8069367: Eagerly reclaimed humongous objects left on mark stack
Summary: Prevent eager reclaim of objects that might be on mark stack.
Reviewed-by: brutisso, tschatzl
/*
* Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
#include "gc_implementation/g1/g1StringDedup.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/prefetch.inline.hpp"
#include "utilities/stack.inline.hpp"
G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
: _g1h(g1h),
_refs(g1h->task_queue(queue_num)),
_dcq(&g1h->dirty_card_queue_set()),
_ct_bs(g1h->g1_barrier_set()),
_g1_rem(g1h->g1_rem_set()),
_hash_seed(17), _queue_num(queue_num),
_term_attempts(0),
_tenuring_threshold(g1h->g1_policy()->tenuring_threshold()),
_age_table(false), _scanner(g1h, rp),
_strong_roots_time(0), _term_time(0) {
_scanner.set_par_scan_thread_state(this);
// we allocate G1YoungSurvRateNumRegions plus one entries, since
// we "sacrifice" entry 0 to keep track of surviving bytes for
// non-young regions (where the age is -1)
// We also add a few elements at the beginning and at the end in
// an attempt to eliminate cache contention
uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
uint array_length = PADDING_ELEM_NUM +
real_length +
PADDING_ELEM_NUM;
_surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
if (_surviving_young_words_base == NULL)
vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
"Not enough space for young surv histo.");
_surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
_g1_par_allocator = G1ParGCAllocator::create_allocator(_g1h);
_dest[InCSetState::NotInCSet] = InCSetState::NotInCSet;
// The dest for Young is used when the objects are aged enough to
// need to be moved to the next space.
_dest[InCSetState::Young] = InCSetState::Old;
_dest[InCSetState::Old] = InCSetState::Old;
_start = os::elapsedTime();
}
G1ParScanThreadState::~G1ParScanThreadState() {
_g1_par_allocator->retire_alloc_buffers();
delete _g1_par_allocator;
FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
}
void
G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
{
st->print_raw_cr("GC Termination Stats");
st->print_raw_cr(" elapsed --strong roots-- -------termination-------"
" ------waste (KiB)------");
st->print_raw_cr("thr ms ms % ms % attempts"
" total alloc undo");
st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
" ------- ------- -------");
}
void
G1ParScanThreadState::print_termination_stats(int i,
outputStream* const st) const
{
const double elapsed_ms = elapsed_time() * 1000.0;
const double s_roots_ms = strong_roots_time() * 1000.0;
const double term_ms = term_time() * 1000.0;
const size_t alloc_buffer_waste = _g1_par_allocator->alloc_buffer_waste();
const size_t undo_waste = _g1_par_allocator->undo_waste();
st->print_cr("%3d %9.2f %9.2f %6.2f "
"%9.2f %6.2f " SIZE_FORMAT_W(8) " "
SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
(alloc_buffer_waste + undo_waste) * HeapWordSize / K,
alloc_buffer_waste * HeapWordSize / K,
undo_waste * HeapWordSize / K);
}
#ifdef ASSERT
bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
assert(ref != NULL, "invariant");
assert(UseCompressedOops, "sanity");
assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, p2i(ref)));
oop p = oopDesc::load_decode_heap_oop(ref);
assert(_g1h->is_in_g1_reserved(p),
err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
return true;
}
bool G1ParScanThreadState::verify_ref(oop* ref) const {
assert(ref != NULL, "invariant");
if (has_partial_array_mask(ref)) {
// Must be in the collection set--it's already been copied.
oop p = clear_partial_array_mask(ref);
assert(_g1h->obj_in_cs(p),
err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
} else {
oop p = oopDesc::load_decode_heap_oop(ref);
assert(_g1h->is_in_g1_reserved(p),
err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
}
return true;
}
bool G1ParScanThreadState::verify_task(StarTask ref) const {
if (ref.is_narrow()) {
return verify_ref((narrowOop*) ref);
} else {
return verify_ref((oop*) ref);
}
}
#endif // ASSERT
void G1ParScanThreadState::trim_queue() {
assert(_evac_failure_cl != NULL, "not set");
StarTask ref;
do {
// Drain the overflow stack first, so other threads can steal.
while (_refs->pop_overflow(ref)) {
dispatch_reference(ref);
}
while (_refs->pop_local(ref)) {
dispatch_reference(ref);
}
} while (!_refs->is_empty());
}
HeapWord* G1ParScanThreadState::allocate_in_next_plab(InCSetState const state,
InCSetState* dest,
size_t word_sz,
AllocationContext_t const context) {
assert(state.is_in_cset_or_humongous(), err_msg("Unexpected state: " CSETSTATE_FORMAT, state.value()));
assert(dest->is_in_cset_or_humongous(), err_msg("Unexpected dest: " CSETSTATE_FORMAT, dest->value()));
// Right now we only have two types of regions (young / old) so
// let's keep the logic here simple. We can generalize it when necessary.
if (dest->is_young()) {
HeapWord* const obj_ptr = _g1_par_allocator->allocate(InCSetState::Old,
word_sz, context);
if (obj_ptr == NULL) {
return NULL;
}
// Make sure that we won't attempt to copy any other objects out
// of a survivor region (given that apparently we cannot allocate
// any new ones) to avoid coming into this slow path.
