8208658: Make CDS archived heap regions usable even if compressed oop encoding has changed
Summary: Relocate and patch archive regions if necessary
Reviewed-by: jiangli, tschatzl
/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/javaClasses.inline.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/vmSymbols.hpp"
#include "logging/log.hpp"
#include "logging/logMessage.hpp"
#include "logging/logStream.hpp"
#include "memory/heapShared.inline.hpp"
#include "memory/iterator.inline.hpp"
#include "memory/metadataFactory.hpp"
#include "memory/metaspaceClosure.hpp"
#include "memory/metaspaceShared.hpp"
#include "memory/resourceArea.hpp"
#include "oops/compressedOops.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/fieldDescriptor.inline.hpp"
#include "utilities/bitMap.inline.hpp"
#if INCLUDE_CDS_JAVA_HEAP
KlassSubGraphInfo* HeapShared::_subgraph_info_list = NULL;
int HeapShared::_num_archived_subgraph_info_records = 0;
Array<ArchivedKlassSubGraphInfoRecord>* HeapShared::_archived_subgraph_info_records = NULL;
// Currently there is only one class mirror (ArchivedModuleGraph) with archived
// sub-graphs.
KlassSubGraphInfo* HeapShared::find_subgraph_info(Klass* k) {
KlassSubGraphInfo* info = _subgraph_info_list;
while (info != NULL) {
if (info->klass() == k) {
return info;
}
info = info->next();
}
return NULL;
}
// Get the subgraph_info for Klass k. A new subgraph_info is created if
// there is no existing one for k. The subgraph_info records the relocated
// Klass* of the original k.
KlassSubGraphInfo* HeapShared::get_subgraph_info(Klass* k) {
Klass* relocated_k = MetaspaceShared::get_relocated_klass(k);
KlassSubGraphInfo* info = find_subgraph_info(relocated_k);
if (info != NULL) {
return info;
}
info = new KlassSubGraphInfo(relocated_k, _subgraph_info_list);
_subgraph_info_list = info;
return info;
}
address HeapShared::_narrow_oop_base;
int HeapShared::_narrow_oop_shift;
int HeapShared::num_of_subgraph_infos() {
int num = 0;
KlassSubGraphInfo* info = _subgraph_info_list;
while (info != NULL) {
num ++;
info = info->next();
}
return num;
}
// Add an entry field to the current KlassSubGraphInfo.
void KlassSubGraphInfo::add_subgraph_entry_field(int static_field_offset, oop v) {
assert(DumpSharedSpaces, "dump time only");
if (_subgraph_entry_fields == NULL) {
_subgraph_entry_fields =
new(ResourceObj::C_HEAP, mtClass) GrowableArray<juint>(10, true);
}
_subgraph_entry_fields->append((juint)static_field_offset);
_subgraph_entry_fields->append(CompressedOops::encode(v));
}
// Add the Klass* for an object in the current KlassSubGraphInfo's subgraphs.
// Only objects of boot classes can be included in sub-graph.
void KlassSubGraphInfo::add_subgraph_object_klass(Klass* orig_k, Klass *relocated_k) {
assert(DumpSharedSpaces, "dump time only");
assert(relocated_k == MetaspaceShared::get_relocated_klass(orig_k),
"must be the relocated Klass in the shared space");
if (_subgraph_object_klasses == NULL) {
_subgraph_object_klasses =
new(ResourceObj::C_HEAP, mtClass) GrowableArray<Klass*>(50, true);
}
assert(relocated_k->is_shared(), "must be a shared class");
if (_k == relocated_k) {
// Don't add the Klass containing the sub-graph to it's own klass
// initialization list.
return;
}
if (relocated_k->is_instance_klass()) {
assert(InstanceKlass::cast(relocated_k)->is_shared_boot_class(),
"must be boot class");
// SystemDictionary::xxx_klass() are not updated, need to check
// the original Klass*
if (orig_k == SystemDictionary::String_klass() ||
orig_k == SystemDictionary::Object_klass()) {
// Initialized early during VM initialization. No need to be added
// to the sub-graph object class list.
