Clean up login in when running which kind of man page creation.
/*
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_OOPS_GENERATEOOPMAP_HPP
#define SHARE_VM_OOPS_GENERATEOOPMAP_HPP
#include "interpreter/bytecodeStream.hpp"
#include "memory/allocation.hpp"
#include "memory/universe.hpp"
#include "oops/method.hpp"
#include "oops/oopsHierarchy.hpp"
#include "runtime/signature.hpp"
#include "utilities/bitMap.hpp"
// Forward definition
class GenerateOopMap;
class BasicBlock;
class CellTypeState;
class StackMap;
// These two should be removed. But requires som code to be cleaned up
#define MAXARGSIZE 256 // This should be enough
#define MAX_LOCAL_VARS 65536 // 16-bit entry
typedef void (*jmpFct_t)(GenerateOopMap *c, int bcpDelta, int* data);
// RetTable
//
// Contains maping between jsr targets and there return addresses. One-to-many mapping
//
class RetTableEntry : public ResourceObj {
private:
static int _init_nof_jsrs; // Default size of jsrs list
int _target_bci; // Target PC address of jump (bytecode index)
GrowableArray<intptr_t> * _jsrs; // List of return addresses (bytecode index)
RetTableEntry *_next; // Link to next entry
public:
RetTableEntry(int target, RetTableEntry *next);
// Query
int target_bci() const { return _target_bci; }
int nof_jsrs() const { return _jsrs->length(); }
int jsrs(int i) const { assert(i>=0 && i<nof_jsrs(), "Index out of bounds"); return _jsrs->at(i); }
// Update entry
void add_jsr (int return_bci) { _jsrs->append(return_bci); }
void add_delta (int bci, int delta);
RetTableEntry * next() const { return _next; }
};
class RetTable {
private:
RetTableEntry *_first;
static int _init_nof_entries;
void add_jsr(int return_bci, int target_bci); // Adds entry to list
public:
RetTable() { _first = NULL; }
void compute_ret_table(const methodHandle& method);
void update_ret_table(int bci, int delta);
RetTableEntry* find_jsrs_for_target(int targBci);
};
//
// CellTypeState
//
class CellTypeState {
private:
unsigned int _state;
// Masks for separating the BITS and INFO portions of a CellTypeState
enum { info_mask = right_n_bits(28),
bits_mask = (int)(~info_mask) };
// These constant are used for manipulating the BITS portion of a
// CellTypeState
enum { uninit_bit = (int)(nth_bit(31)),
ref_bit = nth_bit(30),
val_bit = nth_bit(29),
addr_bit = nth_bit(28),
live_bits_mask = (int)(bits_mask & ~uninit_bit) };
// These constants are used for manipulating the INFO portion of a
// CellTypeState
enum { top_info_bit = nth_bit(27),
not_bottom_info_bit = nth_bit(26),
info_data_mask = right_n_bits(26),
info_conflict = info_mask };
// Within the INFO data, these values are used to distinguish different
// kinds of references.
enum { ref_not_lock_bit = nth_bit(25), // 0 if this reference is locked as a monitor
ref_slot_bit = nth_bit(24), // 1 if this reference is a "slot" reference,
// 0 if it is a "line" reference.
ref_data_mask = right_n_bits(24) };
// These values are used to initialize commonly used CellTypeState
// constants.
enum { bottom_value = 0,
uninit_value = (int)(uninit_bit | info_conflict),
ref_value = ref_bit,
ref_conflict = ref_bit | info_conflict,
val_value = val_bit | info_conflict,
addr_value = addr_bit,
addr_conflict = addr_bit | info_conflict };
public:
// Since some C++ constructors generate poor code for declarations of the
// form...
//
// CellTypeState vector[length];
//
// ...we avoid making a constructor for this class. CellTypeState values
// should be constructed using one of the make_* methods:
static CellTypeState make_any(int state) {
CellTypeState s;
s._state = state;
// Causes SS10 warning.
