8016586: PPC64 (part 3): basic changes for PPC64
Summary: added #includes needed for ppc64 port. Renamed _MODEL_ppc to _MODEL_ppc_32 and renamed corresponding old _ppc files to _ppc_32.
Reviewed-by: dholmes, kvn
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "opto/compile.hpp"
#include "opto/regmask.hpp"
#ifdef TARGET_ARCH_MODEL_x86_32
# include "adfiles/ad_x86_32.hpp"
#endif
#ifdef TARGET_ARCH_MODEL_x86_64
# include "adfiles/ad_x86_64.hpp"
#endif
#ifdef TARGET_ARCH_MODEL_sparc
# include "adfiles/ad_sparc.hpp"
#endif
#ifdef TARGET_ARCH_MODEL_zero
# include "adfiles/ad_zero.hpp"
#endif
#ifdef TARGET_ARCH_MODEL_arm
# include "adfiles/ad_arm.hpp"
#endif
#ifdef TARGET_ARCH_MODEL_ppc_32
# include "adfiles/ad_ppc_32.hpp"
#endif
#ifdef TARGET_ARCH_MODEL_ppc_64
# include "adfiles/ad_ppc_64.hpp"
#endif
#define RM_SIZE _RM_SIZE /* a constant private to the class RegMask */
//-------------Non-zero bit search methods used by RegMask---------------------
// Find lowest 1, or return 32 if empty
int find_lowest_bit( uint32 mask ) {
int n = 0;
if( (mask & 0xffff) == 0 ) {
mask >>= 16;
n += 16;
}
if( (mask & 0xff) == 0 ) {
mask >>= 8;
n += 8;
}
if( (mask & 0xf) == 0 ) {
mask >>= 4;
n += 4;
}
if( (mask & 0x3) == 0 ) {
mask >>= 2;
n += 2;
}
if( (mask & 0x1) == 0 ) {
mask >>= 1;
n += 1;
}
if( mask == 0 ) {
n = 32;
}
return n;
}
// Find highest 1, or return 32 if empty
int find_hihghest_bit( uint32 mask ) {
int n = 0;
if( mask > 0xffff ) {
mask >>= 16;
n += 16;
}
if( mask > 0xff ) {
mask >>= 8;
n += 8;
}
if( mask > 0xf ) {
mask >>= 4;
n += 4;
}
if( mask > 0x3 ) {
mask >>= 2;
n += 2;
}
if( mask > 0x1 ) {
mask >>= 1;
n += 1;
}
if( mask == 0 ) {
n = 32;
}
return n;
}
//------------------------------dump-------------------------------------------
#ifndef PRODUCT
void OptoReg::dump(int r, outputStream *st) {
switch (r) {
case Special: st->print("r---"); break;
case Bad: st->print("rBAD"); break;
default:
if (r < _last_Mach_Reg) st->print(Matcher::regName[r]);
else st->print("rS%d",r);
break;
}
}
#endif
//=============================================================================
const RegMask RegMask::Empty(
# define BODY(I) 0,
FORALL_BODY
# undef BODY
0
);
//=============================================================================
bool RegMask::is_vector(uint ireg) {
return (ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY);
}
int RegMask::num_registers(uint ireg) {
switch(ireg) {
case Op_VecY:
return 8;
case Op_VecX:
return 4;
case Op_VecD:
case Op_RegD:
case Op_RegL:
#ifdef _LP64
case Op_RegP:
#endif
return 2;
}
// Op_VecS and the rest ideal registers.
return 1;
}
//------------------------------find_first_pair--------------------------------
// Find the lowest-numbered register pair in the mask. Return the
// HIGHEST register number in the pair, or BAD if no pairs.
OptoReg::Name RegMask::find_first_pair() const {
verify_pairs();
for( int i = 0; i < RM_SIZE; i++ ) {
if( _A[i] ) { // Found some bits
int bit = _A[i] & -_A[i]; // Extract low bit
// Convert to bit number, return hi bit in pair
return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+1);
}
}
return OptoReg::Bad;
}
//------------------------------ClearToPairs-----------------------------------
// Clear out partial bits; leave only bit pairs
void RegMask::clear_to_pairs() {
for( int i = 0; i < RM_SIZE; i++ ) {
int bits = _A[i];
bits &= ((bits & 0x55555555)<<1); // 1 hi-bit set for each pair
bits |= (bits>>1); // Smear 1 hi-bit into a pair
_A[i] = bits;
}
verify_pairs();
}
//------------------------------SmearToPairs-----------------------------------
// Smear out partial bits; leave only bit pairs
void RegMask::smear_to_pairs() {
for( int i = 0; i < RM_SIZE; i++ ) {
int bits = _A[i];
bits |= ((bits & 0x55555555)<<1); // Smear lo bit hi per pair
bits |= ((bits & 0xAAAAAAAA)>>1); // Smear hi bit lo per pair
_A[i] = bits;
}
verify_pairs();
}
//------------------------------is_aligned_pairs-------------------------------
bool RegMask::is_aligned_pairs() const {
// Assert that the register mask contains only bit pairs.
