src/hotspot/share/gc/g1/heapRegionRemSet.cpp
author tschatzl
Mon, 26 Mar 2018 16:51:43 +0200
changeset 49608 1852b17b0efc
parent 49607 acffe6ff3ae7
child 49632 64f9ebc85e67
permissions -rw-r--r--
8196485: FromCardCache default card index can cause crashes Summary: The default value of -1 for 32 bit card indices is a regular card value at the border of 2TB heap addresses in the from card cache, so G1 may loose remembered set entries. Extend from card cache entries to 64 bits. Reviewed-by: shade, sjohanss Contributed-by: Thomas Schatzl <thomas.schatzl@oracle.com>, Jarkko Miettinen <jarkko.miettinen@relex.fi>

/*
 * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "gc/g1/g1BlockOffsetTable.inline.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1ConcurrentRefine.hpp"
#include "gc/g1/heapRegionManager.inline.hpp"
#include "gc/g1/heapRegionRemSet.hpp"
#include "gc/shared/space.inline.hpp"
#include "memory/allocation.hpp"
#include "memory/padded.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/atomic.hpp"
#include "utilities/bitMap.inline.hpp"
#include "utilities/debug.hpp"
#include "utilities/formatBuffer.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/growableArray.hpp"

const char* HeapRegionRemSet::_state_strings[] =  {"Untracked", "Updating", "Complete"};

class PerRegionTable: public CHeapObj<mtGC> {
  friend class OtherRegionsTable;
  friend class HeapRegionRemSetIterator;

  HeapRegion*     _hr;
  CHeapBitMap     _bm;
  jint            _occupied;

  // next pointer for free/allocated 'all' list
  PerRegionTable* _next;

  // prev pointer for the allocated 'all' list
  PerRegionTable* _prev;

  // next pointer in collision list
  PerRegionTable * _collision_list_next;

  // Global free list of PRTs
  static PerRegionTable* volatile _free_list;

protected:
  // We need access in order to union things into the base table.
  BitMap* bm() { return &_bm; }

  PerRegionTable(HeapRegion* hr) :
    _hr(hr),
    _occupied(0),
    _bm(HeapRegion::CardsPerRegion, mtGC),
    _collision_list_next(NULL), _next(NULL), _prev(NULL)
  {}

  void add_card_work(CardIdx_t from_card, bool par) {
    if (!_bm.at(from_card)) {
      if (par) {
        if (_bm.par_at_put(from_card, 1)) {
          Atomic::inc(&_occupied);
        }
      } else {
        _bm.at_put(from_card, 1);
        _occupied++;
      }
    }
  }

  void add_reference_work(OopOrNarrowOopStar from, bool par) {
    // Must make this robust in case "from" is not in "_hr", because of
    // concurrency.

    HeapRegion* loc_hr = hr();
    // If the test below fails, then this table was reused concurrently
    // with this operation.  This is OK, since the old table was coarsened,
    // and adding a bit to the new table is never incorrect.
    if (loc_hr->is_in_reserved(from)) {
      CardIdx_t from_card = OtherRegionsTable::card_within_region(from, loc_hr);
      add_card_work(from_card, par);
    }
  }

public:

  HeapRegion* hr() const { return OrderAccess::load_acquire(&_hr); }

  jint occupied() const {
    // Overkill, but if we ever need it...
    // guarantee(_occupied == _bm.count_one_bits(), "Check");
    return _occupied;
  }

  void init(HeapRegion* hr, bool clear_links_to_all_list) {
    if (clear_links_to_all_list) {
      set_next(NULL);
      set_prev(NULL);
    }
    _collision_list_next = NULL;
    _occupied = 0;
    _bm.clear();
    // Make sure that the bitmap clearing above has been finished before publishing
    // this PRT to concurrent threads.
    OrderAccess::release_store(&_hr, hr);
  }

  void add_reference(OopOrNarrowOopStar from) {
    add_reference_work(from, /*parallel*/ true);
  }

  void seq_add_reference(OopOrNarrowOopStar from) {
    add_reference_work(from, /*parallel*/ false);
  }

  void add_card(CardIdx_t from_card_index) {
    add_card_work(from_card_index, /*parallel*/ true);
  }

  void seq_add_card(CardIdx_t from_card_index) {
    add_card_work(from_card_index, /*parallel*/ false);
  }

  // (Destructively) union the bitmap of the current table into the given
  // bitmap (which is assumed to be of the same size.)
  void union_bitmap_into(BitMap* bm) {
    bm->set_union(_bm);
  }