// assert(s.is_valid_state(), "check to see if CellTypeState is valid");
return s;
}
static CellTypeState make_bottom() {
return make_any(0);
}
static CellTypeState make_top() {
return make_any(AllBits);
}
static CellTypeState make_addr(int bci) {
assert((bci >= 0) && (bci < info_data_mask), "check to see if ret addr is valid");
return make_any(addr_bit | not_bottom_info_bit | (bci & info_data_mask));
}
static CellTypeState make_slot_ref(int slot_num) {
assert(slot_num >= 0 && slot_num < ref_data_mask, "slot out of range");
return make_any(ref_bit | not_bottom_info_bit | ref_not_lock_bit | ref_slot_bit |
(slot_num & ref_data_mask));
}
static CellTypeState make_line_ref(int bci) {
assert(bci >= 0 && bci < ref_data_mask, "line out of range");
return make_any(ref_bit | not_bottom_info_bit | ref_not_lock_bit |
(bci & ref_data_mask));
}
static CellTypeState make_lock_ref(int bci) {
assert(bci >= 0 && bci < ref_data_mask, "line out of range");
return make_any(ref_bit | not_bottom_info_bit | (bci & ref_data_mask));
}
// Query methods:
bool is_bottom() const { return _state == 0; }
bool is_live() const { return ((_state & live_bits_mask) != 0); }
bool is_valid_state() const {
// Uninitialized and value cells must contain no data in their info field:
if ((can_be_uninit() || can_be_value()) && !is_info_top()) {
return false;
}
// The top bit is only set when all info bits are set:
if (is_info_top() && ((_state & info_mask) != info_mask)) {
return false;
}
// The not_bottom_bit must be set when any other info bit is set:
if (is_info_bottom() && ((_state & info_mask) != 0)) {
return false;
}
return true;
}
bool is_address() const { return ((_state & bits_mask) == addr_bit); }
bool is_reference() const { return ((_state & bits_mask) == ref_bit); }
bool is_value() const { return ((_state & bits_mask) == val_bit); }
bool is_uninit() const { return ((_state & bits_mask) == (uint)uninit_bit); }
bool can_be_address() const { return ((_state & addr_bit) != 0); }
bool can_be_reference() const { return ((_state & ref_bit) != 0); }
bool can_be_value() const { return ((_state & val_bit) != 0); }
bool can_be_uninit() const { return ((_state & uninit_bit) != 0); }
bool is_info_bottom() const { return ((_state & not_bottom_info_bit) == 0); }
bool is_info_top() const { return ((_state & top_info_bit) != 0); }
int get_info() const {
assert((!is_info_top() && !is_info_bottom()),
"check to make sure top/bottom info is not used");
return (_state & info_data_mask);
}
bool is_good_address() const { return is_address() && !is_info_top(); }
bool is_lock_reference() const {
return ((_state & (bits_mask | top_info_bit | ref_not_lock_bit)) == ref_bit);
}
bool is_nonlock_reference() const {
return ((_state & (bits_mask | top_info_bit | ref_not_lock_bit)) == (ref_bit | ref_not_lock_bit));
}
bool equal(CellTypeState a) const { return _state == a._state; }
bool equal_kind(CellTypeState a) const {
return (_state & bits_mask) == (a._state & bits_mask);
}
char to_char() const;
// Merge
CellTypeState merge (CellTypeState cts, int slot) const;
// Debugging output
void print(outputStream *os);
// Default values of common values
static CellTypeState bottom;
static CellTypeState uninit;
static CellTypeState ref;
static CellTypeState value;
static CellTypeState refUninit;
static CellTypeState varUninit;
static CellTypeState top;
static CellTypeState addr;
};
//
// BasicBlockStruct
//
class BasicBlock: ResourceObj {
private:
bool _changed; // Reached a fixpoint or not
public:
enum Constants {
_dead_basic_block = -2,
_unreached = -1 // Alive but not yet reached by analysis
// >=0 // Alive and has a merged state
};
int _bci; // Start of basic block
int _end_bci; // Bci of last instruction in basicblock
int _max_locals; // Determines split between vars and stack
int _max_stack; // Determines split between stack and monitors
CellTypeState* _state; // State (vars, stack) at entry.
int _stack_top; // -1 indicates bottom stack value.
int _monitor_top; // -1 indicates bottom monitor stack value.
