (int attempt = 1; attempt <= max_attempts; attempt++) {
addr = mmap(0, length, PROT_READ|PROT_WRITE, MAP_SHARED, _fd, offset);
if (addr != MAP_FAILED || !_hugetlbfs_mmap_retry) {
// Mapping was successful or mmap retry is disabled
break;
}
ZErrno err;
log_debug(gc)("Failed to map backing file (%s), attempt %d of %d",
err.to_string(), attempt, max_attempts);
// Wait and retry in one second, in the hope that
// huge pages will be available by then.
sleep(1);
}
// Disable mmap retry from now on
if (_hugetlbfs_mmap_retry) {
_hugetlbfs_mmap_retry = false;
}
if (addr == MAP_FAILED) {
// Not enough huge pages left
ZErrno err;
log_error(gc)("Failed to map backing file (%s)", err.to_string());
return false;
}
// Successful mapping, unmap again. From now on the pages we mapped
// will be reserved for this file.
if (munmap(addr, length) == -1) {
ZErrno err;
log_error(gc)("Failed to unmap backing file (%s)", err.to_string());
return false;
}
return true;
}
bool ZBackingFile::try_expand_tmpfs_or_hugetlbfs(size_t offset, size_t length, size_t alignment) const {
assert(is_aligned(offset, alignment), "Invalid offset");
assert(is_aligned(length, alignment), "Invalid length");
log_debug(gc)("Expanding heap from " SIZE_FORMAT "M to " SIZE_FORMAT "M", offset / M, (offset + length) / M);
return is_hugetlbfs() ? try_expand_hugetlbfs(offset, length) : try_expand_tmpfs(offset, length);
}
size_t ZBackingFile::try_expand(size_t offset, size_t length, size_t alignment) const {
size_t start = offset;
size_t end = offset + length;
// Try to expand
if (try_expand_tmpfs_or_hugetlbfs(start, length, alignment)) {
// Success
return end;
}
// Failed, try to expand as much as possible
for (;;) {
length = align_down((end - start) / 2, alignment);
if (length < alignment) {
// Done, don't expand more
return start;
}
if (try_expand_tmpfs_or_hugetlbfs(start, length, alignment)) {
// Success, try expand more
start += length;
} else {
// Failed, try expand less
end -= length;
}
}
}