  // Mem size in bytes.
  size_t mem_size() const {
    return sizeof(PerRegionTable) + _bm.size_in_words() * HeapWordSize;
  }

  // Requires "from" to be in "hr()".
  bool contains_reference(OopOrNarrowOopStar from) const {
    assert(hr()->is_in_reserved(from), "Precondition.");
    size_t card_ind = pointer_delta(from, hr()->bottom(),
                                    G1CardTable::card_size);
    return _bm.at(card_ind);
  }

  // Bulk-free the PRTs from prt to last, assumes that they are
  // linked together using their _next field.
  static void bulk_free(PerRegionTable* prt, PerRegionTable* last) {
    while (true) {
      PerRegionTable* fl = _free_list;
      last->set_next(fl);
      PerRegionTable* res = Atomic::cmpxchg(prt, &_free_list, fl);
      if (res == fl) {
        return;
      }
    }
    ShouldNotReachHere();
  }

  static void free(PerRegionTable* prt) {
    bulk_free(prt, prt);
  }

  // Returns an initialized PerRegionTable instance.
  static PerRegionTable* alloc(HeapRegion* hr) {
    PerRegionTable* fl = _free_list;
    while (fl != NULL) {
      PerRegionTable* nxt = fl->next();
      PerRegionTable* res = Atomic::cmpxchg(nxt, &_free_list, fl);
      if (res == fl) {
        fl->init(hr, true);
        return fl;
      } else {
        fl = _free_list;
      }
    }
    assert(fl == NULL, "Loop condition.");
    return new PerRegionTable(hr);
  }

  PerRegionTable* next() const { return _next; }
  void set_next(PerRegionTable* next) { _next = next; }
  PerRegionTable* prev() const { return _prev; }
  void set_prev(PerRegionTable* prev) { _prev = prev; }

  // Accessor and Modification routines for the pointer for the
  // singly linked collision list that links the PRTs within the
  // OtherRegionsTable::_fine_grain_regions hash table.
  //
  // It might be useful to also make the collision list doubly linked
  // to avoid iteration over the collisions list during scrubbing/deletion.
  // OTOH there might not be many collisions.

  PerRegionTable* collision_list_next() const {
    return _collision_list_next;
  }

  void set_collision_list_next(PerRegionTable* next) {
    _collision_list_next = next;
  }

  PerRegionTable** collision_list_next_addr() {
    return &_collision_list_next;
  }

  static size_t fl_mem_size() {
    PerRegionTable* cur = _free_list;
    size_t res = 0;
    while (cur != NULL) {
      res += cur->mem_size();
      cur = cur->next();
    }
    return res;
  }

  static void test_fl_mem_size();
};

PerRegionTable* volatile PerRegionTable::_free_list = NULL;

size_t OtherRegionsTable::_max_fine_entries = 0;
size_t OtherRegionsTable::_mod_max_fine_entries_mask = 0;
size_t OtherRegionsTable::_fine_eviction_stride = 0;
size_t OtherRegionsTable::_fine_eviction_sample_size = 0;

OtherRegionsTable::OtherRegionsTable(HeapRegion* hr, Mutex* m) :
  _g1h(G1CollectedHeap::heap()),
  _hr(hr), _m(m),
  _coarse_map(G1CollectedHeap::heap()->max_regions(), mtGC),
  _fine_grain_regions(NULL),
  _first_all_fine_prts(NULL), _last_all_fine_prts(NULL),
  _n_fine_entries(0), _n_coarse_entries(0),
  _fine_eviction_start(0),
  _sparse_table(hr)
{
  typedef PerRegionTable* PerRegionTablePtr;

  if (_max_fine_entries == 0) {
    assert(_mod_max_fine_entries_mask == 0, "Both or none.");
    size_t max_entries_log = (size_t)log2_long((jlong)G1RSetRegionEntries);
    _max_fine_entries = (size_t)1 << max_entries_log;
    _mod_max_fine_entries_mask = _max_fine_entries - 1;

    assert(_fine_eviction_sample_size == 0
           && _fine_eviction_stride == 0, "All init at same time.");
    _fine_eviction_sample_size = MAX2((size_t)4, max_entries_log);
    _fine_eviction_stride = _max_fine_entries / _fine_eviction_sample_size;
  }