CellTypeState* vars() { return _state; }
CellTypeState* stack() { return _state + _max_locals; }
bool changed() { return _changed; }
void set_changed(bool s) { _changed = s; }
bool is_reachable() const { return _stack_top >= 0; } // Analysis has reached this basicblock
// All basicblocks that are unreachable are going to have a _stack_top == _dead_basic_block.
// This info. is setup in a pre-parse before the real abstract interpretation starts.
bool is_dead() const { return _stack_top == _dead_basic_block; }
bool is_alive() const { return _stack_top != _dead_basic_block; }
void mark_as_alive() { assert(is_dead(), "must be dead"); _stack_top = _unreached; }
};
//
// GenerateOopMap
//
// Main class used to compute the pointer-maps in a Method
//
class GenerateOopMap {
protected:
// _monitor_top is set to this constant to indicate that a monitor matching
// problem was encountered prior to this point in control flow.
enum { bad_monitors = -1 };
// Main variables
methodHandle _method; // The method we are examine
RetTable _rt; // Contains the return address mappings
int _max_locals; // Cached value of no. of locals
int _max_stack; // Cached value of max. stack depth
int _max_monitors; // Cached value of max. monitor stack depth
int _has_exceptions; // True, if exceptions exist for method
bool _got_error; // True, if an error occurred during interpretation.
Handle _exception; // Exception if got_error is true.
bool _did_rewriting; // was bytecodes rewritten
bool _did_relocation; // was relocation neccessary
bool _monitor_safe; // The monitors in this method have been determined
// to be safe.
// Working Cell type state
int _state_len; // Size of states
CellTypeState *_state; // list of states
char *_state_vec_buf; // Buffer used to print a readable version of a state
int _stack_top;
int _monitor_top;
// Timing and statistics
static elapsedTimer _total_oopmap_time; // Holds cumulative oopmap generation time
static long _total_byte_count; // Holds cumulative number of bytes inspected
// Cell type methods
void init_state();
void make_context_uninitialized ();
int methodsig_to_effect (Symbol* signature, bool isStatic, CellTypeState* effect);
bool merge_local_state_vectors (CellTypeState* cts, CellTypeState* bbts);
bool merge_monitor_state_vectors(CellTypeState* cts, CellTypeState* bbts);
void copy_state (CellTypeState *dst, CellTypeState *src);
void merge_state_into_bb (BasicBlock *bb);
static void merge_state (GenerateOopMap *gom, int bcidelta, int* data);
void set_var (int localNo, CellTypeState cts);
CellTypeState get_var (int localNo);
CellTypeState pop ();
void push (CellTypeState cts);
CellTypeState monitor_pop ();
void monitor_push (CellTypeState cts);
CellTypeState * vars () { return _state; }
CellTypeState * stack () { return _state+_max_locals; }
CellTypeState * monitors () { return _state+_max_locals+_max_stack; }
void replace_all_CTS_matches (CellTypeState match,
CellTypeState replace);
void print_states (outputStream *os, CellTypeState *vector, int num);
void print_current_state (outputStream *os,
BytecodeStream *itr,
bool detailed);
void report_monitor_mismatch (const char *msg);
// Basicblock info
BasicBlock * _basic_blocks; // Array of basicblock info
int _gc_points;
int _bb_count;
ResourceBitMap _bb_hdr_bits;
// Basicblocks methods
void initialize_bb ();
void mark_bbheaders_and_count_gc_points();
bool is_bb_header (int bci) const {
return _bb_hdr_bits.at(bci);
}
int gc_points () const { return _gc_points; }
int bb_count () const { return _bb_count; }
void set_bbmark_bit (int bci);
BasicBlock * get_basic_block_at (int bci) const;
BasicBlock * get_basic_block_containing (int bci) const;