_tenuring_threshold = 0;
dest->set_old();
return obj_ptr;
} else {
assert(dest->is_old(), err_msg("Unexpected dest: " CSETSTATE_FORMAT, dest->value()));
// no other space to try.
return NULL;
}
}
InCSetState G1ParScanThreadState::next_state(InCSetState const state, markOop const m, uint& age) {
if (state.is_young()) {
age = !m->has_displaced_mark_helper() ? m->age()
: m->displaced_mark_helper()->age();
if (age < _tenuring_threshold) {
return state;
}
}
return dest(state);
}
oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state,
oop const old,
markOop const old_mark) {
const size_t word_sz = old->size();
HeapRegion* const from_region = _g1h->heap_region_containing_raw(old);
// +1 to make the -1 indexes valid...
const int young_index = from_region->young_index_in_cset()+1;
assert( (from_region->is_young() && young_index > 0) ||
(!from_region->is_young() && young_index == 0), "invariant" );
const AllocationContext_t context = from_region->allocation_context();
uint age = 0;
InCSetState dest_state = next_state(state, old_mark, age);
HeapWord* obj_ptr = _g1_par_allocator->plab_allocate(dest_state, word_sz, context);
// PLAB allocations should succeed most of the time, so we'll
// normally check against NULL once and that's it.
if (obj_ptr == NULL) {
obj_ptr = _g1_par_allocator->allocate_direct_or_new_plab(dest_state, word_sz, context);
if (obj_ptr == NULL) {
obj_ptr = allocate_in_next_plab(state, &dest_state, word_sz, context);
if (obj_ptr == NULL) {
// This will either forward-to-self, or detect that someone else has
// installed a forwarding pointer.
return _g1h->handle_evacuation_failure_par(this, old);
}
}
}
assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
#ifndef PRODUCT
// Should this evacuation fail?
if (_g1h->evacuation_should_fail()) {
// Doing this after all the allocation attempts also tests the
// undo_allocation() method too.
_g1_par_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
return _g1h->handle_evacuation_failure_par(this, old);
}
#endif // !PRODUCT
// We're going to allocate linearly, so might as well prefetch ahead.
Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
const oop obj = oop(obj_ptr);
const oop forward_ptr = old->forward_to_atomic(obj);
if (forward_ptr == NULL) {
Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
if (dest_state.is_young()) {
if (age < markOopDesc::max_age) {
age++;
}
if (old_mark->has_displaced_mark_helper()) {
// In this case, we have to install the mark word first,
// otherwise obj looks to be forwarded (the old mark word,
// which contains the forward pointer, was copied)
obj->set_mark(old_mark);
markOop new_mark = old_mark->displaced_mark_helper()->set_age(age);
old_mark->set_displaced_mark_helper(new_mark);
} else {
obj->set_mark(old_mark->set_age(age));
}
age_table()->add(age, word_sz);
} else {
obj->set_mark(old_mark);
}
if (G1StringDedup::is_enabled()) {
const bool is_from_young = state.is_young();
const bool is_to_young = dest_state.is_young();
assert(is_from_young == _g1h->heap_region_containing_raw(old)->is_young(),
"sanity");
assert(is_to_young == _g1h->heap_region_containing_raw(obj)->is_young(),
"sanity");
G1StringDedup::enqueue_from_evacuation(is_from_young,
is_to_young,
queue_num(),
obj);
}
size_t* const surv_young_words = surviving_young_words();
surv_young_words[young_index] += word_sz;
if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
// We keep track of the next start index in the length field of
// the to-space object. The actual length can be found in the
// length field of the from-space object.
arrayOop(obj)->set_length(0);
oop* old_p = set_partial_array_mask(old);
push_on_queue(old_p);
} else {
HeapRegion* const to_region = _g1h->heap_region_containing_raw(obj_ptr);
_scanner.set_region(to_region);
obj->oop_iterate_backwards(&_scanner);
}
return obj;
} else {
_g1_par_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
return forward_ptr;
}
}