  _fine_grain_regions = NEW_C_HEAP_ARRAY3(PerRegionTablePtr, _max_fine_entries,
                        mtGC, CURRENT_PC, AllocFailStrategy::RETURN_NULL);

  if (_fine_grain_regions == NULL) {
    vm_exit_out_of_memory(sizeof(void*)*_max_fine_entries, OOM_MALLOC_ERROR,
                          "Failed to allocate _fine_grain_entries.");
  }

  for (size_t i = 0; i < _max_fine_entries; i++) {
    _fine_grain_regions[i] = NULL;
  }
}

void OtherRegionsTable::link_to_all(PerRegionTable* prt) {
  // We always append to the beginning of the list for convenience;
  // the order of entries in this list does not matter.
  if (_first_all_fine_prts != NULL) {
    assert(_first_all_fine_prts->prev() == NULL, "invariant");
    _first_all_fine_prts->set_prev(prt);
    prt->set_next(_first_all_fine_prts);
  } else {
    // this is the first element we insert. Adjust the "last" pointer
    _last_all_fine_prts = prt;
    assert(prt->next() == NULL, "just checking");
  }
  // the new element is always the first element without a predecessor
  prt->set_prev(NULL);
  _first_all_fine_prts = prt;

  assert(prt->prev() == NULL, "just checking");
  assert(_first_all_fine_prts == prt, "just checking");
  assert((_first_all_fine_prts == NULL && _last_all_fine_prts == NULL) ||
         (_first_all_fine_prts != NULL && _last_all_fine_prts != NULL),
         "just checking");
  assert(_last_all_fine_prts == NULL || _last_all_fine_prts->next() == NULL,
         "just checking");
  assert(_first_all_fine_prts == NULL || _first_all_fine_prts->prev() == NULL,
         "just checking");
}

void OtherRegionsTable::unlink_from_all(PerRegionTable* prt) {
  if (prt->prev() != NULL) {
    assert(_first_all_fine_prts != prt, "just checking");
    prt->prev()->set_next(prt->next());
    // removing the last element in the list?
    if (_last_all_fine_prts == prt) {
      _last_all_fine_prts = prt->prev();
    }
  } else {
    assert(_first_all_fine_prts == prt, "just checking");
    _first_all_fine_prts = prt->next();
    // list is empty now?
    if (_first_all_fine_prts == NULL) {
      _last_all_fine_prts = NULL;
    }
  }

  if (prt->next() != NULL) {
    prt->next()->set_prev(prt->prev());
  }

  prt->set_next(NULL);
  prt->set_prev(NULL);

  assert((_first_all_fine_prts == NULL && _last_all_fine_prts == NULL) ||
         (_first_all_fine_prts != NULL && _last_all_fine_prts != NULL),
         "just checking");
  assert(_last_all_fine_prts == NULL || _last_all_fine_prts->next() == NULL,
         "just checking");
  assert(_first_all_fine_prts == NULL || _first_all_fine_prts->prev() == NULL,
         "just checking");
}

CardIdx_t OtherRegionsTable::card_within_region(OopOrNarrowOopStar within_region, HeapRegion* hr) {
  assert(hr->is_in_reserved(within_region),
         "HeapWord " PTR_FORMAT " is outside of region %u [" PTR_FORMAT ", " PTR_FORMAT ")",
         p2i(within_region), hr->hrm_index(), p2i(hr->bottom()), p2i(hr->end()));
  CardIdx_t result = (CardIdx_t)(pointer_delta((HeapWord*)within_region, hr->bottom()) >> (CardTable::card_shift - LogHeapWordSize));
  return result;
}

void OtherRegionsTable::add_reference(OopOrNarrowOopStar from, uint tid) {
  uint cur_hrm_ind = _hr->hrm_index();

  uintptr_t from_card = uintptr_t(from) >> CardTable::card_shift;

  if (G1FromCardCache::contains_or_replace(tid, cur_hrm_ind, from_card)) {
    assert(contains_reference(from), "We just found " PTR_FORMAT " in the FromCardCache", p2i(from));
    return;
  }

  // Note that this may be a continued H region.
  HeapRegion* from_hr = _g1h->heap_region_containing(from);
  RegionIdx_t from_hrm_ind = (RegionIdx_t) from_hr->hrm_index();

  // If the region is already coarsened, return.
  if (_coarse_map.at(from_hrm_ind)) {
    assert(contains_reference(from), "We just found " PTR_FORMAT " in the Coarse table", p2i(from));
    return;
  }