for( int i = 0; i < RM_SIZE; i++ ) {
int bits = _A[i];
while( bits ) { // Check bits for pairing
int bit = bits & -bits; // Extract low bit
// Low bit is not odd means its mis-aligned.
if( (bit & 0x55555555) == 0 ) return false;
bits -= bit; // Remove bit from mask
// Check for aligned adjacent bit
if( (bits & (bit<<1)) == 0 ) return false;
bits -= (bit<<1); // Remove other halve of pair
}
}
return true;
}
//------------------------------is_bound1--------------------------------------
// Return TRUE if the mask contains a single bit
int RegMask::is_bound1() const {
if( is_AllStack() ) return false;
int bit = -1; // Set to hold the one bit allowed
for( int i = 0; i < RM_SIZE; i++ ) {
if( _A[i] ) { // Found some bits
if( bit != -1 ) return false; // Already had bits, so fail
bit = _A[i] & -_A[i]; // Extract 1 bit from mask
if( bit != _A[i] ) return false; // Found many bits, so fail
}
}
// True for both the empty mask and for a single bit
return true;
}
//------------------------------is_bound2--------------------------------------
// Return TRUE if the mask contains an adjacent pair of bits and no other bits.
int RegMask::is_bound_pair() const {
if( is_AllStack() ) return false;
int bit = -1; // Set to hold the one bit allowed
for( int i = 0; i < RM_SIZE; i++ ) {
if( _A[i] ) { // Found some bits
if( bit != -1 ) return false; // Already had bits, so fail
bit = _A[i] & -(_A[i]); // Extract 1 bit from mask
if( (bit << 1) != 0 ) { // Bit pair stays in same word?
if( (bit | (bit<<1)) != _A[i] )
return false; // Require adjacent bit pair and no more bits
} else { // Else its a split-pair case
if( bit != _A[i] ) return false; // Found many bits, so fail
i++; // Skip iteration forward
if( i >= RM_SIZE || _A[i] != 1 )
return false; // Require 1 lo bit in next word
}
}
}
// True for both the empty mask and for a bit pair
return true;
}
static int low_bits[3] = { 0x55555555, 0x11111111, 0x01010101 };
//------------------------------find_first_set---------------------------------
// Find the lowest-numbered register set in the mask. Return the
// HIGHEST register number in the set, or BAD if no sets.
// Works also for size 1.
OptoReg::Name RegMask::find_first_set(const int size) const {
verify_sets(size);
for (int i = 0; i < RM_SIZE; i++) {
if (_A[i]) { // Found some bits
int bit = _A[i] & -_A[i]; // Extract low bit
// Convert to bit number, return hi bit in pair
return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+(size-1));
}
}
return OptoReg::Bad;
}
//------------------------------clear_to_sets----------------------------------
// Clear out partial bits; leave only aligned adjacent bit pairs
void RegMask::clear_to_sets(const int size) {
if (size == 1) return;
assert(2 <= size && size <= 8, "update low bits table");
assert(is_power_of_2(size), "sanity");
int low_bits_mask = low_bits[size>>2];
for (int i = 0; i < RM_SIZE; i++) {
int bits = _A[i];
int sets = (bits & low_bits_mask);
for (int j = 1; j < size; j++) {
sets = (bits & (sets<<1)); // filter bits which produce whole sets
}
sets |= (sets>>1); // Smear 1 hi-bit into a set
if (size > 2) {
sets |= (sets>>2); // Smear 2 hi-bits into a set
if (size > 4) {
sets |= (sets>>4); // Smear 4 hi-bits into a set
}
}
_A[i] = sets;
}
verify_sets(size);
}
//------------------------------smear_to_sets----------------------------------
// Smear out partial bits to aligned adjacent bit sets
void RegMask::smear_to_sets(const int size) {
if (size == 1) return;
assert(2 <= size && size <= 8, "update low bits table");
assert(is_power_of_2(size), "sanity");
int low_bits_mask = low_bits[size>>2];
for (int i = 0; i < RM_SIZE; i++) {
int bits = _A[i];
int sets = 0;
for (int j = 0; j < size; j++) {
sets |= (bits & low_bits_mask); // collect partial bits
bits = bits>>1;
}
sets |= (sets<<1); // Smear 1 lo-bit into a set
if (size > 2) {
sets |= (sets<<2); // Smear 2 lo-bits into a set
if (size > 4) {
sets |= (sets<<4); // Smear 4 lo-bits into a set
}
}
_A[i] = sets;
}
verify_sets(size);
}
//------------------------------is_aligned_set--------------------------------
bool RegMask::is_aligned_sets(const int size) const {
if (size == 1) return true;
assert(2 <= size && size <= 8, "update low bits table");
assert(is_power_of_2(size), "sanity");
int low_bits_mask = low_bits[size>>2];
// Assert that the register mask contains only bit sets.