void interp_bb (BasicBlock *bb);
void restore_state (BasicBlock *bb);
int next_bb_start_pc (BasicBlock *bb);
void update_basic_blocks (int bci, int delta, int new_method_size);
static void bb_mark_fct (GenerateOopMap *c, int deltaBci, int *data);
// Dead code detection
void mark_reachable_code();
static void reachable_basicblock (GenerateOopMap *c, int deltaBci, int *data);
// Interpretation methods (primary)
void do_interpretation ();
void init_basic_blocks ();
void setup_method_entry_state ();
void interp_all ();
// Interpretation methods (secondary)
void interp1 (BytecodeStream *itr);
void do_exception_edge (BytecodeStream *itr);
void check_type (CellTypeState expected, CellTypeState actual);
void ppstore (CellTypeState *in, int loc_no);
void ppload (CellTypeState *out, int loc_no);
void ppush1 (CellTypeState in);
void ppush (CellTypeState *in);
void ppop1 (CellTypeState out);
void ppop (CellTypeState *out);
void ppop_any (int poplen);
void pp (CellTypeState *in, CellTypeState *out);
void pp_new_ref (CellTypeState *in, int bci);
void ppdupswap (int poplen, const char *out);
void do_ldc (int bci);
void do_astore (int idx);
void do_jsr (int delta);
void do_field (int is_get, int is_static, int idx, int bci);
void do_method (int is_static, int is_interface, int idx, int bci);
void do_multianewarray (int dims, int bci);
void do_monitorenter (int bci);
void do_monitorexit (int bci);
void do_return_monitor_check ();
void do_checkcast ();
CellTypeState *sigchar_to_effect (char sigch, int bci, CellTypeState *out);
int copy_cts (CellTypeState *dst, CellTypeState *src);
// Error handling
void error_work (const char *format, va_list ap) ATTRIBUTE_PRINTF(2, 0);
void report_error (const char *format, ...) ATTRIBUTE_PRINTF(2, 3);
void verify_error (const char *format, ...) ATTRIBUTE_PRINTF(2, 3);
bool got_error() { return _got_error; }
// Create result set
bool _report_result;
bool _report_result_for_send; // Unfortunatly, stackmaps for sends are special, so we need some extra
BytecodeStream *_itr_send; // variables to handle them properly.
void report_result ();
// Initvars
GrowableArray<intptr_t> * _init_vars;
void initialize_vars ();
void add_to_ref_init_set (int localNo);
// Conflicts rewrite logic
bool _conflict; // True, if a conflict occurred during interpretation
int _nof_refval_conflicts; // No. of conflicts that require rewrites
int * _new_var_map;
void record_refval_conflict (int varNo);
void rewrite_refval_conflicts ();
void rewrite_refval_conflict (int from, int to);
bool rewrite_refval_conflict_inst (BytecodeStream *i, int from, int to);
bool rewrite_load_or_store (BytecodeStream *i, Bytecodes::Code bc, Bytecodes::Code bc0, unsigned int varNo);
void expand_current_instr (int bci, int ilen, int newIlen, u_char inst_buffer[]);
bool is_astore (BytecodeStream *itr, int *index);
bool is_aload (BytecodeStream *itr, int *index);
// List of bci's where a return address is on top of the stack
GrowableArray<intptr_t> *_ret_adr_tos;
bool stack_top_holds_ret_addr (int bci);
void compute_ret_adr_at_TOS ();
void update_ret_adr_at_TOS (int bci, int delta);
int binsToHold (int no) { return ((no+(BitsPerWord-1))/BitsPerWord); }
char *state_vec_to_string (CellTypeState* vec, int len);
// Helper method. Can be used in subclasses to fx. calculate gc_points. If the current instuction
// is a control transfer, then calls the jmpFct all possible destinations.
void ret_jump_targets_do (BytecodeStream *bcs, jmpFct_t jmpFct, int varNo,int *data);
bool jump_targets_do (BytecodeStream *bcs, jmpFct_t jmpFct, int *data);
friend class RelocCallback;
public:
GenerateOopMap(const methodHandle& method);
// Compute the map.