  // Otherwise find a per-region table to add it to.
  size_t ind = from_hrm_ind & _mod_max_fine_entries_mask;
  PerRegionTable* prt = find_region_table(ind, from_hr);
  if (prt == NULL) {
    MutexLockerEx x(_m, Mutex::_no_safepoint_check_flag);
    // Confirm that it's really not there...
    prt = find_region_table(ind, from_hr);
    if (prt == NULL) {

      CardIdx_t card_index = card_within_region(from, from_hr);

      if (G1HRRSUseSparseTable &&
          _sparse_table.add_card(from_hrm_ind, card_index)) {
        assert(contains_reference_locked(from), "We just added " PTR_FORMAT " to the Sparse table", p2i(from));
        return;
      }

      if (_n_fine_entries == _max_fine_entries) {
        prt = delete_region_table();
        // There is no need to clear the links to the 'all' list here:
        // prt will be reused immediately, i.e. remain in the 'all' list.
        prt->init(from_hr, false /* clear_links_to_all_list */);
      } else {
        prt = PerRegionTable::alloc(from_hr);
        link_to_all(prt);
      }

      PerRegionTable* first_prt = _fine_grain_regions[ind];
      prt->set_collision_list_next(first_prt);
      // The assignment into _fine_grain_regions allows the prt to
      // start being used concurrently. In addition to
      // collision_list_next which must be visible (else concurrent
      // parsing of the list, if any, may fail to see other entries),
      // the content of the prt must be visible (else for instance
      // some mark bits may not yet seem cleared or a 'later' update
      // performed by a concurrent thread could be undone when the
      // zeroing becomes visible). This requires store ordering.
      OrderAccess::release_store(&_fine_grain_regions[ind], prt);
      _n_fine_entries++;

      if (G1HRRSUseSparseTable) {
        // Transfer from sparse to fine-grain.
        SparsePRTEntry *sprt_entry = _sparse_table.get_entry(from_hrm_ind);
        assert(sprt_entry != NULL, "There should have been an entry");
        for (int i = 0; i < sprt_entry->num_valid_cards(); i++) {
          CardIdx_t c = sprt_entry->card(i);
          prt->add_card(c);
        }
        // Now we can delete the sparse entry.
        bool res = _sparse_table.delete_entry(from_hrm_ind);
        assert(res, "It should have been there.");
      }
    }
    assert(prt != NULL && prt->hr() == from_hr, "consequence");
  }
  // Note that we can't assert "prt->hr() == from_hr", because of the
  // possibility of concurrent reuse.  But see head comment of
  // OtherRegionsTable for why this is OK.
  assert(prt != NULL, "Inv");

  prt->add_reference(from);
  assert(contains_reference(from), "We just added " PTR_FORMAT " to the PRT (%d)", p2i(from), prt->contains_reference(from));
}

PerRegionTable*
OtherRegionsTable::find_region_table(size_t ind, HeapRegion* hr) const {
  assert(ind < _max_fine_entries, "Preconditions.");
  PerRegionTable* prt = _fine_grain_regions[ind];
  while (prt != NULL && prt->hr() != hr) {
    prt = prt->collision_list_next();
  }
  // Loop postcondition is the method postcondition.
  return prt;
}

jint OtherRegionsTable::_n_coarsenings = 0;

PerRegionTable* OtherRegionsTable::delete_region_table() {
  assert(_m->owned_by_self(), "Precondition");
  assert(_n_fine_entries == _max_fine_entries, "Precondition");
  PerRegionTable* max = NULL;
  jint max_occ = 0;
  PerRegionTable** max_prev = NULL;
  size_t max_ind;

  size_t i = _fine_eviction_start;
  for (size_t k = 0; k < _fine_eviction_sample_size; k++) {
    size_t ii = i;
    // Make sure we get a non-NULL sample.
    while (_fine_grain_regions[ii] == NULL) {
      ii++;
      if (ii == _max_fine_entries) ii = 0;
      guarantee(ii != i, "We must find one.");
    }
    PerRegionTable** prev = &_fine_grain_regions[ii];
    PerRegionTable* cur = *prev;
    while (cur != NULL) {
      jint cur_occ = cur->occupied();
      if (max == NULL || cur_occ > max_occ) {
        max = cur;
        max_prev = prev;
        max_ind = i;
        max_occ = cur_occ;
      }
      prev = cur->collision_list_next_addr();
      cur = cur->collision_list_next();
    }
    i = i + _fine_eviction_stride;
    if (i >= _n_fine_entries) i = i - _n_fine_entries;
  }

