Clean up login in when running which kind of man page creation.
/*
* Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_RUNTIME_ACCESSBACKEND_INLINE_HPP
#define SHARE_VM_RUNTIME_ACCESSBACKEND_INLINE_HPP
#include "oops/access.hpp"
#include "oops/accessBackend.hpp"
#include "oops/compressedOops.inline.hpp"
#include "oops/oopsHierarchy.hpp"
template <DecoratorSet decorators>
template <DecoratorSet idecorators, typename T>
inline typename EnableIf<
AccessInternal::MustConvertCompressedOop<idecorators, T>::value, T>::type
RawAccessBarrier<decorators>::decode_internal(typename HeapOopType<idecorators>::type value) {
if (HasDecorator<decorators, IS_NOT_NULL>::value) {
return CompressedOops::decode_not_null(value);
} else {
return CompressedOops::decode(value);
}
}
template <DecoratorSet decorators>
template <DecoratorSet idecorators, typename T>
inline typename EnableIf<
AccessInternal::MustConvertCompressedOop<idecorators, T>::value,
typename HeapOopType<idecorators>::type>::type
RawAccessBarrier<decorators>::encode_internal(T value) {
if (HasDecorator<decorators, IS_NOT_NULL>::value) {
return CompressedOops::encode_not_null(value);
} else {
return CompressedOops::encode(value);
}
}
template <DecoratorSet decorators>
template <typename T>
inline void RawAccessBarrier<decorators>::oop_store(void* addr, T value) {
typedef typename AccessInternal::EncodedType<decorators, T>::type Encoded;
Encoded encoded = encode(value);
store(reinterpret_cast<Encoded*>(addr), encoded);
}
template <DecoratorSet decorators>
template <typename T>
inline void RawAccessBarrier<decorators>::oop_store_at(oop base, ptrdiff_t offset, T value) {
oop_store(field_addr(base, offset), value);
}
template <DecoratorSet decorators>
template <typename T>
inline T RawAccessBarrier<decorators>::oop_load(void* addr) {
typedef typename AccessInternal::EncodedType<decorators, T>::type Encoded;
Encoded encoded = load<Encoded>(reinterpret_cast<Encoded*>(addr));
return decode<T>(encoded);
}
template <DecoratorSet decorators>
template <typename T>
inline T RawAccessBarrier<decorators>::oop_load_at(oop base, ptrdiff_t offset) {
return oop_load<T>(field_addr(base, offset));
}
template <DecoratorSet decorators>
template <typename T>
inline T RawAccessBarrier<decorators>::oop_atomic_cmpxchg(T new_value, void* addr, T compare_value) {
typedef typename AccessInternal::EncodedType<decorators, T>::type Encoded;
Encoded encoded_new = encode(new_value);
Encoded encoded_compare = encode(compare_value);
Encoded encoded_result = atomic_cmpxchg(encoded_new,
reinterpret_cast<Encoded*>(addr),
encoded_compare);
return decode<T>(encoded_result);
}
template <DecoratorSet decorators>
template <typename T>
inline T RawAccessBarrier<decorators>::oop_atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) {
return oop_atomic_cmpxchg(new_value, field_addr(base, offset), compare_value);
}
template <DecoratorSet decorators>
template <typename T>
inline T RawAccessBarrier<decorators>::oop_atomic_xchg(T new_value, void* addr) {
typedef typename AccessInternal::EncodedType<decorators, T>::type Encoded;
Encoded encoded_new = encode(new_value);
Encoded encoded_result = atomic_xchg(encoded_new, reinterpret_cast<Encoded*>(addr));
return decode<T>(encoded_result);
}
template <DecoratorSet decorators>
template <typename T>
inline T RawAccessBarrier<decorators>::oop_atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) {
return oop_atomic_xchg(new_value, field_addr(base, offset));
}
template <DecoratorSet decorators>
template <typename T>
inline bool RawAccessBarrier<decorators>::oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
size_t length) {
return arraycopy(src_obj, src_offset_in_bytes, src_raw,
dst_obj, dst_offset_in_bytes, dst_raw,
length);
}
template <DecoratorSet decorators>
template <DecoratorSet ds, typename T>
inline typename EnableIf<
HasDecorator<ds, MO_SEQ_CST>::value, T>::type
RawAccessBarrier<decorators>::load_internal(void* addr) {
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
OrderAccess::fence();
}
return OrderAccess::load_acquire(reinterpret_cast<const volatile T*>(addr));
}
template <DecoratorSet decorators>
template <DecoratorSet ds, typename T>
inline typename EnableIf<