return;
}
} else if (relocated_k->is_objArray_klass()) {
Klass* abk = ObjArrayKlass::cast(relocated_k)->bottom_klass();
if (abk->is_instance_klass()) {
assert(InstanceKlass::cast(abk)->is_shared_boot_class(),
"must be boot class");
}
if (relocated_k == Universe::objectArrayKlassObj()) {
// Initialized early during Universe::genesis. No need to be added
// to the list.
return;
}
} else {
assert(relocated_k->is_typeArray_klass(), "must be");
// Primitive type arrays are created early during Universe::genesis.
return;
}
_subgraph_object_klasses->append_if_missing(relocated_k);
}
// Initialize an archived subgraph_info_record from the given KlassSubGraphInfo.
void ArchivedKlassSubGraphInfoRecord::init(KlassSubGraphInfo* info) {
_k = info->klass();
_next = NULL;
_entry_field_records = NULL;
_subgraph_klasses = NULL;
// populate the entry fields
GrowableArray<juint>* entry_fields = info->subgraph_entry_fields();
if (entry_fields != NULL) {
int num_entry_fields = entry_fields->length();
assert(num_entry_fields % 2 == 0, "sanity");
_entry_field_records =
MetaspaceShared::new_ro_array<juint>(num_entry_fields);
for (int i = 0 ; i < num_entry_fields; i++) {
_entry_field_records->at_put(i, entry_fields->at(i));
}
}
// the Klasses of the objects in the sub-graphs
GrowableArray<Klass*>* subgraph_klasses = info->subgraph_object_klasses();
if (subgraph_klasses != NULL) {
int num_subgraphs_klasses = subgraph_klasses->length();
_subgraph_klasses =
MetaspaceShared::new_ro_array<Klass*>(num_subgraphs_klasses);
for (int i = 0; i < num_subgraphs_klasses; i++) {
Klass* subgraph_k = subgraph_klasses->at(i);
if (log_is_enabled(Info, cds, heap)) {
ResourceMark rm;
log_info(cds, heap)(
"Archived object klass (%d): %s in %s sub-graphs",
i, subgraph_k->external_name(), _k->external_name());
}
_subgraph_klasses->at_put(i, subgraph_k);
}
}
}
// Build the records of archived subgraph infos, which include:
// - Entry points to all subgraphs from the containing class mirror. The entry
// points are static fields in the mirror. For each entry point, the field
// offset and value are recorded in the sub-graph info. The value are stored
// back to the corresponding field at runtime.
// - A list of klasses that need to be loaded/initialized before archived
// java object sub-graph can be accessed at runtime.
//
// The records are saved in the archive file and reloaded at runtime. Currently
// there is only one class mirror (ArchivedModuleGraph) with archived sub-graphs.
//
// Layout of the archived subgraph info records:
//
// records_size | num_records | records*
// ArchivedKlassSubGraphInfoRecord | entry_fields | subgraph_object_klasses
size_t HeapShared::build_archived_subgraph_info_records(int num_records) {
// remember the start address
char* start_p = MetaspaceShared::read_only_space_top();
// now populate the archived subgraph infos, which will be saved in the
// archive file
_archived_subgraph_info_records =
MetaspaceShared::new_ro_array<ArchivedKlassSubGraphInfoRecord>(num_records);
KlassSubGraphInfo* info = _subgraph_info_list;
int i = 0;
while (info != NULL) {
assert(i < _archived_subgraph_info_records->length(), "sanity");
ArchivedKlassSubGraphInfoRecord* record =
_archived_subgraph_info_records->adr_at(i);
record->init(info);
info = info->next();
i ++;
}
// _subgraph_info_list is no longer needed
delete _subgraph_info_list;
_subgraph_info_list = NULL;
char* end_p = MetaspaceShared::read_only_space_top();
size_t records_size = end_p - start_p;
return records_size;
}
// Write the subgraph info records in the shared _ro region
void HeapShared::write_archived_subgraph_infos() {
assert(DumpSharedSpaces, "dump time only");
Array<intptr_t>* records_header = MetaspaceShared::new_ro_array<intptr_t>(3);
_num_archived_subgraph_info_records = num_of_subgraph_infos();
size_t records_size = build_archived_subgraph_info_records(
_num_archived_subgraph_info_records);
// Now write the header information:
// records_size, num_records, _archived_subgraph_info_records
assert(records_header != NULL, "sanity");
intptr_t* p = (intptr_t*)(records_header->data());
*p = (intptr_t)records_size;
p ++;
*p = (intptr_t)_num_archived_subgraph_info_records;
p ++;
*p = (intptr_t)_archived_subgraph_info_records;
}
char* HeapShared::read_archived_subgraph_infos(char* buffer) {
Array<intptr_t>* records_header = (Array<intptr_t>*)buffer;
intptr_t* p = (intptr_t*)(records_header->data());
size_t records_size = (size_t)(*p);
p ++;
_num_archived_subgraph_info_records = *p;
p ++;
_archived_subgraph_info_records =
(Array<ArchivedKlassSubGraphInfoRecord>*)(*p);
buffer = (char*)_archived_subgraph_info_records + records_size;
return buffer;
}
void HeapShared::initialize_from_archived_subgraph(Klass* k) {
if (!MetaspaceShared::open_archive_heap_region_mapped()) {
return; // nothing to do
}
if (_num_archived_subgraph_info_records == 0) {
return; // no subgraph info records
}
// Initialize from archived data. Currently only ArchivedModuleGraph
// has archived object subgraphs, which is used during VM initialization
// time when bootstraping the system modules. No lock is needed.