  _fine_eviction_start++;

  if (_fine_eviction_start >= _n_fine_entries) {
    _fine_eviction_start -= _n_fine_entries;
  }

  guarantee(max != NULL, "Since _n_fine_entries > 0");
  guarantee(max_prev != NULL, "Since max != NULL.");

  // Set the corresponding coarse bit.
  size_t max_hrm_index = (size_t) max->hr()->hrm_index();
  if (!_coarse_map.at(max_hrm_index)) {
    _coarse_map.at_put(max_hrm_index, true);
    _n_coarse_entries++;
  }

  // Unsplice.
  *max_prev = max->collision_list_next();
  Atomic::inc(&_n_coarsenings);
  _n_fine_entries--;
  return max;
}

bool OtherRegionsTable::occupancy_less_or_equal_than(size_t limit) const {
  if (limit <= (size_t)G1RSetSparseRegionEntries) {
    return occ_coarse() == 0 && _first_all_fine_prts == NULL && occ_sparse() <= limit;
  } else {
    // Current uses of this method may only use values less than G1RSetSparseRegionEntries
    // for the limit. The solution, comparing against occupied() would be too slow
    // at this time.
    Unimplemented();
    return false;
  }
}

bool OtherRegionsTable::is_empty() const {
  return occ_sparse() == 0 && occ_coarse() == 0 && _first_all_fine_prts == NULL;
}

size_t OtherRegionsTable::occupied() const {
  size_t sum = occ_fine();
  sum += occ_sparse();
  sum += occ_coarse();
  return sum;
}

size_t OtherRegionsTable::occ_fine() const {
  size_t sum = 0;

  size_t num = 0;
  PerRegionTable * cur = _first_all_fine_prts;
  while (cur != NULL) {
    sum += cur->occupied();
    cur = cur->next();
    num++;
  }
  guarantee(num == _n_fine_entries, "just checking");
  return sum;
}

size_t OtherRegionsTable::occ_coarse() const {
  return (_n_coarse_entries * HeapRegion::CardsPerRegion);
}

size_t OtherRegionsTable::occ_sparse() const {
  return _sparse_table.occupied();
}

size_t OtherRegionsTable::mem_size() const {
  size_t sum = 0;
  // all PRTs are of the same size so it is sufficient to query only one of them.
  if (_first_all_fine_prts != NULL) {
    assert(_last_all_fine_prts != NULL &&
      _first_all_fine_prts->mem_size() == _last_all_fine_prts->mem_size(), "check that mem_size() is constant");
    sum += _first_all_fine_prts->mem_size() * _n_fine_entries;
  }
  sum += (sizeof(PerRegionTable*) * _max_fine_entries);
  sum += (_coarse_map.size_in_words() * HeapWordSize);
  sum += (_sparse_table.mem_size());
  sum += sizeof(OtherRegionsTable) - sizeof(_sparse_table); // Avoid double counting above.
  return sum;
}

size_t OtherRegionsTable::static_mem_size() {
  return G1FromCardCache::static_mem_size();
}

size_t OtherRegionsTable::fl_mem_size() {
  return PerRegionTable::fl_mem_size();
}

void OtherRegionsTable::clear_fcc() {
  G1FromCardCache::clear(_hr->hrm_index());
}

void OtherRegionsTable::clear() {
  // if there are no entries, skip this step
  if (_first_all_fine_prts != NULL) {
    guarantee(_first_all_fine_prts != NULL && _last_all_fine_prts != NULL, "just checking");
    PerRegionTable::bulk_free(_first_all_fine_prts, _last_all_fine_prts);
    memset(_fine_grain_regions, 0, _max_fine_entries * sizeof(_fine_grain_regions[0]));
  } else {
    guarantee(_first_all_fine_prts == NULL && _last_all_fine_prts == NULL, "just checking");
  }

  _first_all_fine_prts = _last_all_fine_prts = NULL;
  _sparse_table.clear();
  if (_n_coarse_entries > 0) {
    _coarse_map.clear();
  }
  _n_fine_entries = 0;
  _n_coarse_entries = 0;

  clear_fcc();
}

bool OtherRegionsTable::contains_reference(OopOrNarrowOopStar from) const {
  // Cast away const in this case.
  MutexLockerEx x((Mutex*)_m, Mutex::_no_safepoint_check_flag);
  return contains_reference_locked(from);
}

bool OtherRegionsTable::contains_reference_locked(OopOrNarrowOopStar from) const {
  HeapRegion* hr = _g1h->heap_region_containing(from);
  RegionIdx_t hr_ind = (RegionIdx_t) hr->hrm_index();
  // Is this region in the coarse map?
  if (_coarse_map.at(hr_ind)) return true;