HasDecorator<ds, MO_ACQUIRE>::value, T>::type
RawAccessBarrier<decorators>::load_internal(void* addr) {
return OrderAccess::load_acquire(reinterpret_cast<const volatile T*>(addr));
}
template <DecoratorSet decorators>
template <DecoratorSet ds, typename T>
inline typename EnableIf<
HasDecorator<ds, MO_RELAXED>::value, T>::type
RawAccessBarrier<decorators>::load_internal(void* addr) {
return Atomic::load(reinterpret_cast<const volatile T*>(addr));
}
template <DecoratorSet decorators>
template <DecoratorSet ds, typename T>
inline typename EnableIf<
HasDecorator<ds, MO_SEQ_CST>::value>::type
RawAccessBarrier<decorators>::store_internal(void* addr, T value) {
OrderAccess::release_store_fence(reinterpret_cast<volatile T*>(addr), value);
}
template <DecoratorSet decorators>
template <DecoratorSet ds, typename T>
inline typename EnableIf<
HasDecorator<ds, MO_RELEASE>::value>::type
RawAccessBarrier<decorators>::store_internal(void* addr, T value) {
OrderAccess::release_store(reinterpret_cast<volatile T*>(addr), value);
}
template <DecoratorSet decorators>
template <DecoratorSet ds, typename T>
inline typename EnableIf<
HasDecorator<ds, MO_RELAXED>::value>::type
RawAccessBarrier<decorators>::store_internal(void* addr, T value) {
Atomic::store(value, reinterpret_cast<volatile T*>(addr));
}
template <DecoratorSet decorators>
template <DecoratorSet ds, typename T>
inline typename EnableIf<
HasDecorator<ds, MO_RELAXED>::value, T>::type
RawAccessBarrier<decorators>::atomic_cmpxchg_internal(T new_value, void* addr, T compare_value) {
return Atomic::cmpxchg(new_value,
reinterpret_cast<volatile T*>(addr),
compare_value,
memory_order_relaxed);
}
template <DecoratorSet decorators>
template <DecoratorSet ds, typename T>
inline typename EnableIf<
HasDecorator<ds, MO_SEQ_CST>::value, T>::type
RawAccessBarrier<decorators>::atomic_cmpxchg_internal(T new_value, void* addr, T compare_value) {
return Atomic::cmpxchg(new_value,
reinterpret_cast<volatile T*>(addr),
compare_value,
memory_order_conservative);
}
template <DecoratorSet decorators>
template <DecoratorSet ds, typename T>
inline typename EnableIf<
HasDecorator<ds, MO_SEQ_CST>::value, T>::type
RawAccessBarrier<decorators>::atomic_xchg_internal(T new_value, void* addr) {
return Atomic::xchg(new_value,
reinterpret_cast<volatile T*>(addr));
}
// For platforms that do not have native support for wide atomics,
// we can emulate the atomicity using a lock. So here we check
// whether that is necessary or not.
template <DecoratorSet ds>
template <DecoratorSet decorators, typename T>
inline typename EnableIf<
AccessInternal::PossiblyLockedAccess<T>::value, T>::type
RawAccessBarrier<ds>::atomic_xchg_maybe_locked(T new_value, void* addr) {
if (!AccessInternal::wide_atomic_needs_locking()) {
return atomic_xchg_internal<ds>(new_value, addr);
} else {
AccessInternal::AccessLocker access_lock;
volatile T* p = reinterpret_cast<volatile T*>(addr);
T old_val = RawAccess<>::load(p);
RawAccess<>::store(p, new_value);
return old_val;
}
}
template <DecoratorSet ds>
template <DecoratorSet decorators, typename T>
inline typename EnableIf<
AccessInternal::PossiblyLockedAccess<T>::value, T>::type
RawAccessBarrier<ds>::atomic_cmpxchg_maybe_locked(T new_value, void* addr, T compare_value) {
if (!AccessInternal::wide_atomic_needs_locking()) {
return atomic_cmpxchg_internal<ds>(new_value, addr, compare_value);
} else {
AccessInternal::AccessLocker access_lock;
volatile T* p = reinterpret_cast<volatile T*>(addr);
T old_val = RawAccess<>::load(p);
if (old_val == compare_value) {
RawAccess<>::store(p, new_value);
}
return old_val;
}
}
class RawAccessBarrierArrayCopy: public AllStatic {
template<typename T> struct IsHeapWordSized: public IntegralConstant<bool, sizeof(T) == HeapWordSize> { };
public:
template <DecoratorSet decorators, typename T>
static inline typename EnableIf<
HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value>::type
arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
size_t length) {
src_raw = arrayOopDesc::obj_offset_to_raw(src_obj, src_offset_in_bytes, src_raw);
dst_raw = arrayOopDesc::obj_offset_to_raw(dst_obj, dst_offset_in_bytes, dst_raw);
// We do not check for ARRAYCOPY_ATOMIC for oops, because they are unconditionally always atomic.