for (int i = 0; i < RM_SIZE; i++) {
int bits = _A[i];
while (bits) { // Check bits for pairing
int bit = bits & -bits; // Extract low bit
// Low bit is not odd means its mis-aligned.
if ((bit & low_bits_mask) == 0) return false;
// Do extra work since (bit << size) may overflow.
int hi_bit = bit << (size-1); // high bit
int set = hi_bit + ((hi_bit-1) & ~(bit-1));
// Check for aligned adjacent bits in this set
if ((bits & set) != set) return false;
bits -= set; // Remove this set
}
}
return true;
}
//------------------------------is_bound_set-----------------------------------
// Return TRUE if the mask contains one adjacent set of bits and no other bits.
// Works also for size 1.
int RegMask::is_bound_set(const int size) const {
if( is_AllStack() ) return false;
assert(1 <= size && size <= 8, "update low bits table");
int bit = -1; // Set to hold the one bit allowed
for (int i = 0; i < RM_SIZE; i++) {
if (_A[i] ) { // Found some bits
if (bit != -1)
return false; // Already had bits, so fail
bit = _A[i] & -_A[i]; // Extract low bit from mask
int hi_bit = bit << (size-1); // high bit
if (hi_bit != 0) { // Bit set stays in same word?
int set = hi_bit + ((hi_bit-1) & ~(bit-1));
if (set != _A[i])
return false; // Require adjacent bit set and no more bits
} else { // Else its a split-set case
if (((-1) & ~(bit-1)) != _A[i])
return false; // Found many bits, so fail
i++; // Skip iteration forward and check high part
// The lower 24 bits should be 0 since it is split case and size <= 8.
int set = bit>>24;
set = set & -set; // Remove sign extension.
set = (((set << size) - 1) >> 8);
if (i >= RM_SIZE || _A[i] != set)
return false; // Require expected low bits in next word
}
}
}
// True for both the empty mask and for a bit set
return true;
}
//------------------------------is_UP------------------------------------------
// UP means register only, Register plus stack, or stack only is DOWN
bool RegMask::is_UP() const {
// Quick common case check for DOWN (any stack slot is legal)
if( is_AllStack() )
return false;
// Slower check for any stack bits set (also DOWN)
if( overlap(Matcher::STACK_ONLY_mask) )
return false;
// Not DOWN, so must be UP
return true;
}
//------------------------------Size-------------------------------------------
// Compute size of register mask in bits
uint RegMask::Size() const {
extern uint8 bitsInByte[256];
uint sum = 0;
for( int i = 0; i < RM_SIZE; i++ )
sum +=
bitsInByte[(_A[i]>>24) & 0xff] +
bitsInByte[(_A[i]>>16) & 0xff] +
bitsInByte[(_A[i]>> 8) & 0xff] +
bitsInByte[ _A[i] & 0xff];
return sum;
}
#ifndef PRODUCT
//------------------------------print------------------------------------------
void RegMask::dump(outputStream *st) const {
st->print("[");
RegMask rm = *this; // Structure copy into local temp
OptoReg::Name start = rm.find_first_elem(); // Get a register
if (OptoReg::is_valid(start)) { // Check for empty mask
rm.Remove(start); // Yank from mask
OptoReg::dump(start, st); // Print register
OptoReg::Name last = start;
// Now I have printed an initial register.
// Print adjacent registers as "rX-rZ" instead of "rX,rY,rZ".
// Begin looping over the remaining registers.
while (1) { //
OptoReg::Name reg = rm.find_first_elem(); // Get a register
if (!OptoReg::is_valid(reg))
break; // Empty mask, end loop
rm.Remove(reg); // Yank from mask
if (last+1 == reg) { // See if they are adjacent
// Adjacent registers just collect into long runs, no printing.
last = reg;
} else { // Ending some kind of run
if (start == last) { // 1-register run; no special printing
} else if (start+1 == last) {
st->print(","); // 2-register run; print as "rX,rY"
OptoReg::dump(last, st);
} else { // Multi-register run; print as "rX-rZ"
st->print("-");
OptoReg::dump(last, st);
}
st->print(","); // Seperate start of new run
start = last = reg; // Start a new register run
OptoReg::dump(start, st); // Print register
} // End of if ending a register run or not
} // End of while regmask not empty
if (start == last) { // 1-register run; no special printing
} else if (start+1 == last) {
st->print(","); // 2-register run; print as "rX,rY"
OptoReg::dump(last, st);
} else { // Multi-register run; print as "rX-rZ"
st->print("-");
OptoReg::dump(last, st);
}
if (rm.is_AllStack()) st->print("...");
}
st->print("]");
}
#endif