Thread* THREAD = Thread::current();
for (int i = 0; i < _archived_subgraph_info_records->length(); i++) {
ArchivedKlassSubGraphInfoRecord* record = _archived_subgraph_info_records->adr_at(i);
if (record->klass() == k) {
int i;
// Found the archived subgraph info record for the requesting klass.
// Load/link/initialize the klasses of the objects in the subgraph.
// NULL class loader is used.
Array<Klass*>* klasses = record->subgraph_klasses();
if (klasses != NULL) {
for (i = 0; i < klasses->length(); i++) {
Klass* obj_k = klasses->at(i);
Klass* resolved_k = SystemDictionary::resolve_or_null(
(obj_k)->name(), THREAD);
if (resolved_k != obj_k) {
return;
}
if ((obj_k)->is_instance_klass()) {
InstanceKlass* ik = InstanceKlass::cast(obj_k);
ik->initialize(THREAD);
} else if ((obj_k)->is_objArray_klass()) {
ObjArrayKlass* oak = ObjArrayKlass::cast(obj_k);
oak->initialize(THREAD);
}
}
}
if (HAS_PENDING_EXCEPTION) {
CLEAR_PENDING_EXCEPTION;
// None of the field value will be set if there was an exception.
// The java code will not see any of the archived objects in the
// subgraphs referenced from k in this case.
return;
}
// Load the subgraph entry fields from the record and store them back to
// the corresponding fields within the mirror.
oop m = k->java_mirror();
Array<juint>* entry_field_records = record->entry_field_records();
if (entry_field_records != NULL) {
int efr_len = entry_field_records->length();
assert(efr_len % 2 == 0, "sanity");
for (i = 0; i < efr_len;) {
int field_offset = entry_field_records->at(i);
// The object refereced by the field becomes 'known' by GC from this
// point. All objects in the subgraph reachable from the object are
// also 'known' by GC.
oop v = MetaspaceShared::materialize_archived_object(
entry_field_records->at(i+1));
m->obj_field_put(field_offset, v);
i += 2;
}
}
// Done. Java code can see the archived sub-graphs referenced from k's
// mirror after this point.
return;
}
}
}
class WalkOopAndArchiveClosure: public BasicOopIterateClosure {
int _level;
KlassSubGraphInfo* _subgraph_info;
oop _orig_referencing_obj;
oop _archived_referencing_obj;
public:
WalkOopAndArchiveClosure(int level, KlassSubGraphInfo* subgraph_info,
oop orig, oop archived) : _level(level),
_subgraph_info(subgraph_info),
_orig_referencing_obj(orig),
_archived_referencing_obj(archived) {}
void do_oop(narrowOop *p) { WalkOopAndArchiveClosure::do_oop_work(p); }
void do_oop( oop *p) { WalkOopAndArchiveClosure::do_oop_work(p); }
protected:
template <class T> void do_oop_work(T *p) {
oop obj = RawAccess<>::oop_load(p);
if (!CompressedOops::is_null(obj)) {
// A java.lang.Class instance can not be included in an archived
// object sub-graph.
if (java_lang_Class::is_instance(obj)) {
log_error(cds, heap)("Unknown java.lang.Class object is in the archived sub-graph\n");
vm_exit(1);
}
LogTarget(Debug, cds, heap) log;
LogStream ls(log);
outputStream* out = &ls;
{
ResourceMark rm;
log.print("(%d) %s <--- referenced from: %s",
_level, obj->klass()->external_name(),
CompressedOops::is_null(_orig_referencing_obj) ?