  PerRegionTable* prt = find_region_table(hr_ind & _mod_max_fine_entries_mask,
                                          hr);
  if (prt != NULL) {
    return prt->contains_reference(from);

  } else {
    CardIdx_t card_index = card_within_region(from, hr);
    return _sparse_table.contains_card(hr_ind, card_index);
  }
}

void
OtherRegionsTable::do_cleanup_work(HRRSCleanupTask* hrrs_cleanup_task) {
  _sparse_table.do_cleanup_work(hrrs_cleanup_task);
}

HeapRegionRemSet::HeapRegionRemSet(G1BlockOffsetTable* bot,
                                   HeapRegion* hr)
  : _bot(bot),
    _m(Mutex::leaf, FormatBuffer<128>("HeapRegionRemSet lock #%u", hr->hrm_index()), true, Monitor::_safepoint_check_never),
    _code_roots(),
    _state(Untracked),
    _other_regions(hr, &_m) {
}

void HeapRegionRemSet::setup_remset_size() {
  // Setup sparse and fine-grain tables sizes.
  // table_size = base * (log(region_size / 1M) + 1)
  const int LOG_M = 20;
  int region_size_log_mb = MAX2(HeapRegion::LogOfHRGrainBytes - LOG_M, 0);
  if (FLAG_IS_DEFAULT(G1RSetSparseRegionEntries)) {
    G1RSetSparseRegionEntries = G1RSetSparseRegionEntriesBase * (region_size_log_mb + 1);
  }
  if (FLAG_IS_DEFAULT(G1RSetRegionEntries)) {
    G1RSetRegionEntries = G1RSetRegionEntriesBase * (region_size_log_mb + 1);
  }
  guarantee(G1RSetSparseRegionEntries > 0 && G1RSetRegionEntries > 0 , "Sanity");
}

void HeapRegionRemSet::cleanup() {
  SparsePRT::cleanup_all();
}

void HeapRegionRemSet::clear(bool only_cardset) {
  MutexLockerEx x(&_m, Mutex::_no_safepoint_check_flag);
  clear_locked(only_cardset);
}

void HeapRegionRemSet::clear_locked(bool only_cardset) {
  if (!only_cardset) {
    _code_roots.clear();
  }
  _other_regions.clear();
  set_state_empty();
  assert(occupied_locked() == 0, "Should be clear.");
}

// Code roots support
//
// The code root set is protected by two separate locking schemes
// When at safepoint the per-hrrs lock must be held during modifications
// except when doing a full gc.
// When not at safepoint the CodeCache_lock must be held during modifications.
// When concurrent readers access the contains() function
// (during the evacuation phase) no removals are allowed.

void HeapRegionRemSet::add_strong_code_root(nmethod* nm) {
  assert(nm != NULL, "sanity");
  assert((!CodeCache_lock->owned_by_self() || SafepointSynchronize::is_at_safepoint()),
          "should call add_strong_code_root_locked instead. CodeCache_lock->owned_by_self(): %s, is_at_safepoint(): %s",
          BOOL_TO_STR(CodeCache_lock->owned_by_self()), BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()));
  // Optimistic unlocked contains-check
  if (!_code_roots.contains(nm)) {
    MutexLockerEx ml(&_m, Mutex::_no_safepoint_check_flag);
    add_strong_code_root_locked(nm);
  }
}

void HeapRegionRemSet::add_strong_code_root_locked(nmethod* nm) {
  assert(nm != NULL, "sanity");
  assert((CodeCache_lock->owned_by_self() ||
         (SafepointSynchronize::is_at_safepoint() &&
          (_m.owned_by_self() || Thread::current()->is_VM_thread()))),
          "not safely locked. CodeCache_lock->owned_by_self(): %s, is_at_safepoint(): %s, _m.owned_by_self(): %s, Thread::current()->is_VM_thread(): %s",
          BOOL_TO_STR(CodeCache_lock->owned_by_self()), BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),
          BOOL_TO_STR(_m.owned_by_self()), BOOL_TO_STR(Thread::current()->is_VM_thread()));
  _code_roots.add(nm);
}

void HeapRegionRemSet::remove_strong_code_root(nmethod* nm) {
  assert(nm != NULL, "sanity");
  assert_locked_or_safepoint(CodeCache_lock);