if (HasDecorator<decorators, ARRAYCOPY_ARRAYOF>::value) {
AccessInternal::arraycopy_arrayof_conjoint_oops(src_raw, dst_raw, length);
} else {
typedef typename HeapOopType<decorators>::type OopType;
AccessInternal::arraycopy_conjoint_oops(reinterpret_cast<OopType*>(src_raw),
reinterpret_cast<OopType*>(dst_raw), length);
}
}
template <DecoratorSet decorators, typename T>
static inline typename EnableIf<
!HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value &&
HasDecorator<decorators, ARRAYCOPY_ARRAYOF>::value>::type
arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
size_t length) {
src_raw = arrayOopDesc::obj_offset_to_raw(src_obj, src_offset_in_bytes, src_raw);
dst_raw = arrayOopDesc::obj_offset_to_raw(dst_obj, dst_offset_in_bytes, dst_raw);
AccessInternal::arraycopy_arrayof_conjoint(src_raw, dst_raw, length);
}
template <DecoratorSet decorators, typename T>
static inline typename EnableIf<
!HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value &&
HasDecorator<decorators, ARRAYCOPY_DISJOINT>::value && IsHeapWordSized<T>::value>::type
arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
size_t length) {
src_raw = arrayOopDesc::obj_offset_to_raw(src_obj, src_offset_in_bytes, src_raw);
dst_raw = arrayOopDesc::obj_offset_to_raw(dst_obj, dst_offset_in_bytes, dst_raw);
// There is only a disjoint optimization for word granularity copying
if (HasDecorator<decorators, ARRAYCOPY_ATOMIC>::value) {
AccessInternal::arraycopy_disjoint_words_atomic(src_raw, dst_raw, length);
} else {
AccessInternal::arraycopy_disjoint_words(src_raw, dst_raw, length);
}
}
template <DecoratorSet decorators, typename T>
static inline typename EnableIf<
!HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value &&
!(HasDecorator<decorators, ARRAYCOPY_DISJOINT>::value && IsHeapWordSized<T>::value) &&
!HasDecorator<decorators, ARRAYCOPY_ARRAYOF>::value &&
!HasDecorator<decorators, ARRAYCOPY_ATOMIC>::value>::type
arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
size_t length) {
src_raw = arrayOopDesc::obj_offset_to_raw(src_obj, src_offset_in_bytes, src_raw);
dst_raw = arrayOopDesc::obj_offset_to_raw(dst_obj, dst_offset_in_bytes, dst_raw);
AccessInternal::arraycopy_conjoint(src_raw, dst_raw, length);
}
template <DecoratorSet decorators, typename T>
static inline typename EnableIf<
!HasDecorator<decorators, INTERNAL_VALUE_IS_OOP>::value &&
!(HasDecorator<decorators, ARRAYCOPY_DISJOINT>::value && IsHeapWordSized<T>::value) &&
!HasDecorator<decorators, ARRAYCOPY_ARRAYOF>::value &&
HasDecorator<decorators, ARRAYCOPY_ATOMIC>::value>::type
arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
size_t length) {
src_raw = arrayOopDesc::obj_offset_to_raw(src_obj, src_offset_in_bytes, src_raw);
dst_raw = arrayOopDesc::obj_offset_to_raw(dst_obj, dst_offset_in_bytes, dst_raw);
AccessInternal::arraycopy_conjoint_atomic(src_raw, dst_raw, length);
}
};
template<> struct RawAccessBarrierArrayCopy::IsHeapWordSized<void>: public IntegralConstant<bool, false> { };
template <DecoratorSet decorators>
template <typename T>
inline bool RawAccessBarrier<decorators>::arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
size_t length) {
RawAccessBarrierArrayCopy::arraycopy<decorators>(src_obj, src_offset_in_bytes, src_raw,
dst_obj, dst_offset_in_bytes, dst_raw,
length);
return true;
}
template <DecoratorSet decorators>
inline void RawAccessBarrier<decorators>::clone(oop src, oop dst, size_t size) {
// 4839641 (4840070): We must do an oop-atomic copy, because if another thread
// is modifying a reference field in the clonee, a non-oop-atomic copy might
// be suspended in the middle of copying the pointer and end up with parts
// of two different pointers in the field. Subsequent dereferences will crash.
// 4846409: an oop-copy of objects with long or double fields or arrays of same
// won't copy the longs/doubles atomically in 32-bit vm's, so we copy jlongs instead
// of oops. We know objects are aligned on a minimum of an jlong boundary.
// The same is true of StubRoutines::object_copy and the various oop_copy
// variants, and of the code generated by the inline_native_clone intrinsic.
assert(MinObjAlignmentInBytes >= BytesPerLong, "objects misaligned");
AccessInternal::arraycopy_conjoint_atomic(reinterpret_cast<jlong*>((oopDesc*)src),
reinterpret_cast<jlong*>((oopDesc*)dst),
align_object_size(size) / HeapWordsPerLong);
// Clear the header
dst->init_mark_raw();
}
#endif // SHARE_VM_RUNTIME_ACCESSBACKEND_INLINE_HPP