"" : _orig_referencing_obj->klass()->external_name());
obj->print_on(out);
}
if (MetaspaceShared::is_archive_object(obj)) {
// The current oop is an archived oop, nothing needs to be done
log.print("--- object is already archived ---");
return;
}
size_t field_delta = pointer_delta(
p, _orig_referencing_obj, sizeof(char));
T* new_p = (T*)(address(_archived_referencing_obj) + field_delta);
oop archived = MetaspaceShared::find_archived_heap_object(obj);
if (archived != NULL) {
// There is an archived copy existing, update reference to point
// to the archived copy
RawAccess<IS_NOT_NULL>::oop_store(new_p, archived);
log.print(
"--- found existing archived copy, store archived " PTR_FORMAT " in " PTR_FORMAT,
p2i(archived), p2i(new_p));
return;
}
int l = _level + 1;
Thread* THREAD = Thread::current();
// Archive the current oop before iterating through its references
archived = MetaspaceShared::archive_heap_object(obj, THREAD);
if (archived == NULL) {
ResourceMark rm;
LogTarget(Error, cds, heap) log_err;
LogStream ls_err(log_err);
outputStream* out_err = &ls_err;
log_err.print("Failed to archive %s object ("
PTR_FORMAT "), size[" SIZE_FORMAT "] in sub-graph",
obj->klass()->external_name(), p2i(obj), (size_t)obj->size());
obj->print_on(out_err);
vm_exit(1);
}
assert(MetaspaceShared::is_archive_object(archived), "must be archived");
log.print("=== archiving oop " PTR_FORMAT " ==> " PTR_FORMAT,
p2i(obj), p2i(archived));
// Following the references in the current oop and archive any
// encountered objects during the process
WalkOopAndArchiveClosure walker(l, _subgraph_info, obj, archived);
obj->oop_iterate(&walker);
// Update the reference in the archived copy of the referencing object
RawAccess<IS_NOT_NULL>::oop_store(new_p, archived);
log.print("=== store archived " PTR_FORMAT " in " PTR_FORMAT,
p2i(archived), p2i(new_p));
// Add the klass to the list of classes that need to be loaded before
// module system initialization
Klass *orig_k = obj->klass();
Klass *relocated_k = archived->klass();
_subgraph_info->add_subgraph_object_klass(orig_k, relocated_k);
}
}
};
//
// Start from the given static field in a java mirror and archive the
// complete sub-graph of java heap objects that are reached directly
// or indirectly from the starting object by following references.
// Currently, only ArchivedModuleGraph class instance (mirror) has archived
// object subgraphs. Sub-graph archiving restrictions (current):
//
// - All classes of objects in the archived sub-graph (including the
// entry class) must be boot class only.
// - No java.lang.Class instance (java mirror) can be included inside
// an archived sub-graph. Mirror can only be the sub-graph entry object.
//
// The Java heap object sub-graph archiving process (see
// WalkOopAndArchiveClosure):
//
// 1) Java object sub-graph archiving starts from a given static field
// within a Class instance (java mirror). If the static field is a
// refererence field and points to a non-null java object, proceed to
// the next step.
//
// 2) Archives the referenced java object. If an archived copy of the
// current object already exists, updates the pointer in the archived
// copy of the referencing object to point to the current archived object.
// Otherwise, proceed to the next step.
//
// 3) Follows all references within the current java object and recursively
// archive the sub-graph of objects starting from each reference.
//
// 4) Updates the pointer in the archived copy of referencing object to
// point to the current archived object.
//
// 5) The Klass of the current java object is added to the list of Klasses
// for loading and initialzing before any object in the archived graph can
// be accessed at runtime.