  MutexLockerEx ml(CodeCache_lock->owned_by_self() ? NULL : &_m, Mutex::_no_safepoint_check_flag);
  _code_roots.remove(nm);

  // Check that there were no duplicates
  guarantee(!_code_roots.contains(nm), "duplicate entry found");
}

void HeapRegionRemSet::strong_code_roots_do(CodeBlobClosure* blk) const {
  _code_roots.nmethods_do(blk);
}

void HeapRegionRemSet::clean_strong_code_roots(HeapRegion* hr) {
  _code_roots.clean(hr);
}

size_t HeapRegionRemSet::strong_code_roots_mem_size() {
  return _code_roots.mem_size();
}

HeapRegionRemSetIterator:: HeapRegionRemSetIterator(HeapRegionRemSet* hrrs) :
  _hrrs(hrrs),
  _g1h(G1CollectedHeap::heap()),
  _coarse_map(&hrrs->_other_regions._coarse_map),
  _bot(hrrs->_bot),
  _is(Sparse),
  // Set these values so that we increment to the first region.
  _coarse_cur_region_index(-1),
  _coarse_cur_region_cur_card(HeapRegion::CardsPerRegion-1),
  _cur_card_in_prt(HeapRegion::CardsPerRegion),
  _fine_cur_prt(NULL),
  _n_yielded_coarse(0),
  _n_yielded_fine(0),
  _n_yielded_sparse(0),
  _sparse_iter(&hrrs->_other_regions._sparse_table) {}

bool HeapRegionRemSetIterator::coarse_has_next(size_t& card_index) {
  if (_hrrs->_other_regions._n_coarse_entries == 0) return false;
  // Go to the next card.
  _coarse_cur_region_cur_card++;
  // Was the last the last card in the current region?
  if (_coarse_cur_region_cur_card == HeapRegion::CardsPerRegion) {
    // Yes: find the next region.  This may leave _coarse_cur_region_index
    // Set to the last index, in which case there are no more coarse
    // regions.
    _coarse_cur_region_index =
      (int) _coarse_map->get_next_one_offset(_coarse_cur_region_index + 1);
    if ((size_t)_coarse_cur_region_index < _coarse_map->size()) {
      _coarse_cur_region_cur_card = 0;
      HeapWord* r_bot =
        _g1h->region_at((uint) _coarse_cur_region_index)->bottom();
      _cur_region_card_offset = _bot->index_for(r_bot);
    } else {
      return false;
    }
  }
  // If we didn't return false above, then we can yield a card.
  card_index = _cur_region_card_offset + _coarse_cur_region_cur_card;
  return true;
}

bool HeapRegionRemSetIterator::fine_has_next(size_t& card_index) {
  if (fine_has_next()) {
    _cur_card_in_prt =
      _fine_cur_prt->_bm.get_next_one_offset(_cur_card_in_prt + 1);
  }
  if (_cur_card_in_prt == HeapRegion::CardsPerRegion) {
    // _fine_cur_prt may still be NULL in case if there are not PRTs at all for
    // the remembered set.
    if (_fine_cur_prt == NULL || _fine_cur_prt->next() == NULL) {
      return false;
    }
    PerRegionTable* next_prt = _fine_cur_prt->next();
    switch_to_prt(next_prt);
    _cur_card_in_prt = _fine_cur_prt->_bm.get_next_one_offset(_cur_card_in_prt + 1);
  }

  card_index = _cur_region_card_offset + _cur_card_in_prt;
  guarantee(_cur_card_in_prt < HeapRegion::CardsPerRegion,
            "Card index " SIZE_FORMAT " must be within the region", _cur_card_in_prt);
  return true;
}

bool HeapRegionRemSetIterator::fine_has_next() {
  return _cur_card_in_prt != HeapRegion::CardsPerRegion;
}

void HeapRegionRemSetIterator::switch_to_prt(PerRegionTable* prt) {
  assert(prt != NULL, "Cannot switch to NULL prt");
  _fine_cur_prt = prt;

  HeapWord* r_bot = _fine_cur_prt->hr()->bottom();
  _cur_region_card_offset = _bot->index_for(r_bot);