void compute_map(TRAPS);
void result_for_basicblock(int bci); // Do a callback on fill_stackmap_for_opcodes for basicblock containing bci
// Query
int max_locals() const { return _max_locals; }
Method* method() const { return _method(); }
methodHandle method_as_handle() const { return _method; }
bool did_rewriting() { return _did_rewriting; }
bool did_relocation() { return _did_relocation; }
static void print_time();
// Monitor query
bool monitor_safe() { return _monitor_safe; }
// Specialization methods. Intended use:
// - possible_gc_point must return true for every bci for which the stackmaps must be returned
// - fill_stackmap_prolog is called just before the result is reported. The arguments tells the estimated
// number of gc points
// - fill_stackmap_for_opcodes is called once for each bytecode index in order (0...code_length-1)
// - fill_stackmap_epilog is called after all results has been reported. Note: Since the algorithm does not report
// stackmaps for deadcode, fewer gc_points might have been encounted than assumed during the epilog. It is the
// responsibility of the subclass to count the correct number.
// - fill_init_vars are called once with the result of the init_vars computation
//
// All these methods are used during a call to: compute_map. Note: Non of the return results are valid
// after compute_map returns, since all values are allocated as resource objects.
//
// All virtual method must be implemented in subclasses
virtual bool allow_rewrites () const { return false; }
virtual bool report_results () const { return true; }
virtual bool report_init_vars () const { return true; }
virtual bool possible_gc_point (BytecodeStream *bcs) { ShouldNotReachHere(); return false; }
virtual void fill_stackmap_prolog (int nof_gc_points) { ShouldNotReachHere(); }
virtual void fill_stackmap_epilog () { ShouldNotReachHere(); }
virtual void fill_stackmap_for_opcodes (BytecodeStream *bcs,
CellTypeState* vars,
CellTypeState* stack,
int stackTop) { ShouldNotReachHere(); }
virtual void fill_init_vars (GrowableArray<intptr_t> *init_vars) { ShouldNotReachHere();; }
};
//
// Subclass of the GenerateOopMap Class that just do rewrites of the method, if needed.
// It does not store any oopmaps.
//
class ResolveOopMapConflicts: public GenerateOopMap {
private:
bool _must_clear_locals;
virtual bool report_results() const { return false; }
virtual bool report_init_vars() const { return true; }
virtual bool allow_rewrites() const { return true; }
virtual bool possible_gc_point (BytecodeStream *bcs) { return false; }
virtual void fill_stackmap_prolog (int nof_gc_points) {}
virtual void fill_stackmap_epilog () {}
virtual void fill_stackmap_for_opcodes (BytecodeStream *bcs,
CellTypeState* vars,
CellTypeState* stack,
int stack_top) {}
virtual void fill_init_vars (GrowableArray<intptr_t> *init_vars) { _must_clear_locals = init_vars->length() > 0; }
#ifndef PRODUCT
// Statistics
static int _nof_invocations;
static int _nof_rewrites;
static int _nof_relocations;
#endif
public:
ResolveOopMapConflicts(const methodHandle& method) : GenerateOopMap(method) { _must_clear_locals = false; };
methodHandle do_potential_rewrite(TRAPS);
bool must_clear_locals() const { return _must_clear_locals; }
};
//
// Subclass used by the compiler to generate pairing infomation
//
class GeneratePairingInfo: public GenerateOopMap {
private:
virtual bool report_results() const { return false; }
virtual bool report_init_vars() const { return false; }
virtual bool allow_rewrites() const { return false; }
virtual bool possible_gc_point (BytecodeStream *bcs) { return false; }
virtual void fill_stackmap_prolog (int nof_gc_points) {}
virtual void fill_stackmap_epilog () {}
virtual void fill_stackmap_for_opcodes (BytecodeStream *bcs,
CellTypeState* vars,
CellTypeState* stack,
int stack_top) {}
virtual void fill_init_vars (GrowableArray<intptr_t> *init_vars) {}
public:
GeneratePairingInfo(const methodHandle& method) : GenerateOopMap(method) {};
// Call compute_map(CHECK) to generate info.
};
#endif // SHARE_VM_OOPS_GENERATEOOPMAP_HPP