//
void HeapShared::archive_reachable_objects_from_static_field(Klass *k,
int field_offset,
BasicType field_type,
TRAPS) {
assert(DumpSharedSpaces, "dump time only");
assert(k->is_instance_klass(), "sanity");
assert(InstanceKlass::cast(k)->is_shared_boot_class(),
"must be boot class");
oop m = k->java_mirror();
oop archived_m = MetaspaceShared::find_archived_heap_object(m);
if (CompressedOops::is_null(archived_m)) {
return;
}
if (field_type == T_OBJECT || field_type == T_ARRAY) {
// obtain k's subGraph Info
KlassSubGraphInfo* subgraph_info = get_subgraph_info(k);
// get the object referenced by the field
oop f = m->obj_field(field_offset);
if (!CompressedOops::is_null(f)) {
LogTarget(Debug, cds, heap) log;
LogStream ls(log);
outputStream* out = &ls;
log.print("Start from: ");
f->print_on(out);
// get the archived copy of the field referenced object
oop af = MetaspaceShared::archive_heap_object(f, THREAD);
if (af == NULL) {
// Skip archiving the sub-graph referenced from the current entry field.
ResourceMark rm;
log_info(cds, heap)(
"Cannot archive the sub-graph referenced from %s object ("
PTR_FORMAT ") size[" SIZE_FORMAT "], skipped.",
f->klass()->external_name(), p2i(f), (size_t)f->size());
return;
}
if (!MetaspaceShared::is_archive_object(f)) {
WalkOopAndArchiveClosure walker(1, subgraph_info, f, af);
f->oop_iterate(&walker);
}
// The field value is not preserved in the archived mirror.
// Record the field as a new subGraph entry point. The recorded
// information is restored from the archive at runtime.
subgraph_info->add_subgraph_entry_field(field_offset, af);
Klass *relocated_k = af->klass();
Klass *orig_k = f->klass();
subgraph_info->add_subgraph_object_klass(orig_k, relocated_k);
ResourceMark rm;
log_info(cds, heap)(
"Archived the sub-graph referenced from %s object " PTR_FORMAT,
f->klass()->external_name(), p2i(f));
} else {
// The field contains null, we still need to record the entry point,
// so it can be restored at runtime.
subgraph_info->add_subgraph_entry_field(field_offset, NULL);
}
} else {
ShouldNotReachHere();
}
}
struct ArchivableStaticFieldInfo {
const char* class_name;
const char* field_name;
InstanceKlass* klass;
int offset;
BasicType type;
};
// If you add new entries to this table, you should know what you're doing!
static ArchivableStaticFieldInfo archivable_static_fields[] = {
{"jdk/internal/module/ArchivedModuleGraph", "archivedSystemModules"},
{"jdk/internal/module/ArchivedModuleGraph", "archivedModuleFinder"},
{"jdk/internal/module/ArchivedModuleGraph", "archivedMainModule"},
{"jdk/internal/module/ArchivedModuleGraph", "archivedConfiguration"},
{"java/util/ImmutableCollections$ListN", "EMPTY_LIST"},
{"java/util/ImmutableCollections$MapN", "EMPTY_MAP"},
{"java/util/ImmutableCollections$SetN", "EMPTY_SET"},
{"java/lang/Integer$IntegerCache", "archivedCache"},
{"java/lang/module/Configuration", "EMPTY_CONFIGURATION"},
};
const static int num_archivable_static_fields = sizeof(archivable_static_fields) / sizeof(ArchivableStaticFieldInfo);
class ArchivableStaticFieldFinder: public FieldClosure {
InstanceKlass* _ik;
Symbol* _field_name;
bool _found;
int _offset;
BasicType _type;
public:
ArchivableStaticFieldFinder(InstanceKlass* ik, Symbol* field_name) :
_ik(ik), _field_name(field_name), _found(false), _offset(-1), _type(T_ILLEGAL) {}
virtual void do_field(fieldDescriptor* fd) {
if (fd->name() == _field_name) {
assert(!_found, "fields cannot be overloaded");
_found = true;
_offset = fd->offset();
_type = fd->field_type();
assert(_type == T_OBJECT || _type == T_ARRAY, "can archive only obj or array fields");
}
}
bool found() { return _found; }
int offset() { return _offset; }
BasicType type() { return _type; }
};
void HeapShared::init_archivable_static_fields(Thread* THREAD) {
for (int i = 0; i < num_archivable_static_fields; i++) {
ArchivableStaticFieldInfo* info = &archivable_static_fields[i];
TempNewSymbol class_name = SymbolTable::new_symbol(info->class_name, THREAD);
TempNewSymbol field_name = SymbolTable::new_symbol(info->field_name, THREAD);
Klass* k = SystemDictionary::resolve_or_null(class_name, THREAD);
assert(k != NULL && !HAS_PENDING_EXCEPTION, "class must exist");
InstanceKlass* ik = InstanceKlass::cast(k);
ArchivableStaticFieldFinder finder(ik, field_name);
ik->do_local_static_fields(&finder);
assert(finder.found(), "field must exist");
info->klass = ik;
info->offset = finder.offset();
info->type = finder.type();
}
}
void HeapShared::archive_module_graph_objects(Thread* THREAD) {
for (int i = 0; i < num_archivable_static_fields; i++) {
ArchivableStaticFieldInfo* info = &archivable_static_fields[i];
archive_reachable_objects_from_static_field(info->klass, info->offset, info->type, CHECK);
}
}
// At dump-time, find the location of all the non-null oop pointers in an archived heap
// region. This way we can quickly relocate all the pointers without using
// BasicOopIterateClosure at runtime.