  // The bitmap scan for the PRT always scans from _cur_region_cur_card + 1.
  // To avoid special-casing this start case, and not miss the first bitmap
  // entry, initialize _cur_region_cur_card with -1 instead of 0.
  _cur_card_in_prt = (size_t)-1;
}

bool HeapRegionRemSetIterator::has_next(size_t& card_index) {
  switch (_is) {
  case Sparse: {
    if (_sparse_iter.has_next(card_index)) {
      _n_yielded_sparse++;
      return true;
    }
    // Otherwise, deliberate fall-through
    _is = Fine;
    PerRegionTable* initial_fine_prt = _hrrs->_other_regions._first_all_fine_prts;
    if (initial_fine_prt != NULL) {
      switch_to_prt(_hrrs->_other_regions._first_all_fine_prts);
    }
  }
  case Fine:
    if (fine_has_next(card_index)) {
      _n_yielded_fine++;
      return true;
    }
    // Otherwise, deliberate fall-through
    _is = Coarse;
  case Coarse:
    if (coarse_has_next(card_index)) {
      _n_yielded_coarse++;
      return true;
    }
    // Otherwise...
    break;
  }
  return false;
}

void HeapRegionRemSet::reset_for_cleanup_tasks() {
  SparsePRT::reset_for_cleanup_tasks();
}

void HeapRegionRemSet::do_cleanup_work(HRRSCleanupTask* hrrs_cleanup_task) {
  _other_regions.do_cleanup_work(hrrs_cleanup_task);
}

void
HeapRegionRemSet::finish_cleanup_task(HRRSCleanupTask* hrrs_cleanup_task) {
  SparsePRT::finish_cleanup_task(hrrs_cleanup_task);
}

#ifndef PRODUCT
void HeapRegionRemSet::test() {
  os::sleep(Thread::current(), (jlong)5000, false);
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // Run with "-XX:G1LogRSetRegionEntries=2", so that 1 and 5 end up in same
  // hash bucket.
  HeapRegion* hr0 = g1h->region_at(0);
  HeapRegion* hr1 = g1h->region_at(1);
  HeapRegion* hr2 = g1h->region_at(5);
  HeapRegion* hr3 = g1h->region_at(6);
  HeapRegion* hr4 = g1h->region_at(7);
  HeapRegion* hr5 = g1h->region_at(8);

  HeapWord* hr1_start = hr1->bottom();
  HeapWord* hr1_mid = hr1_start + HeapRegion::GrainWords/2;
  HeapWord* hr1_last = hr1->end() - 1;

  HeapWord* hr2_start = hr2->bottom();
  HeapWord* hr2_mid = hr2_start + HeapRegion::GrainWords/2;
  HeapWord* hr2_last = hr2->end() - 1;

  HeapWord* hr3_start = hr3->bottom();
  HeapWord* hr3_mid = hr3_start + HeapRegion::GrainWords/2;
  HeapWord* hr3_last = hr3->end() - 1;

  HeapRegionRemSet* hrrs = hr0->rem_set();

  // Make three references from region 0x101...
  hrrs->add_reference((OopOrNarrowOopStar)hr1_start);
  hrrs->add_reference((OopOrNarrowOopStar)hr1_mid);
  hrrs->add_reference((OopOrNarrowOopStar)hr1_last);

  hrrs->add_reference((OopOrNarrowOopStar)hr2_start);
  hrrs->add_reference((OopOrNarrowOopStar)hr2_mid);
  hrrs->add_reference((OopOrNarrowOopStar)hr2_last);

  hrrs->add_reference((OopOrNarrowOopStar)hr3_start);
  hrrs->add_reference((OopOrNarrowOopStar)hr3_mid);
  hrrs->add_reference((OopOrNarrowOopStar)hr3_last);

  // Now cause a coarsening.
  hrrs->add_reference((OopOrNarrowOopStar)hr4->bottom());
  hrrs->add_reference((OopOrNarrowOopStar)hr5->bottom());

  // Now, does iteration yield these three?
  HeapRegionRemSetIterator iter(hrrs);
  size_t sum = 0;
  size_t card_index;
  while (iter.has_next(card_index)) {
    HeapWord* card_start =
      G1CollectedHeap::heap()->bot()->address_for_index(card_index);
    tty->print_cr("  Card " PTR_FORMAT ".", p2i(card_start));
    sum++;
  }
  guarantee(sum == 11 - 3 + 2048, "Failure");
  guarantee(sum == hrrs->occupied(), "Failure");
}
#endif