class FindEmbeddedNonNullPointers: public BasicOopIterateClosure {
narrowOop* _start;
BitMap *_oopmap;
int _num_total_oops;
int _num_null_oops;
public:
FindEmbeddedNonNullPointers(narrowOop* start, BitMap* oopmap)
: _start(start), _oopmap(oopmap), _num_total_oops(0), _num_null_oops(0) {}
virtual bool should_verify_oops(void) {
return false;
}
virtual void do_oop(narrowOop* p) {
_num_total_oops ++;
narrowOop v = *p;
if (!CompressedOops::is_null(v)) {
size_t idx = p - _start;
_oopmap->set_bit(idx);
} else {
_num_null_oops ++;
}
}
virtual void do_oop(oop *p) {
ShouldNotReachHere();
}
int num_total_oops() const { return _num_total_oops; }
int num_null_oops() const { return _num_null_oops; }
};
ResourceBitMap HeapShared::calculate_oopmap(MemRegion region) {
assert(UseCompressedOops, "must be");
size_t num_bits = region.byte_size() / sizeof(narrowOop);
ResourceBitMap oopmap(num_bits);
HeapWord* p = region.start();
HeapWord* end = region.end();
FindEmbeddedNonNullPointers finder((narrowOop*)p, &oopmap);
int num_objs = 0;
while (p < end) {
oop o = (oop)p;
o->oop_iterate(&finder);
p += o->size();
++ num_objs;
}
log_info(cds, heap)("calculate_oopmap: objects = %6d, embedded oops = %7d, nulls = %7d",
num_objs, finder.num_total_oops(), finder.num_null_oops());
return oopmap;
}
void HeapShared::init_narrow_oop_decoding(address base, int shift) {
_narrow_oop_base = base;
_narrow_oop_shift = shift;
}
// Patch all the embedded oop pointers inside an archived heap region,
// to be consistent with the runtime oop encoding.
class PatchEmbeddedPointers: public BitMapClosure {
narrowOop* _start;
public:
PatchEmbeddedPointers(narrowOop* start) : _start(start) {}
bool do_bit(size_t offset) {
narrowOop* p = _start + offset;
narrowOop v = *p;
assert(!CompressedOops::is_null(v), "null oops should have been filtered out at dump time");
oop o = HeapShared::decode_with_archived_oop_encoding_mode(v);
RawAccess<IS_NOT_NULL>::oop_store(p, o);
return true;
}
};
void HeapShared::patch_archived_heap_embedded_pointers(MemRegion region, address oopmap,
size_t oopmap_size_in_bits) {
BitMapView bm((BitMap::bm_word_t*)oopmap, oopmap_size_in_bits);
#ifndef PRODUCT
ResourceMark rm;
ResourceBitMap checkBm = calculate_oopmap(region);
assert(bm.is_same(checkBm), "sanity");
#endif
PatchEmbeddedPointers patcher((narrowOop*)region.start());
bm.iterate(&patcher);
}
#endif // INCLUDE_CDS_JAVA_HEAP